2006 fall math 100 lecture 221 math 100 lecture 22 introduction to surface integrals

20
2006 Fall MATH 100 Lecture 22 1 MATH 100 Lecture 22 Introduction to surface integrals t , , , be density let the : lamina bent a of Mass z y x R y x dA f f y x f y x M M R xy y x f z z y x 1 , , , by defined is lamina the of mass the then , region the is plane on the lamina this of projection the if and ; , equation the has , , density with lamina curved a If : Def 2 2

Post on 20-Dec-2015

223 views

Category:

Documents


1 download

TRANSCRIPT

2006 Fall MATH 100 Lecture 22 1

MATH 100 Lecture 22 Introduction to surface integrals

then,,, bedensity let the :laminabent a of Mass zyx

R yx dAffyxfyxM

M

Rxy

yxfzzyx

1,,,

by defined is lamina theof mass the

then ,region theis plane on the lamina thisof projection theif and

;,equation thehas ,,density with lamina curved a If :Def

22

2006 Fall MATH 100 Lecture 22 2

Definition of density function:

zyxSS

Mzyx

,, containing area theofsection samll theis where

lim,,

R yx dAffS 1 is area theand

area, surface the toequals mass the,1 when :Remark

22

2006 Fall MATH 100 Lecture 22 3

kkkykkxkkkk

kkkkk

Ayxfyxfyxfyx

SzyxM

1,,,,,

,,

22

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 4

MATH 100 Lecture 22 Introduction to surface integrals

dAffyxfyx

Ayxfyxfyxfyx

MM

yx

R

kkkykkx

n

kkkkk

n

kk

1,,,

1,,,,,

Thus

22

22

1

1

2006 Fall MATH 100 Lecture 22 5

mass its find ,,, ,10 , 1Ex 022 zyxzyxz

156

144

1

3

2

142

12

14

122

2,2 ,1: :Sol

2

30

1

0

2

3

0

1

00

2

0

1

0

20

220

22

u

duu

rdrdr

dAyxM

yfxfyxR

R

yx

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 6

upproduct thesum and

area surface with into Subdivide .on definedfunction

continuous a ,, and surface finite with surface a be Let :integral Surface

1

1

ni

n

ii

S

zyxg

n

kkkkk Szyxg

1

,,

k

n

kkkk

nSzyxgdSzyxg

g

1

,,lim,,

:over of integral surface thegiveslimit Its

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 7

dAyyzyzyfggdS

zyfx

dAyyzzxfxggdS

xzRzxfy

dAffyxfyxgdS

yxfzg

zx

R

zx

R

R

yx

1,,,

then,, If (c)

1,,,

thenplane, onto projection theis and ,by defined is If (b)

nimplicatio wider has expression The

1,,,

then ,, and If (a)

22

22

22

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 8

1 ofoctact first over the Evaluate 2Ex zyxxzdS

24

3

223

2

13

1111

10,10:, ,1 :Sol

1

0

22

1

0

1

0

22

1

0

1

0

22

dxx

xx

dxxyyxxy

dxdyyxxxzdS

xxyyxRyxz

x

x

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 9

24

3

12

3

111

10,10:, ,1

:2Ex osolution t eAlternativ

1

0

2

1

0

1

0

22

dxxx

dxdzxzxzdS

xxxRzxyx

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 10

20,:over Evaluate :Ex 222 zyxzσdSyz

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 11

2

21

2

cos1

2

21

sin2

21

6

sin2

sin2sin2

2

20,21:, 21 so

, :Sol

2

0

2

0

22

0

2

1

26

2

0

2

1

252

0

2

1

22

222222

22

2222

d

ddr

drdrrdrdrr

dAyxydSzy

rrRzz

yx

yz

yx

xz

R

yx

yx

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 12

Surface integral of vector functions, we have studied line (curve)integral with orientation, now we go to surface with orientation.In general, a surface is given by G(x,y,z) = 0

The particular cones are

zy

zx

yx

xxGzyxxG

yyGzxyyG

zzGyxzzG

,,1 ,0,

,1, ,0,

1,, ,0,

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 13

There are 2 unit normal vectors

A surface has 2 orientation, corresponding to the 2 normal direction.The orientation should be chosen in the way that there is no sudden change in the normal direction when we transverse along the surface.

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 14

The 2 possible orientation: inward normal and outward normal

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 15

Surface integral

.over of

component normal theof ginteractin surface or the

,over of integral surface or the

,over of integralflux thecalled is

thenn,orientatio theofr unit vecto theis ,,

if and , surface oriental on the components continuous

has ,,,,,,,, If :Def

F

F

F

dSnF

zyxnn

kzyxhjzyxgizyxfzyxF

2006 Fall MATH 100 Lecture 22 16

dSnFkzjyixzyxF

xyyxz

evaluate ,,,let and

normals, upwardby oriented be let

plane,- above 1portion theis Suppose :Ex 22

1

2 ,2 :normalunit upward :Sol

22

yx

yx

yx

zz

kjzizn

yzxz

MATH 100 Lecture 22 Introduction to surface integrals

(continuous next page)

2006 Fall MATH 100 Lecture 22 17

2

3

1

1

122

22

11

:Sol

2

0

1

0

2

22

2222

22

22

22

rdrdr

dAyx

dAyxyx

dAzyx

dAkjzizF

dAzzzz

kjzizFdSnF

R

R

R

R

yx

R

yx

yx

yx

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 18

downward oriented is if

b

upward oriented is if

a

thenplane,-on of projection theis ,,: If

:Theorem

R

yx

R

yx

dAkjzizFdSnF

dAkjzizFdSnF

xyRyxzz

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 19

dSnFkzFazyx

evaluate , normals, outward oriented : :Ex 2222

3

2

upward , ,on

:Sol

3

2

0 0

22

222222

2221

1

21

πa

rdrdra

zdA

dAkjyxa

yi

yxa

xkzdSnF

nyxaz

dSnFdSnFdSnF

a

R

R

MATH 100 Lecture 22 Introduction to surface integrals

2006 Fall MATH 100 Lecture 22 20

3

2

downward , ,on :Sol

3

2

0 0

22

222222

2222

2

πa

rdrdra

zdA

dAkjyxa

yi

yxa

xkzdSnF

nyxaz

a

R

R

MATH 100 Lecture 22 Introduction to surface integrals