1_vectors & coordinate systems

Upload: sreedevi-menon

Post on 02-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 1_Vectors & Coordinate Systems

    1/37

  • 8/11/2019 1_Vectors & Coordinate Systems

    2/37

    Vectors & Scalars

    Vectors

    Magnitude

    Direction

    Eg: velocity, force etc

    Scalars

    Magnitude only

    Eg: speed, distance

    ECE 320 Electromagnetics & WavePropagation

    2

    332211 aAaAaAA

    AAA

    aAaAaAa

    A2

    3

    2

    2

    2

    1

    332211

    Unit Vector: have magnitude unity, denoted by symbol awith

    subscript. Use the right-handed system throughout.

  • 8/11/2019 1_Vectors & Coordinate Systems

    3/37

    DOT or Scalar Product

    Scalar

    AB = AB cos

    A cosscalarprojection of Aonto B

    ECE 320 Electromagnetics & WavePropagation

    3

    332211 aAaAaAA 332211 aBaBaBB

    BBBAAA

    BABABA

    A

    A

    2

    3

    2

    2

    2

    1

    2

    3

    2

    2

    2

    1

    332211cos

    B

    B

    A

    B

    A cos

  • 8/11/2019 1_Vectors & Coordinate Systems

    4/37

    DOT Product - properties

    1. Commutative -AB = BA

    2. Distributive -A(B+C) = AB+ AC

    3. Bilinear -A(rB+C) = r(AB)+ AC4. When multiplied by a scalar value, dot product

    satisfies: k1A+ k2 B=k1k2(AB )

    5. two non-zero vectors are orthogonal if & onlyif :AB = 0

    ECE 320 Electromagnetics & WavePropagation

    4

  • 8/11/2019 1_Vectors & Coordinate Systems

    5/37

    Cross Product

    Vector

    AB = AB sin

    Useful for finding unitvector perpendicular totwo vectors.

    ECE 320 Electromagnetics & WavePropagation

    5

    332211

    aAaAaAA

    332211 aBaBaBB

    B

    B

    AAa

    n

  • 8/11/2019 1_Vectors & Coordinate Systems

    6/37

    ECE 320 Electromagnetics & WavePropagation

    6

    321

    321

    321

    BBB

    AAA

    aaa

    BA

    Geometric meaning: crossproduct can be interpreted as thearea of a parallelogram with sides

    a& b

  • 8/11/2019 1_Vectors & Coordinate Systems

    7/37

    Cross Product - properties

    1. Anti-Commutative -AB = -B A

    2. Distributive -A (B+C) = A B+ A C

    3. two non-zero vectors are parallel if & only if :A B = 0

    ECE 320 Electromagnetics & WavePropagation

    7

    Vector triple product)()()( BACCAB CBA

    Back cab rule

  • 8/11/2019 1_Vectors & Coordinate Systems

    8/37

    Scalar triple product

    ECE 320 Electromagnetics & WavePropagation

    8

    321

    321

    321

    CCC

    BBB

    AAA

    BACACBCBA

    Geometric meaning: interpretedas the volume of a parallelepiped

    A

    B C

  • 8/11/2019 1_Vectors & Coordinate Systems

    9/37

  • 8/11/2019 1_Vectors & Coordinate Systems

    10/37

    Differential change

    Length (dli) Surface(ds)

    Volume(dv)

    Differential Length (dli)

    1. Differential change in duiis converted to lengthusing metric coefficient hi, function of u1, u2

    & u3

    ECE 320 Electromagnetics & WavePropagation

    10

    dli= hidui

  • 8/11/2019 1_Vectors & Coordinate Systems

    11/37

    ECE 320 Electromagnetics & WavePropagation

    11

    u2u1u3

    u1u3u2

    u3u2u1

    aaa

    aaa

    aaa

    0aaaaaa u1u3u3u2u2u1

    1aaaaaau3u3u2u2u1u1

    332211 uuu aAaAaAA

    AAA uuuA 2

    3

    2

    2

    2

    1

  • 8/11/2019 1_Vectors & Coordinate Systems

    12/37

    ECE 320 Electromagnetics & WavePropagation

    12

    dl = au1(h1du1)+ au2(h2du2)+ au3(h3du3)

    A directed differential length in an arbitrary direction

    dl= [(h1du1)2+ (h2du2)

    2+ (h3du3)2] 1/2

    Differential area (ds)

    ds= ands

    annormal to ds

  • 8/11/2019 1_Vectors & Coordinate Systems

    13/37

    ECE 320 Electromagnetics & WavePropagation

    13

    ds1= dl2dl3ds1= h2h3du2du3

    ds2= h1h3du1du3

    ds3= h1h2du1du2

    Differential volume (dv)

    dv= h1h2h3du1du2du3

  • 8/11/2019 1_Vectors & Coordinate Systems

    14/37

    Cartesian Coordinates

    (u1, u2,u3) = (x,y,z)

    3 orthogonal planes

    x= 0,yzplane

    y= 0, xzplane

    z= 0, xyplane

    Right handed system

    Base vectors ax, ay, az

    ECE 320 Electromagnetics & WavePropagation

    14

    yxz

    xzy

    zyx

    aaaaaa

    aaa

  • 8/11/2019 1_Vectors & Coordinate Systems

    15/37

    ECE 320 Electromagnetics & WavePropagation

    15

    111 zayaxaOP zyx

    x

    yx

    y

    z

    Oaz z

    az

    ay

    ayax

    ax

    P

    1

    1

    1

  • 8/11/2019 1_Vectors & Coordinate Systems

    16/37

    ECE 320 Electromagnetics & WavePropagation

    16

    zzyyxx aAaAaAA

    zzyyxx BABABAA B

    zyx

    zyx

    zyx

    BBB

    AAA

    aaa

    BA

    h1= h2= h3= 1

    dl = axdx+ aydy+azdz

  • 8/11/2019 1_Vectors & Coordinate Systems

    17/37

    ECE 320 Electromagnetics & WavePropagation

    17

    dsx= dydz dsy= dxdz dsz= dxdy

    dv= dxdydz

  • 8/11/2019 1_Vectors & Coordinate Systems

    18/37

    Cylindrical Coordinates

    (u1, u2,u3) = (r,,z)

    3 orthogonal planes Circular cylindrical surface r

    Half plane containing z-axismaking an angle with xz plane

    Plane parallel to xyplane at z

    measured from + x axis

    Base vectors ar, a, az (atangential to the cylindricalaxis)

    ECE 320 Electromagnetics & WavePropagation

    18

    aaaaaa

    aaa

    rz

    rz

    zr

  • 8/11/2019 1_Vectors & Coordinate Systems

    19/37

    ECE 320 Electromagnetics & WavePropagation

    19

  • 8/11/2019 1_Vectors & Coordinate Systems

    20/37

    ECE 320 Electromagnetics & WavePropagation

    20

    zzrr aAaAaAA h1= h3= 1, h2= r

    dl = ardr + a r d+azdz

    dv= r drddz

    dsr= r ddz

    ds= drdz

    dsz= r drd

  • 8/11/2019 1_Vectors & Coordinate Systems

    21/37

    Conversion

    ECE 320 Electromagnetics & WavePropagation

    21

    z

    r

    z

    y

    x

    A

    A

    A

    A

    A

    A

    100

    0sin

    0sin-

    cos

    cos

    zz

    ry

    rx

    sin

    cos

    zzx

    y

    yxr

    1

    22

    tan

  • 8/11/2019 1_Vectors & Coordinate Systems

    22/37

    Spherical Coordinates

    (u1, u2,u3) = (R,, )

    3 orthogonal planes Spherical surface centered at

    origin with a radius R Right circular cone with apex at

    the origin, its axis coincidingwith +z axis & having a halfangle

    Half plane containing z-axis &making angle with the xz plane

    Base vectors aR, a

    , a

    ECE 320 Electromagnetics & WavePropagation

    22

    aaa

    aaa

    aaa

    R

    R

    R

  • 8/11/2019 1_Vectors & Coordinate Systems

    23/37

    ECE 320 Electromagnetics & WavePropagation

    23

  • 8/11/2019 1_Vectors & Coordinate Systems

    24/37

    ECE 320 Electromagnetics & WavePropagation

    24

    aAaAaAA RR h1= 1,h2= R,h3=Rsin

    dl = aRdR + aR d+a R sind

    dsR= R2sindd

    ds= RsindR d

    ds= R dRd

    dv= R2sindR dd

  • 8/11/2019 1_Vectors & Coordinate Systems

    25/37

    Conversion

    ECE 320 Electromagnetics & WavePropagation

    25

    cos

    sinsin

    cossin

    Rz

    Ry

    Rx

    x

    y

    z

    yx

    zyxR

    1

    22

    1

    222

    tan

    tan

    z

    y

    x

    A

    A

    A

    0cos

    sin

    sinsincoscoscos

    cossinsincossin

    A

    A

    AR

  • 8/11/2019 1_Vectors & Coordinate Systems

    26/37

    Integrals

    Line integralintegral of tangentialcomponent of a vector along the curve

    ECE 320 Electromagnetics & WavePropagation

    26

    L dlA

    dlAdlA

    b

    aL

    cos

    abcaalong

    aroundofncirculatio LAdlAL

  • 8/11/2019 1_Vectors & Coordinate Systems

    27/37

    Integrals

    Surface integralvector through the surface

    ECE 320 Electromagnetics & WavePropagation

    27

    S

    ndSaA

    S

    n

    S

    dSaAdSA cos

    S

    dSA

    S

    dSA

  • 8/11/2019 1_Vectors & Coordinate Systems

    28/37

    Fields

    Variation of a physical quantity from one pointto other in a region

    Scalar field: constant magnitude contour

    Vector field: constant magnitude contour &direction

    Static field: no variation with time

    Dynamic field: varies with time

    ECE 320 Electromagnetics & WavePropagation

    28

  • 8/11/2019 1_Vectors & Coordinate Systems

    29/37

    Gradient of a Scalar Field

    Gradient of a scalarfield represent boththe magnitude &

    the direction of themaximum space rateof increase of the

    field

    ECE 320 Electromagnetics & WavePropagation

    29

  • 8/11/2019 1_Vectors & Coordinate Systems

    30/37

    ECE 320 Electromagnetics & WavePropagation

    30

    dn

    dVaVVgradn

    33

    3

    22

    2

    11

    1uh

    Va

    uh

    Va

    uh

    VaV

    uuu

    33

    3

    22

    2

    11

    1uh

    auh

    auh

    auuu

    dlVdVdl

    alongderivativeldirectiona

  • 8/11/2019 1_Vectors & Coordinate Systems

    31/37

    ECE 320 Electromagnetics & WavePropagation

    31

    za

    ya

    xa

    zyx

    ,coordinaterRectangula

    za

    Ra

    ra

    zr

    l,Cylindrica

    sinSpherical,

    Ra

    Ra

    RaR

  • 8/11/2019 1_Vectors & Coordinate Systems

    32/37

    Divergence of a Vector Field

    ECE 320 Electromagnetics & WavePropagation

    32

  • 8/11/2019 1_Vectors & Coordinate Systems

    33/37

    ECE 320 Electromagnetics & WavePropagation

    33

    z

    A

    y

    A

    x

    A

    A zyx

    ,coordinaterRectangula

    3213

    2312

    1321321

    1

    AhhuAhhuAhhuhhhA

    v

    dSA

    A Sv

    0limA,div

  • 8/11/2019 1_Vectors & Coordinate Systems

    34/37

    ECE 320 Electromagnetics & WavePropagation

    34

    z

    AA

    rrA

    rrA z

    r

    11l,Cylindrica

    A

    RAR

    RAR

    RRA

    R

    sin

    1sin

    sin

    11

    Spherical,

    22

    2

    FieldSolenoidal,0 A

  • 8/11/2019 1_Vectors & Coordinate Systems

    35/37

    ECE 320 Electromagnetics & WavePropagation

    35

    max0

    1

    limA,c

    CnS dlAaSAurl

    332211

    321

    332211

    321

    1

    AhAhAh

    uuu

    hahaha

    hhhA

    uuu

    zyx

    zyx

    AAA

    zyx

    aaa

    A

    Cartesian,

    Curl of a Vector Field

  • 8/11/2019 1_Vectors & Coordinate Systems

    36/37

    ECE 320 Electromagnetics & WavePropagation

    36

    zr

    zr

    ArAA zr

    aaa

    r

    AlCylindrica

    1,

    ARRAA

    R

    aaa

    RASpherical

    r

    R

    sinsin

    1,2

    FieldveconservatioralIrrotation,0 A

  • 8/11/2019 1_Vectors & Coordinate Systems

    37/37

    ECE 320 Electromagnetics & Wave 37

    V S

    dSAdVA

    Divergence TheoremThe volume integral of the divergence of a vector field

    = total outward flux of the vector through the surfacethat bounds the volume

    V S

    dSAdVA

    Stokes TheoremThe surface integral of the Curl of a vector field overan open surface= the closed line integral of the vector

    along the contour bounding the surface.