2 ag + (aq) + cu (s) → 2 ag (s) + cu 2+ (aq). reduction potential and cells

14
2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq)

Upload: maximillian-norman

Post on 24-Dec-2015

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

2 Ag+(aq) + Cu(s) → 2 Ag(s) + Cu2+

(aq)

Page 2: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

Reduction Potential and Cells

Page 3: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

• Explore the Standard Reduction Potential Chart

• Predict spontaneous using Reduction Potential.

Page 4: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

2 Ag+(aq) + Cu(s) →

Ag(s) + Cu2+(aq) →

Ag+ ions can oxidize Cu metal.Cu2+ cannot oxidize Ag metal.

2 Ag(s) + Cu2+(aq)

no reaction

Spontaneous rxns occurs without added energy.

Page 5: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

Electrochemical cells are described in terms of their voltage.

(formerly called Emf – electromotive force).

Voltage (Eocell) found using Reduction Potentials.

Potentials (Eo) for each substance are calculated by competing with a hydrogen standard in a cell.

2H+(aq) + 2e– ↔ H2(g)

Page 6: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

Reduction Potential ChartOrder of ability to react with other compounds.

NO3¯ + 4 H+ + 3e¯ NO(g) + 2 H2O +0.96Hg2+ + 2e¯ Hg(l) +0.85Ag+ + e¯ Ag(s) +0.80

1/2 Hg22+ + e¯ Hg(l) +0.80

NO3¯ + 2 H+ + e¯ NO2(g) + H2O +0.78Fe3+ + e¯ Fe2+ +0.77I2(s) + 2e¯ 2 I¯ +0.53Cu+ + e¯ Cu(s) +0.52

Cu2+ + 2e¯ Cu(s) +0.34SO4

2¯ + 4 H+ + 2e¯ SO2(g)+ 2 H2O +0.17Sn4+ + 2e¯ Sn2+ +0.15

S + 2 H+ + 2e¯ H2S(g) +0.142 H+ + 2e¯ H2(g) 0.00

Fe3+ + 3e¯ Fe(s) –0.04Pb2+ + 2e¯ Pb(s) –0.13Sn2+ + 2e¯ Sn(s) –0.14Ni2+ + 2e¯ Ni(s) –0.25Co2+ + 2e¯ Co(s) –0.28Cd2+ + 2e¯ Cd(s) –0.40

Se + 2 H+ + 2e¯ H2Se(g) –0.40Fe2+ + 2e¯ Fe(s) –0.44Cr2+ + 2e¯ Cr(s) –0.56

Ag2S + 2e¯ 2 Ag(s) + S2¯ –0.69Cr3+ + 3e¯ Cr(s) –0.74

Page 7: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

(+) Eo - greater tendency to accept electrons vs. H+.X – reduced Hydrogen –

oxidized

(-) Eo - lesser tendency to accept electrons. X – oxidized Hydrogen –

reduced

Greater positive number is reduced.

H2(g) / H+(aq) // Cu2+

(aq) / Cu(s) Eo = +0.34 V

Zn(s) / Zn2+(aq) // H+

(aq) / H2(g) Eo = -0.76 V

Page 8: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

E°cell - sum of potentials of each half-cell.

E°cell = E°ox + E°red

Note: table lists reduction potentials. Oxidation potentials are the reverse – switch sign.

(+) E°cell – spontaneous reaction.

(-) E°cell – non – spontaneous reaction.

Page 9: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

What is the cell potential for a silver-copper cell?

Ag+(aq) + 1e– → Ag(s)

E°cell = E°ox + E°red =

E° = +0.80 V

E° = 0.34 VCu2+(aq) + 2e– Cu(s) –+ox

red

- 0.34 + 0.80 + 0.46

Page 10: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

A cell of zinc and gold metal as electrodes: a) What is the cathode and what is the anode?b) What is the net reaction?c) What is the line notation for the cell?d) What is the cell potential?

Page 11: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

We do NOT multiply the voltage.

[ ] ×2

[ ] ×3  →

Au3+(aq) + 3e– → Au(s)

E°cell = E°ox + E°red =

E° = +1.50 V

E° = 0.76 VZn2+(aq) + 2e– Zn(s) +-ox

red

+ 0.76 + 1.50+ 2.26

Zn(s) / Zn2+(aq) // Au3+

(aq) / Au(s)

2 Au3+(aq) + 3 Zn(s) → 2 Au(s) + 3 Zn2+(aq)

Page 12: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

Hg2+ + 2e¯ Hg(l) +0.85

Ag+ + e¯ Ag(s) +0.801/2 Hg2

2+ + e¯ Hg(l) +0.80NO3¯ + 2 H+ + e¯ NO2(g) + H2O +0.78

Fe3+ + e¯ Fe2+ +0.77I2(s) + 2e¯ 2 I¯ +0.53Cu+ + e¯ Cu(s) +0.52

Cu2+ + 2e¯ Cu(s) +0.34SO4

2¯ + 4 H+ + 2e¯ SO2(g)+ 2 H2O +0.17Sn4+ + 2e¯ Sn2+ +0.15

S + 2 H+ + 2e¯ H2S(g) +0.142 H+ + 2e¯ H2(g) 0.00

Fe3+ + 3e¯ Fe(s) –0.04Pb2+ + 2e¯ Pb(s) –0.13Sn2+ + 2e¯ Sn(s) –0.14

2 Ag+(aq) + Cu(s) →

Ag(s) + Cu2+(aq) →

2 Ag(s) + Cu2+(aq)

no reaction

E°c = +0.46

E°c = - 0.46

Page 13: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

Will tin strips in hydrochloric acid react?

Sn(s) + H+(aq) → ??

Sn(s) + H+(aq) → Sn2+(aq) + H2(g) 2

Hg2+ + 2e¯ Hg(l) +0.85

Ag+ + e¯ Ag(s) +0.801/2 Hg2

2+ + e¯ Hg(l) +0.80NO3¯ + 2 H+ + e¯ NO2(g) + H2O +0.78

Fe3+ + e¯ Fe2+ +0.77I2(s) + 2e¯ 2 I¯ +0.53Cu+ + e¯ Cu(s) +0.52

Cu2+ + 2e¯ Cu(s) +0.34SO4

2¯ + 4 H+ + 2e¯ SO2(g)+ 2 H2O +0.17Sn4+ + 2e¯ Sn2+ +0.15

S + 2 H+ + 2e¯ H2S(g) +0.142 H+ + 2e¯ H2(g) 0.00

Fe3+ + 3e¯ Fe(s) –0.04Pb2+ + 2e¯ Pb(s) –0.13Sn2+ + 2e¯ Sn(s) –0.14

Page 14: 2 Ag + (aq) + Cu (s) → 2 Ag (s) + Cu 2+ (aq). Reduction Potential and Cells

Given the following experimental data, arrange the following in increasing order of oxidizing ability.

1. + In(s) → Co(s) + In2+

2. + Co(s) → Cu(s) + Co2+

3. Cu2+ + → no reaction

Weak Oxidizer In2+ + 2e– → In(s)

Co2+ + 2e– → Co(s)

Cu2+ + 2e– → Cu(s)

Strong Oxidizer Pd2+ + 2e– → Pd(s)

Co2+

Cu2+ Pd(s)

Remember the strong oxidizer is reduced