2-1 chapter 2 matrices 2.1 operations with matrices matrix (i, j)-th entry: row: mcolumn: nsize:...

36
2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix n m n m mn m m m n n n ij M a a a a a a a a a a a a a a a a a A ] [ 3 2 1 3 33 32 31 2 23 22 21 1 13 12 11 (i, j)-th entry: ij a row: m column: n size: m×n

Upload: milo-richards

Post on 13-Jan-2016

232 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-1

CHAPTER 2 MATRICES

2.1 Operations with Matrices Matrix

nm

nmmnmmm

n

n

n

ij M

aaaa

aaaa

aaaa

aaaa

aA

][

321

3333231

2232221

1131211

(i, j)-th entry: ija

row: m column: n size: m×n

Page 2: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-2

i-th row vector

iniii aaar 21

j-th column vector

mj

j

j

j

c

c

c

c2

1

row matrix

column matrix

Square matrix: m = n

Page 3: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-3

Page 4: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-4

Page 5: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-5

Page 6: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-6

Page 7: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-7

Matrix form of a system of linear equations:

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

2211

22222121

11212111

= = =

A x b

equationslinear m

equationmatrix Single

bx A 1 nnm 1m

mnmnmm

n

n

b

b

b

x

x

x

aaa

aaa

aaa

2

1

2

1

21

22221

11211

Page 8: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-8

Partitioned matrices:

2221

1211

34333231

24232221

14131211

AA

AA

aaaa

aaaa

aaaa

A

submatrix

3

2

1

34333231

24232221

14131211

r

r

r

aaaa

aaaa

aaaa

A

4321

34333231

24232221

14131211

cccc

aaaa

aaaa

aaaa

A

Page 9: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-9

n

mnmm

n

n

ccc

aaa

aaa

aaa

A

21

21

22221

11211

nx

x

x

x2

1

12211

2222121

1212111

mnmnmm

nn

nn

xaxaxa

xaxaxa

xaxaxa

Ax

a linear combination of the column vectors of matrix A:

linear combination of column vectors of A

mn

n

n

n

mm a

a

a

x

a

a

a

x

a

a

a

x

2

1

2

22

21

2

1

21

11

1

1c

=

2c

=

nc

=

nncxcxcx 2211

Page 10: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-10

2.2 Properties of Matrix Operations

Three basic matrix operators:

(1) matrix addition

(2) scalar multiplication

(3) matrix multiplication

Zero matrix: nm0

Identity matrix of order n: nI

100

010

001

Page 11: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-11

Page 12: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-12

Page 13: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-13

Page 14: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-14

undefined. is defined is then , If BAABpm , (1)

mmmm MBAMABnpm , (3) then , If

nnmm MBAMABnmpm , (2) then , , If (Sizes are not the same)

(Sizes are the same, but matrices are not equal)

Matrix:

BAAB pnnm

Three situations:

ab = ba (Commutative law for multiplication)

Real number:

Page 15: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-15

(Cancellation is not valid)

0 , cbcac

b a (Cancellation law)

Matrix:

0 CBCAC

(1) If C is invertible, then A = B

Real number:

BA then ,invertiblenot is C If (2)

Page 16: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-16

Page 17: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-17

nm

mnmm

n

n

M

aaa

aaa

aaa

A

If

21

22221

11211

mn

mnnn

m

m

T M

aaa

aaa

aaa

A

Then

21

22212

12111

Transpose of a matrix:

Page 18: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-18

Page 19: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-19

Page 20: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-20

A square matrix A is symmetric if A = AT

A square matrix A is skew-symmetric if AT = –A

Skew-symmetric matrix:

Symmetric matrix:

Note: TAA is symmetric

Proof:

symmetric is

)()(T

TTTTTT

AA

AAAAAA

Page 21: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-21

2.3 The Inverse of a Matrix

Notes: IAAAA 11

Page 22: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-22

1nEliminatioJordan -Gauss || AIIA

If A can’t be row reduced to I, then A is singular.

Page 23: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-23

IA 0(1)

0)( )2(factors

kAAAAk

k

integers:, )3( srAAA srsr rssr AA )(

Power of a square matrix:

kn

k

k

k

n d

d

d

D

d

d

d

D

00

00

00

00

00

00

)4( 2

1

2

1

Page 24: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-24

Page 25: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-25

Note:

11

12

13

11321

AAAAAAAA nn

Page 26: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-26

Note:

If C is not invertible, then cancellation is not valid.

Page 27: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-27

Page 28: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-28

2.4 Elementary Matrices

Note:

Only do a single elementary row operation.

Page 29: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-29

Page 30: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-30

Page 31: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-31

Page 32: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-32

Note: If A is invertible

][][ 1123

AIIAEEEEk

IAEEEEk 123 Then

1231 EEEEA k 11

31

21

1 kEEEEA

Page 33: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-33

Page 34: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-34

Page 35: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-35

Note:

If a square matrix A can be row reduced to an upper triangular

matrix U using only the row operation of adding a multiple of

one row to another, then it is easy to find an LU-factorization of A.

LUA

UEEEA

UAEEE

k

k

11

21

1

12

Page 36: 2-1 CHAPTER 2 MATRICES 2.1 Operations with Matrices Matrix (i, j)-th entry: row: mcolumn: nsize: m×n

2-36

bLUxLUA then,If

bLyUxy then, Let

Two steps:

(1) Write y = Ux and solve Ly = b for y

(2) Solve Ux = y for x

bAx

Solving Ax=b with an LU-factorization of A