2. statistics lod lecture

Upload: bkuncoro

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 2. Statistics Lod Lecture

    1/64

    Handling Data and Figures of Merit

    Data comes in different formats

    timeHistogramsLists

    But. Can contain the same information about quality

    What is meant by quality?

    (figures of merit)

    Precision, separation (selectivity), limits of detection,Linear range

  • 8/12/2019 2. Statistics Lod Lecture

    2/64

    day weight day weight day weight1 140 31 143.9 61 1442 140.1 32 144 62 144.2

    3 139.8 33 142.5 63 144.54 140.6 34 142.9 64 144.25 140 35 142.8 65 143.96 139.8 36 143.9 66 144.27 139.6 37 144 67 144.58 140 38 144.8 68 144.39 140.8 39 143.9 69 144.2

    10 139.7 40 144.5 70 144.911 140.2 41 143.9 71 14412 141.7 42 144 72 143.813 141.9 43 144.2 73 14414 141.4 44 143.8 74 143.815 142.3 45 143.5 75 14416 142.3 46 143.8 76 144.517 141.9 47 143.2 77 143.718 142.1 48 143.5 78 143.919 142.5 49 143.6 79 14420 142.3 50 143.4 80 144.221 142.1 51 143.9 81 14422 142.5 52 143.6 82 144.423 143.5 53 144 83 143.824 143 54 143.8 84 144.125 143.2 55 143.626 143 56 143.827 143.4 57 14428 143.5 58 144.229 142.7 59 14430 143.7 60 143.9

    My weight

    Plot as a function of time data was acquired:

  • 8/12/2019 2. Statistics Lod Lecture

    3/64

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t

    ( l b s

    )

    Do not use curved lines to connect data points that assumes you know more about therelationship of the data than you really do

    Comments: background is white (less ink);Font size is larger than Excel

    default (use 14 or 16)

    day weight day weight day weight1 140 31 1 43.9 61 1442 140.1 32 144 62 144.23 139.8 33 142.5 63 144.54 140.6 34 142.9 64 144.25 140 35 142.8 65 143.96 139.8 36 143.9 66 144.27 139.6 37 144 67 144.58 140 38 144.8 68 144.39 140.8 39 143.9 69 144.2

    10 139.7 40 144.5 70 144.911 140.2 41 143.9 71 14412 141.7 42 144 72 143.813 141.9 43 144.2 73 14414 141.4 44 143.8 74 143.815 142.3 45 143.5 75 14416 142.3 46 143.8 76 144.517 141.9 47 143.2 77 143.718 142.1 48 143.5 78 143.919 142.5 49 143.6 79 14420 142.3 50 143.4 80 144.221 142.1 51 143.9 81 14422 142.5 52 143.6 82 144.4

    23 143.5 53 144 83 143.824 143 54 143.8 84 144.125 143.2 55 143.626 143 56 143.827 143.4 57 14428 143.5 58 144.229 142.7 59 14430 143.7 60 143.9

  • 8/12/2019 2. Statistics Lod Lecture

    4/64

  • 8/12/2019 2. Statistics Lod Lecture

    5/64

    Bin refers to what groups ofweight to cluster. LikeA grade curve which listsnumber of students who got

    between 95 and 100 pts95-100 would be a bin

  • 8/12/2019 2. Statistics Lod Lecture

    6/64

    Assume my weight is a single, random, set of similar data

    0

    5

    10

    15

    20

    25

    Weight (lbs)

    # o f

    O b s e r v a t

    i o n s

    Make a frequency chart (histogram) of the data

    Create a model of my weight and determine average Weight and how consistent my weight is

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t

    ( l b s

    )

  • 8/12/2019 2. Statistics Lod Lecture

    7/64

    0

    5

    10

    15

    20

    25

    Weight (lbs)

    # o f

    O b s e r v a t

    i o n s

    = measure of the consistency, or similarity, of weights

    average143.11

    s = 1.4 lbs

    Inflection pt

    s = standard deviation

  • 8/12/2019 2. Statistics Lod Lecture

    8/64

    Characteristics of the Model Population(Random, Normal)

    Peak height, APeak location (mean or average), mPeak width, W, at baselinePeak width at half height, W 1/2Standard deviation, s, estimates the variation in an infinite population, s

    Related concepts

    f x A e x

    s

    m

    s

    2

    12

    2

  • 8/12/2019 2. Statistics Lod Lecture

    9/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    s

    A m p

    l i t u

    d e

    Width is measuredAt inflection point =s

    W1/2

    Triangulated peak: Base width is 2s < W < 4s

  • 8/12/2019 2. Statistics Lod Lecture

    10/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    s

    A m p

    l i t u

    d e

    +/- 1s

    Area +/- 2s = 95.4%

    Area +/- 3s = 99.74 %

    pp s~ 6

    Pp = peak to peak or largest separation ofmeasurements

    Peak to peak is sometimesEasier to see on the data vs time plot

    Area = 68.3%

  • 8/12/2019 2. Statistics Lod Lecture

    11/64

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t ( l b s ) Peak to

    peak

    pp s~ 6

    139.5

    144.9

    s~ pp/6 = (144.9-139.5)/6~0.9

    (Calculated s= 1.4)

    0

    5

    10

    15

    20

    25

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

  • 8/12/2019 2. Statistics Lod Lecture

    12/64

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    s

    A m p l i

    t u d e

    Scale up the first derivative and second derivative to see better

    There are some other important characteristics of a normal (random) population

    1st

    derivative 2nd derivative

  • 8/12/2019 2. Statistics Lod Lecture

    13/64

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    -5 -4 -3 -2 -1 0 1 2 3 4 5

    s

    A m p l i

    t u d e

    Population, 0 th derivative

    1st derivative,Peak is at the inflectionDetermines the std. dev.

    2nd derivativePeak is at the inflectionOf first derivative shouldBe symmetrical for normal

    Population; goes to zero atStd. dev.

  • 8/12/2019 2. Statistics Lod Lecture

    14/64

    Asymmetry can be determined from principle component analysis

    A. F. ( Alanah Fitch) = asymmetric factor

  • 8/12/2019 2. Statistics Lod Lecture

    15/64

    Is there a difference between my baseline weight and school weight? Can you detect a difference? Can you quantitate a difference?

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t

    ( l b s

    )

    Vacation

    School Begins

    Baseline

    Comparing TWO populations of measurements

  • 8/12/2019 2. Statistics Lod Lecture

    16/64

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

    Exact same information displayed differently, but now we divideThe data into different measurement populations

    baseline

    school

    Model of the data as two normal populations

  • 8/12/2019 2. Statistics Lod Lecture

    17/64

    25 25

  • 8/12/2019 2. Statistics Lod Lecture

    18/64

    0

    5

    10

    15

    20

    25

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    #

    o f O b s e r v a t

    i o n s

    We have two models to describe the population of measurementsOf my weight.In one we assume that all measurements fall into a single population.

    In the second we assume that the measurementsHave sampled two different populations.

    Which is the better model?How to we quantify better?

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

  • 8/12/2019 2. Statistics Lod Lecture

    19/64

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

    Compare how closeThe measured dataFits the model

    Did I gain weight?

    The red bars represent the differenceBetween the two population model andThe data

    The purple lines representThe difference between

    The single populationModel and the dataWhich modelHas less summed

    differences?

  • 8/12/2019 2. Statistics Lod Lecture

    20/64

  • 8/12/2019 2. Statistics Lod Lecture

    21/64

    Anova: Single Factor 5% certaintySUMMARY

    Groups Count Sum Average VarianceColumn 1 12 277.41 23.1175 8.70360227Column 2 12 345.72 28.81 6.50010909

    ANOVASource of Variation SS df MS F P-value F crit Between Groups 194.4273 1 194.4273 25.5762995 4.59E-05 4.300949Within Groups 167.2408 22 7.601856 Sou

    Total 361.6682 23

    Test: is F

  • 8/12/2019 2. Statistics Lod Lecture

    22/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    14 19 24 29 34 39

    Length (cm)

    F r e q u e n c y

    White, N=12, Sum sq diff=0.037, stdev=2.55White, N=38, Sum sq diff=0.028, stdev=2.15

    Red, N=12, Sum sq diff=0.11, stdev=3.27Red, N=40, Sum sq diff=0.017, stdev-2.67

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    14 19 24 29 34 39

    Length, cm

    F r e q u e n c y

    N=24 Sum sq diff=0.0449, stdev=3.96N=78, sum sq diff=0.108, stdev=4.05

    In an Analysis of Variance you test the hypothesis that the sample isBest described as a single population.1. Create the expected frequency (Gaussian from normal error curve)2. Measure the deviation between the histogram point and the expected

    frequency3. Square to remove signs4. SS = sum squares5. Compare to expected SS which scales with population size6. If larger than expected then can not explain deviations assuming a

    single population

    0 35 0 3

  • 8/12/2019 2. Statistics Lod Lecture

    23/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    14 19 24 29 34 39

    Length (cm)

    F r e q u e n c y

    White, N=12, Sum sq diff=0.037, stdev=2.55White, N=38, Sum sq diff=0.028, stdev=2.15

    Red, N=12, Sum sq diff=0.11, stdev=3.27Red, N=40, Sum sq diff=0.017, stdev-2.67

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    14 19 24 29 34 39

    Length, cm

    F r e q u e n c y

    N=24 Sum sq diff=0.0449, stdev=3.96N=78, sum sq diff=0.108, stdev=4.05

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    15 17 19 21 23 25 27 29 31 33 35

    Length (cm)

    S q u a r e

    D i f f e r e n c e

    E x p e c

    t e d M e a s u r e

    d The square differencesFor an assumption ofA single populationIs larger than forThe assumption ofTwo individual

    populations

  • 8/12/2019 2. Statistics Lod Lecture

    24/64

    There are other measurements which describe the two populations

    Resolution of two peaks

    R x x

    W W a b

    a b

    2 2

    Mean or average

    Baseline width

  • 8/12/2019 2. Statistics Lod Lecture

    25/64

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    1 1.5 2 2.5 3 3.5 4

    x

    S i g n a l

    xa xb

    x xa b

    W a

    2W b

    2

    n this example

    W W a b2 2

    Peaks are baseline resolved when R > 1 R x x W W

    a b a b 1 2 2:

  • 8/12/2019 2. Statistics Lod Lecture

    26/64

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    1 1.5 2 2.5 3 3.5 4

    x

    S i g n a l

    xa xb

    x xa b

    W a

    2W b

    2

    n this example

    W W a b2 2

    Peaks are just baselineresolved when R = 1 R x x

    W W a b a b 1 2 2:

  • 8/12/2019 2. Statistics Lod Lecture

    27/64

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1 1.5 2 2.5 3 3.5 4

    x

    S i g n a l

    xa xb

    x xa b

    W a

    2W b

    2

    n this example

    W W a b2 2

    Peaks are not baseline resolvedwhen R < 1 R x x W W

    a b a b 1 2 2:

  • 8/12/2019 2. Statistics Lod Lecture

    28/64

    2008 Data

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    14 19 24 29 34 39

    Length (cm)

    F r e q u e n c y

    White, N=12, Sum sq diff=0.037Red, N=12, Sum sq diff=0.11

    What is the R for this data?

    x W W p R W 12

    R 1

  • 8/12/2019 2. Statistics Lod Lecture

    29/64

    Visually less resolved Visually better resolved

    Comparison of 1978 Low Lead to 1979 High Lead

    0

    5

    10

    15

    20

    25

    0 20 40 60 80 100 120 140 160Ser ies 2 Ser ies 3

    Comparison of 1978 Low Lead to 1978 High Lead

    0

    5

    10

    15

    20

    25

    0 20 40 60 80 100 120 140 160

    IQ Verbal

    % M e a s u r e

    d

    Anonymous 2009 student analysis of Needleman data

    W

    W

    a

    b

    2112 70 42

    2130 95 35

    ~ ~

    ~ ~ R

    x xW W

    a b

    a b

    2 2

  • 8/12/2019 2. Statistics Lod Lecture

    30/64

    Visually less resolved Visually better resolved

    Comparison of 1978 Low Lead to 1979 High Lead

    0

    5

    10

    15

    20

    25

    0 20 40 60 80 100 120 140 160Ser ies 2 Ser ies 3

    Comparison of 1978 Low Lead to 1978 High Lead

    0

    5

    10

    15

    20

    25

    0 20 40 60 80 100 120 140 160

    IQ Verbal

    % M e a s u r e

    d

    Anonymous 2009 student analysis of Needleman data

    W

    W

    a

    b

    2112 70 42

    2130 95 35

    ~ ~

    ~ ~

    x xa b ~ ~112 95 17 R

    x xW W

    a b

    a b

    2 2

    17

    42 350 22~ .

  • 8/12/2019 2. Statistics Lod Lecture

    31/64

    Other measures of the quality of separation of thePeaks

    1. Limit of detection

    2. Limit of quantification3. Signal to noise (S/N)

  • 8/12/2019 2. Statistics Lod Lecture

    32/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -6 -4 -2 0 2 4 6 8 10 12

    s

    A m p

    l i t u d e

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -6 -4 -2 0 2 4 6 8 10 12

    s

    A m p l

    i t u d e

    3s

    X blank

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -6 -4 -2 0 2 4 6 8 10 12

    s

    A m p

    l i t u d e

    3s

    X limit of detection

    x x s LOD blank blank 3

    99.74%

    Of the observationsOf the blank will lie

    below the mean of theFirst detectable signal

    (LOD)

  • 8/12/2019 2. Statistics Lod Lecture

    33/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -6 -4 -2 0 2 4 6 8 10 12

    s

    A m p l

    i t u d e

    3s

    Two peaks are visible when all the data is summed together

  • 8/12/2019 2. Statistics Lod Lecture

    34/64

    Estimate the LOD (signal) of this data

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t ( l b s )

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

  • 8/12/2019 2. Statistics Lod Lecture

    35/64

    Other measures of the quality of separation of thePeaks

    1. Limit of detection

    2. Limit of quantification3. Signal to noise (S/N)

    Your book suggests 10

  • 8/12/2019 2. Statistics Lod Lecture

    36/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -6 -4 -2 0 2 4 6 8 10 12

    s

    A m p l

    i t u d e

    x x s LOQ blank blank 9Your book suggests 10

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -6 -4 -2 0 2 4 6 8 10 12

    s

    A m p

    l i t u d e

    9s

    Limit of quantification requires absolute

    Certainty that no blank is part of the

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4

    0.45

    -6 -4 -2 0 2 4 6 8 10 12

    s

    A m p

    l i t u d e

  • 8/12/2019 2. Statistics Lod Lecture

    37/64

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t ( l b s )

    Estimate the LOQ (signal) of this data

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t ( l b s )

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

  • 8/12/2019 2. Statistics Lod Lecture

    38/64

    Other measures of the quality of separation of thePeaks

    1. Limit of detection

    2. Limit of quantification3. Signal to noise (S/N)

    Signal = x sample - x blank

    Noise = N = standard deviation, s

    S N

    x x s

    x x pp

    sample blank sample blank

    6

    (This assumes pp school ~ pp baseline)

  • 8/12/2019 2. Statistics Lod Lecture

    39/64

    Estimate the S/N of this data

    139

    140

    141

    142

    143

    144

    145

    146

    0 10 20 30 40 50 60

    Day

    w e i g h t

    ( l b s

    )

    Vacation

    School Begins

    Baseline

    Signal

    Peak to peak variation within mean school~ 6s where s = N for Noise

    (This assumes pp school pp baseline)

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    # o f

    O b s e r v a

    t i o n s

  • 8/12/2019 2. Statistics Lod Lecture

    40/64

    0

    5

    10

    15

    20

    25

    30

    35

    0 5 10 15 20 25 30

    Sample number

    l e n g

    t h ( c m

    )

    Can you tell where the switch between Red and white potatoes begins?

    What is the signal (length of white)?What is the background (length of red)?What is the S/N ?

  • 8/12/2019 2. Statistics Lod Lecture

    41/64

    Effect of sample size on the measurement

    Error curve

  • 8/12/2019 2. Statistics Lod Lecture

    42/64

    Error curvePeak height grows with # of measurements.+ - 1 s always has same proportion of total number of measurements

    However, the actual value of s decreases as population grows

  • 8/12/2019 2. Statistics Lod Lecture

    43/64

    2008 Data

  • 8/12/2019 2. Statistics Lod Lecture

    44/64

    22.5

    23

    23.5

    24

    24.5

    25

    25.5

    26

    26.5

    27

    0 2 4 6 8 10 12 14

    Sample number

    R e

    d R u n n

    i n g

    L e n g

    t h A v e r a g e

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    R e

    d R u n n

    i n g

    S t d e v

    2008 Data

    y = -0.8807x + 5.9303R 2 = 0.9491

    2.5

    2.7

    2.9

    3.1

    3.3

    3.5

    3.7

    3.9

    4.1

    1.5 2 2.5 3 3.5 4sqrt number of samples

    s t d e v r e

    d l e n g

    t h c m

    s s

    n sample

    population

    sample

    0.35

  • 8/12/2019 2. Statistics Lod Lecture

    45/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    14 19 24 29 34 39

    Length (cm)

    F r e q u e n c y

    White, N=12, Sum sq diff=0.037, stdev=2.55White, N=38, Sum sq diff=0.028, stdev=2.15

    Red, N=12, Sum sq diff=0.11, stdev=3.27Red, N=40, Sum sq diff=0.017, stdev-2.67

  • 8/12/2019 2. Statistics Lod Lecture

    46/64

    Calibration Curve

    A calibration curve is based on a selected measurement as linearIn response to the concentration of the analyte.

    Or a prediction of measurement due to some change Can we predict my weight change if I had spent a longer time on

    Vacation?

    bxa y

    vacationondaysbalbs fitch

  • 8/12/2019 2. Statistics Lod Lecture

    47/64

    0

    5

    10

    15

    20

    25

    138 139 140 141 142 143 144 145 146 147

    Weight (lbs)

    # o f

    O b s e r v a t

    i o n s

  • 8/12/2019 2. Statistics Lod Lecture

    48/64

  • 8/12/2019 2. Statistics Lod Lecture

    49/64

    y = 0.3542x + 140.04R 2 = 0.7425

    139

    139.5

    140

    140.5

    141

    141.5

    142

    142.5

    143

    0 1 2 3 4 5 6

    Days on Vacation

    F i t c h W e i g h

    t , l b s

    Can get this by using trend line

    This is just a trendline

  • 8/12/2019 2. Statistics Lod Lecture

    50/64

    y = -0.8807x + 5.9303R 2 = 0.9491

    2.5

    2.7

    2.9

    3.1

    3.3

    3.5

    3.7

    3.9

    4.1

    1.5 2 2.5 3 3.5 4

    sqrt number of samples

    s t d e v r e

    d l e n g

    t h c m

    jFrom format data Sample sqrt(#samples) stdev

    1 1 #DIV/0!2 1.414213562 2.0364683 1.732050808 4.4757274 2 4.31441

    5 2.236067977 3.8440456 2.449489743 3.8446047 2.645751311 3.7351248 2.828427125 3.4584149 3 3.235055

    10 3.16227766 3.09305311 3.31662479 2.93594412 3.464101615 2.950187

    SUMMARY OUTPUT

    Regression StatisticsMultiple R 0.296113395R Square 0.087683143Adjusted R Square -0.013685397Standard Error 0.703143388Observations 11

    ANOVAdf SS MS F ignificance

    Regression 1 0.427662048 0.427662 0.864994 0.376617Residual 9 4.449695616 0.494411Total 10 4.877357664

    Coefficients Standard Error t Stat P-value Lower 95%Intercept 3.884015711 0.514960076 7.542363 3.53E-05 2.719094X Variable 1 -0.06235252 0.067042092 -0.93005 0.376617 -0.21401

    Using the analysis

    Data packGet an errorAssociated withThe intercept

  • 8/12/2019 2. Statistics Lod Lecture

    51/64

    In the best of all worlds you should have a series of blanksThat determine youre the noise associated with the background

    x x s LOD blank blank 3Sometimes you forget, so to fall back and punt, estimateThe standard deviation of the blank from the linear regression

    But remember, in doing this you are acknowledgingA failure to plan ahead in your analysis

    x x b conc LOD LOD blank [ . ]

  • 8/12/2019 2. Statistics Lod Lecture

    52/64

    [ . ]conc LOD s

    b

    blank 3

    Extrapolation of the associated errorCan be obtained from the Linear

    Regression data

    Sensitivity (slope)

    x x s LOD blank blank

    3 x s x b conc LODblank blank blank 3 [ . ]

    The concentration LOD depends on BOTH

    Stdev of blank and sensitivity

    Signal LOD

    !!Note!!Signal LOD Conc LOD

    We want Conc. LOD

    Selectivity

  • 8/12/2019 2. Statistics Lod Lecture

    53/64

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0024681012

    pH or pM

    m V

    y = -31.143x - 74.333R2 = 0.9994

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0024681012

    pH or pM

    m V

    y = -31.143x - 74.333R2 = 0.9994

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0024681012

    pH or pM

    m V

    y = -31.143x - 74.333R2 = 0.9994

    y = -41x - 118.5R2 = 0.9872

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0024681012

    pH or pM

    m V

    Difference in slope is one measure selectivity

    In a perfect method the sensing device would have zeroSlope for the interfering species

    Pb 2+

    H+

  • 8/12/2019 2. Statistics Lod Lecture

    54/64

    Limit of linearity

    5% deviation

  • 8/12/2019 2. Statistics Lod Lecture

    55/64

    Summary: Figures of Merit Thus far

    R = resolution

    S/NLOD = both signal and concentrationLOQLOLSensitivity (calibration curve slope)Selectivity (essentially difference in slopes)

    Can be expressed in terms of signal, but betterExpression is in terms of concentration

    Tests: Anova

    Why is the limit of detection important?

    Why has the limit of detection changed so much in theLast 20 years?

  • 8/12/2019 2. Statistics Lod Lecture

    56/64

  • 8/12/2019 2. Statistics Lod Lecture

    57/64

  • 8/12/2019 2. Statistics Lod Lecture

    58/64

  • 8/12/2019 2. Statistics Lod Lecture

    59/64

    The End

  • 8/12/2019 2. Statistics Lod Lecture

    60/64

    0

    5

    10

    15

    20

    25

    40 60 80 100 120 140 160Verbal IQ

    % o

    f M e a s u r e m e n

    t s

    0

    5

    10

    15

    20

    25

    40 60 80 100 120 140 160

    Verbal IQ

    % o f

    M e a s u r e m e n

    t s

    Which of these two data sets would be likelyTo have better numerical value for the

    Ability to distinguish between two differentPopulations?

    Needlemans data

    2008 Data Height for normalized

  • 8/12/2019 2. Statistics Lod Lecture

    61/64

    2008 Data

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    14 19 24 29 34 39

    Length (cm)

    F r e q u e n c y

    White, N=12, Sum sq diff=0.037Red, N=12, Sum sq diff=0.11

    Height for normalizedBell curve

  • 8/12/2019 2. Statistics Lod Lecture

    62/64

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    14 19 24 29 34 39

    Length (cm)

    F r e q u e n c y

    White, N=12, Sum sq diff=0.037, stdev=2.55White, N=38, Sum sq diff=0.028, stdev=2.15

    Red, N=12, Sum sq diff=0.11, stdev=3.27Red, N=40, Sum sq diff=0.017, stdev-2.67

    Increasing the sample size decreases the std dev and increases separationOf the populations, notice that the means also change, will do so untilWe have a reasonable sample of the population

  • 8/12/2019 2. Statistics Lod Lecture

    63/64

    0

    5

    10

    15

    20

    25

    40 60 80 100 120 140 160

    Verbal IQ

    % o

    f M e a s u r e m e n

    t s

  • 8/12/2019 2. Statistics Lod Lecture

    64/64

    0

    5

    10

    15

    20

    25

    40 60 80 100 120 140 160

    Verbal IQ

    % o

    f M e a s u r e m e n

    t s