(2-2014)-19.1-ciclos avanzados de generacion(adc)

36
Advanced gas turbine power cycles Chris Hodrien FUEL INLET INLET COMPRESSOR COMBUSTORS POWER TURBINE EXHAUST

Upload: davincho-os

Post on 15-Feb-2016

5 views

Category:

Documents


0 download

DESCRIPTION

CICLOS AVANZADOS DE GENERACION(ADC)

TRANSCRIPT

Page 1: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Advanced gas turbine power cycles

Chris Hodrien

FUEL

INLET

INLET

COMPRESSOR

COMBUSTORS POWER

TURBINE

EXHAUST

Page 2: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Typical aero-derivative GE LM6000, 40 MW

Page 3: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Heavy-duty GT (GE9H) 370 tonnes

Page 4: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

GT design convergence

Open-cycle

Efficiency,

% LHV

1960 2004

25

45

40

HEAVY DUTYAERODERIVATIVE

JET -CIVILJET - MILITARY

TECHNOLOGY TRANSFER

GE 9H

ICAD

I.C. ENGINE

Page 5: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

GT schematic

SC PT PT

GEN

EXHAUST

FUEL

Page 6: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Combined Cycle (CCGT) principle

Cost: +90% (per kW)

Efficiency: +22%

Power: +50%

SC PT PT

GEN

HRSG

STEAM S

GEN 2

EXHAUST

ST

Page 7: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

CCGT: state of the art

• Standard air-cooled GT: 58% LHV, 430 MW (1+1)• GE 9H steam-cooled GT: 60% LHV, 480 MW (1+1)• Nox g’tee (full load, NG) 25 ppm, 10 ppm available,

lower in advanced dev’t • Dry cooling option• Fuel-flexible NG/ distillate oil• Combustors available for syngas (for IGCC) and H2

(for C capture/renewable H2) (some models)– result of extensive combustion R&D investment

Page 8: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

CCGT Plant with “dry” air-cooled condenser

Takasago Machinery Works, Japan 1999 MHI/Westinghouse W701G 1+1

Page 9: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

23MW mobile power plant (GE LM-2500)

Page 10: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Barge-mounted CCGT -1

Mangalore, India 4+1 CCGT 2490MW on delivery ship

Page 11: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

A) Advanced Combined Cycles (CCGT)

• Better steam bottom cycle:– Multi-pressure– Reheat– CCGT eff’y improved 48 -> (58-60)% LHV in

20 years

• Kalina (ammonia) cycle• Organic Rankine Cycle (ORC) bottoming

Page 12: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

3-pressure/reheat steam cycle(3-admission turbine)

S

IP LP

GEN

HP

HRSGGT

RH

IP LPHP

CONDENSER

RETURN TO HRSG

WATER

DE-AERATOR

Typical pressures for a 3-pressure steam cycle: 40 atm, 16atm, 7atm.

Page 13: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Kalina Cycle vs. CCGT –cooling curves

CCGT Kalina cycle –

More heat recovered

PINCH

POINT

Area between curves = wasted exergy (potential work)

Page 14: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

B) Advanced simple GT cyclesTargets:• Efficiency improvement:

– “mid-range” generation– better than simple GT (40-50% LHV) at lower

cost and better flexibility than CCGT

• Better part-load efficiency • Better “hot-day” efficiency• Lower NOx• Carbon capture (CCS)??

Page 15: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Advanced simple GT cycles• Catalytic combustion• Reheat• Steam-cooled GT• Inlet-chilled• Recuperated• Spray-Intercooled (SPRINT)• Intercooled (ICAD)• Steam injection (STIG)• Humid Air turbine (HAT cycle)• Chemically Recuperated GT (CRGT cycle)

Page 16: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Catalytic Combustion for NOX reduction

Source: Dr J M Rhine

Page 17: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Reheat GT cycle(ex: Alstom GT24/GT26)

SC PT PT

GEN

FUELFUEL

Cost: +5%

Efficiency: +3%

Power output: +40% Better part-load efficiency +NOx

Allows more fuel to be burned + power gen’d within metal temp. limit

Page 18: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Alstom GT26 Reheat turbine

FUEL 1

FUEL 2FLAME

AIR

EXHAUST

MAIN AIR

COOLING AIR

HOT GAS PATH

ROTOR (SOLID)

ROTOR BLADES (“BUCKETS”)

FIXED BLADES (“NOZZLES”)

Page 19: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Steam-cooled GT (GE 9H)

Cost: +10% (per KW)

Efficiency: +2% (in CCGT)

Power: +20%

SC PT PT

GEN

BLR

COOLSTEAM

HOT STEAM

TO STEAMTURBINE

Page 20: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Inlet chilling 1– evaporation or “micro-fogging”

Cost: +5%

Efficiency: +2%

POWER +20% (AT 35 oC/ dry air)

WATER

SC PT PT

GEN

V

Hot countries: GT power output is lowest at time/season of max. demandIncreases air density + mass flow at low cost-BUT Only works if inlet air is dry

Page 21: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Inlet air evaporative cooling (fogging)

Page 22: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Inlet chilling 2 –refrigeration

Cost: +10%

Efficiency: +5%

POWER +20% net (AT 35 oC/ DAMPair)

SC PT PT

GEN

REFRIG. POWER

(5 %)

(OPTIONAL

COLD STORE)

Increases air density +mass flow

Higher cost but still works if inlet air is wet

Uses some of the extra power made

Absorption chilling option [NOT shown] (use exhaust heat, less power)

Option to store chilling from cheap overnight power

Page 23: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Water Spray Intercooling (SPRINT)

SC PT PT

GEN

WATER

PUMP

Cost: +5%

Efficiency: +0.5%

POWER: +9% Better part-load and hot-day efficiency

Reduces compressor power use

Increases total mass flow like STIG

Must ensure micro-droplets + high purity to avoid blade erosion

Page 24: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Dry Intercooling (ICAD)(R&D Prototype - GE)

SC PT PT

GENCost: MINUS 25% (per kW)

Efficiency: +5%

POWER: +100% Better part-load and hot-day efficiency

Major new development ($200M R&D costs)

Initiated by CAGT international collaborative project

Very difficult aerodynamic design + stresses

No water needed

Page 25: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

GE LMS-100 ICAD (intercooled)

Source: GE brochure

Page 26: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

GE LMS-100 ICAD (intercooled)-2

Water cooling Air cooling

Source: GE brochure

Page 27: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Recuperated GT cycle(e.g.: Solar)

SC PT PT

GEN

RECUPERATOR

(HEAT EXCH’R)

Cost: +20%

Efficiency: +5%

Power: -2% Better part-load efficiency

Recuperator is bulky, costly + unreliable (leaks)

Page 28: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Steam Injection (‘STIG’) cycle

Cost: +30%

Efficiency: +4%

Power: +24% Better part-load efficiency+ NOx

SC PT PT

GEN

BLR

STEAM

“Poor man’s Combined Cycle” (no steam turbine)

Page 29: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

HAT (Humid Air turbine) cycle concept (EPRI)

Cost: +25%

Efficiency: +6%

POWER: +30% Better part-load efficiency +NOx

SC PT PT

GEN

HOT WATER

SPRAY

TOWER

H/E

Recovers more heat (therefore more H2O mass flow boost) than STIG

Avoids boiler insurance+ manning problems

Spray tower is very large (NOT to scale!) + complex H/E system

NOT yet built

Page 30: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Compressed Air Energy Storage (CAES)

Page 31: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)
Page 32: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

CAES Features

• 15 min startup from cold• rapid load ramping• Superior part-load efficiency (only 15%

penalty at 25% load)• Uses only 30-40% of normal fuel rate

during gen. Period• Good spinning reserve capability

Page 33: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Chemically Recuperated Gas Turbine (CRGT cycle)

Cost: +30%

Efficiency: +9%

Power: +30%

Highly advanced R&D concept (complex)

Boiler but no steam turbine

Process expertise required

Prospect for low-cost CO2 removal

SC PT PT

GEN

REF BLR

NG

HYDROGEN

+ STEAM

CO2

Page 34: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

The Joker In The Pack: Carbon Capture + Storage (CCS)

• WILL CCS be required for gas-fired plant, or only for coal ?

• What % CCS required for coal?– c. 90% ?– NG CCGT equivalence (c. 60%)?– Pre-capture (IGCC) or post-capture?

• Post-capture for CCGT: high % eff’y drop for GT (back-pressure)

• Pre-capture: reform NG into H2 +remove CO2 (CRGT cycle) (fully-proven technology elements)– demo should be funded (BP Peterhead debacle)

Page 35: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

Squaring the circle: IGCC• Integrated Gasification-Combined Cycle (IGCC)• Fuels: Coal, pet.coke, heavy resid. oil• Combines resource availability/ low price of solid fuels

with low emissions of gas (“coal cleaning” technique)• Perceived reliability/ complexity/ commercial issues• Cost without CCS: 15-20% higher than PC coal• CCS penalty much lower than for PC, and fully-proven*

“pre-capture” technology– CCS demo’d on full scale at Great Plains, USA since

1997 (>2M tonnes CO2 sold + sequestered) • “The way to go” for coal +CCS new-build for the low-

CO2 era• Gov’t currently only funding PC post-capture demo

option

Page 36: (2-2014)-19.1-CICLOS AVANZADOS DE GENERACION(ADC)

IGCC performance• Efficiency 43-45% LHV (and proportionate CO2

reduction if no CCS)• S removal 99+% + saleable product (S or H2SO4)• Proven CO2 removal 85-90+% + saleable product

(CO2 for oil/gas-field EOR)– actual gas volume treated = 1/180th!

• Water use 1/3 - Site independent of large rivers• NOx emissions <1/20th (10-25 ppmv)• Hg emissions –neglig.• Dust emissions (main combustion ) NEGATIVE!• Solid waste – saleable slag aggregate (low leaching) • Liquid waste – small volume, on-site cleanup• Flexible coal/NG feed (startup, peaking, fuel balancing)• Retrofittable to existing PC sites