2006_pes_normal physiological characteristics of elite swimmers

24
30 Pediatric Exercise Science , 2006, 17, 30-52  © 2006 Human Kinetic s, Inc. Wells and Schneiderman-Walker are with the Department of Lung Biology at The Hospital for Sick Children, Toronto, Ontario, Canada; Plyley is with the Faculty of Applied Health Sciences at Brock University, St. Catharine s, Ontario, Canada. Normal Physiological Characteristics of Elite Swimmers Gregory D. Wells The Hospital for Sick Children, T oronto Jane Schneiderman-Walker The Hospital for Sick Children, T oronto Michael Plyley Brock University The purpose of this research was to develop a comprehensive normative database of the physiological characteristics of elite swimmers. Data were obtained from 195 elite swimmers (89 males and 106 females) ages 12 to 18 years. Six protocols were used to measure variables in the following categories: descriptive charac- teristics, cardiovascular, respiratory , strength and power, body composition, and anthropometry. Signicant effects of gender and age were identi ed for a number of variables. These data could be used for the physiological assessment and talent identication of swimmers in comparison with other populations. Swimming performance depends on optimizing propulsion and minimizing the opposing factor—drag (6,10). Factors that contribute to maximizing propulsion include aerobic and anaerobic energetics (48,7,8), muscular power (20), muscular endurance (53), and stroke technique (9,10,11). Factors related to minimizing drag include the anthropometric characteristics and body composition (42). Swimmers  physical characteristics have been examined to determine the characteristics of suc- cessful sprint and endurance swimmers (17,27,29,32,41,43,56) in order to assess the relative importance of speci c characteristics to performance (11,40,44) and to evaluate changes in physical characteristics over time (4,14,21,24,32,3 5,38,50, 51,52,57). Al though research into the physiology of swimmers is substantial, few studies to date have examined these physiological characteristics over an extended time period or examined an extensive set of variables from a range of physiological systems. In addition, none have included a comprehensive partic ipant cohort com- prised of males and females across all swimming discipline s or a wide age range.

Upload: jennifer-abate

Post on 14-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 1/23

30

Pediatric Exercise Science , 2006, 17, 30-52 © 2006 Human Kinetics, Inc.

Wells and Schneiderman-Walker are with the Department of Lung Biology at The Hospital for Sick

Children, Toronto, Ontario, Canada; Plyley is with the Faculty of Applied Health Sciences at Brock

University, St. Catharine s̓, Ontario, Canada.

Normal Physiological Characteristicsof Elite Swimmers

Gregory D. Wells

The Hospital for Sick Children, Toronto

Jane Schneiderman-WalkerThe Hospital for Sick Children, Toronto

Michael Plyley

Brock University

The purpose of this research was to develop a comprehensive normative database

of the physiological characteristics of elite swimmers. Data were obtained from

195 elite swimmers (89 males and 106 females) ages 12 to 18 years. Six protocols

were used to measure variables in the following categories: descriptive charac-

teristics, cardiovascular, respiratory, strength and power, body composition, and

anthropometry. Significant effects of gender and age were identified for a number

of variables. These data could be used for the physiological assessment and talent

identification of swimmers in comparison with other populations.

Swimming performance depends on optimizing propulsion and minimizing theopposing factor—drag (6,10). Factors that contribute to maximizing propulsioninclude aerobic and anaerobic energetics (48,7,8), muscular power (20), muscularendurance (53), and stroke technique (9,10,11). Factors related to minimizing draginclude the anthropometric characteristics and body composition (42). Swimmers  ̓physical characteristics have been examined to determine the characteristics of suc-cessful sprint and endurance swimmers (17,27,29,32,41,43,56) in order to assessthe relative importance of specific characteristics to performance (11,40,44) andto evaluate changes in physical characteristics over time (4,14,21,24,32,35,38,50,51,52,57). Although research into the physiology of swimmers is substantial, fewstudies to date have examined these physiological characteristics over an extendedtime period or examined an extensive set of variables from a range of physiologicalsystems. In addition, none have included a comprehensive participant cohort com-prised of males and females across all swimming disciplines or a wide age range.

04Wells(30) 30 1/31/06, 9:36:42 AM

Page 2: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 2/23

Characteristics of Elite Swimmers 31

A normative database could be used to evaluate an athlete s̓ health, training,and performance status by providing: a) a means by which the athlete could be

monitored cross-sectionally in relation to world-class performers (37) and b) ameans of tracking improvements in function or physical development over time(5,43). Smith et al. (43) supported the importance of developing such a database bysuggesting that a successful monitoring program is necessary to both identify andtreat weaknesses. Because optimal training adaptation involves balancing adap-tive overload and over training, a successful monitoring program would ensurethat the many hours spent in the water developing swimmers could be spent mostef ficiently. The overstress study conducted by Hooper et al. (23) also points outthe importance of a regular monitoring program in evaluating the status of athletesduring training.

Therefore, the objective of this research was to establish comprehensive norma-tive physiological data for male and female elite competitive swimmers from 12 to18 years of age. The elite swimmers that were used in this research were membersof the Canadian National or Youth National Teams during the study period. Toqualify for the Youth National Team, participants must have been ranked 1st inCanada in their respective events for their age (12–15 years). To qualify for theNational Team, athletes must have achieved an absolute ranking of top 2 perfor-mances in Canada for a given event in that calendar year. As a result of the factthat some athletes qualified for the Canadian Teams on multiple occasions (as fewas once and as many as four times for some athletes), this study used a researchdesign that included both cross-sectional and longitudinal elements to examine

the physiological characteristics of elite swimmers across genders and over theage range studied.

Methods

Participants

Study participants included 195 competitive swimmers (89 males and 106 females)between the ages of 12 and 18 who were members of the Canadian National andYouth National Teams. The sample included 32 distance (14 males, 18 females),68 middle distance (33 males, 35 females), and 95 (42 male, 53 female) sprint

swimmers. Distance swimmers were those athletes who specialized in events 800m or longer, middle-distance swimmers specialized in events 200 and 400 m inlength, and sprinters specialized in events 50 or 100 m in length. Informed consentwas obtained from each participant in accordance with the policy of the Universityof Toronto Ethics Board. Data were collected during biannual Youth National andNational Team training camps over an 8-year period. The participants were testedapproximately every 6 months for a period that depended on the length of time theyremained as National or Youth National team members. In some cases, this meantthat a swimmer was evaluated only once, whereas in other cases a swimmer couldhave been assessed as many as four times. The number of multiple test sessionscompleted by the participants is shown in Figure 1. A total of 13 testing sessions

are included in this database.

04Wells(30) 31 1/31/06, 9:36:44 AM

Page 3: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 3/23

32 Wells, Schneiderman-Walker, and Plyley

Procedures

The testing consisted of six protocols to measure variables in the following catego-ries of descriptive characteristics: cardiovascular, respiratory, strength and power,body composition, and anthropometry.

Exercise Test Protocol . Participants were instructed to swim face down, main-taining a position over a marked spot on the bottom of the pool while attached to aweight loaded tether system. The appropriate progressive scheduled loading wasstarted (see Table 1) and continued until exhaustion. Expired gases were collected

and analyzed throughout the test with a Beckman Metabolic Measurement Cart(Beckman Instruments, Anaheim, CA) and a modified Hans Rudolph valve system.Electrocardiograms were recorded each minute throughout the test with a HewlettPackard Telemetry system (78100A Telemetry transmitter and 78101A Telemetryreceiver) and an EK31 electrocardiogram using a modified lead three-electrodeplacement. Variables measured during the exercise test included relative aerobicpower (ml·kg –1·min –1), absolute aerobic power (L/min –1), peak heart rate (b/min –1),peak ventilation (L/min –1), peak breathing frequency (br/min –1), and peak respira-tory exchange ratio (RER, VCO

2/VO

2).

Blood Analysis, Cardiovascular, and Pulmonary Function Protocols. Par-

ticipants were evaluated in a rested (no strenuous activity earlier that day), fasted(12 hrs) state. Blood samples were collected from the median cubital vein intoa 100 × 13 mm evacuated glass tube containing 0.07 ml of a 15% EDTA (K3)

Figure 1 — Number of multiple test sessions completed by participants.

04Wells(30) 32 1/31/06, 9:36:45 AM

Page 4: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 4/23

Characteristics of Elite Swimmers 33

   T  a   b   l  e   1

   T  e   t   h  e  r  e   d   S  w   i  m    T  e  s   t   L  o

  a   d   i  n  g   P  r  o   t  o  c  o   l

   E   s   t   i   m   a   t   e   d   m   a   x   i   m

   u   m

   l   o   a   d  =   6 .   0   0   k   g

   E   s   t   i   m   a   t   e   d   m   a   x   i   m

   u   m

   l   o   a   d  =   6 .   2   5   k   g

   E   s   t   i   m   a   t   e   d   m   a   x   i   m

   u   m

   l   o   a   d  =   6 .   5   0   k   g

   E   s   t   i   m   a   t   e   d   m   a   x   i   m   u

   m

   l   o   a   d  =   6 .   7   5   k   g

   T   i   m   e   (   m   i   n   )

   A   d   j   u   s   t   e   d

   l   o   a   d   (   k   g   )

   W   o   r

   k   l   o   a   d

   (   k   g   )

   A   d   j   u   s   t   e   d

   l   o   a   d   (   k   g   )

   W   o   r   k   l   o   a   d

   (   k   g   )

   A   d   j   u   s   t   e   d

   l   o   a   d   (   k   g   )

   W   o   r

   k   l   o   a   d

   (   k   g   )

   A   d   j   u   s   t   e   d

   l   o   a   d   (   k   g   )

   W   o   r   k

   l   o   a   d

   (   k   g   )

   W  a  r  m  -  u  p

   0

   1 .   5   0

   1 .   5   0

   1 .   5   0

   1

 .   5   0

   1 .   7   5

   1 .   7   5

   1 .   7   5

   1 .   7

   5

   1

   H  o   l   d

   1 .   5   0

   H  o   l   d

   1

 .   5   0

   H  o   l   d

   1 .   7   5

   H  o   l   d

   1 .   7

   5

   2

   H  o   l   d

   1 .   5   0

   H  o   l   d

   1

 .   5   0

   H  o   l   d

   1 .   7   5

   H  o   l   d

   1 .   7

   5

   3

   H  o   l   d

   1 .   5   0

   H  o   l   d

   1

 .   5   0

   H  o   l   d

   1 .   7   5

   H  o   l   d

   1 .   7

   5

   4

   H  o   l   d

   1 .   5   0

   H  o   l   d

   1

 .   5   0

   H  o   l   d

   1 .   7   5

   H  o   l   d

   1 .   7

   5

   T  e  s   t   0

   1 .   5   0

   3 .   0   0

   1 .   7   5

   3

 .   2   5

   1 .   5   0

   3 .   2   5

   1 .   7   5

   3 .   5

   0

   0 .   5

   H  o   l   d

   3 .   0   0

   H  o   l   d

   3

 .   2   5

   H  o   l   d

   3 .   2   5

   H  o   l   d

   3 .   5

   0

   1

   0 .   7   5

   3 .   7   5

   0 .   7   5

   4

 .   0   0

   0 .   7   5

   4   0   0

   0 .   7   5

   4 .   2

   5

   1 .   5

   0 .   5   0

   4 .   2   5

   0 .   5   0

   4

 .   5   0

   0 .   7   5

   4 .   7   5

   0 .   7   5

   5   0

   0

   2

   0 .   5   0

   4 .   7   5

   0 .   5   0

   5

 .   0   0

   0 .   5   0

   5 .   2   5

   0 .   5   0

   5 .   5

   0

   2 .   5

   0 .   2   5

   5 .   0   0

   0 .   2   5

   5

 .   2   5

   0 .   2   5

   5 .   5   0

   0 .   2   5

   5 .   7

   5

   3

   0 .   2   5

   5 .   2   5

   0 .   2   5

   5

 .   5   0

   0 .   2   5

   5 .   7   5

   0 .   2   5

   6 .   0

   0

   3 .   5

   0 .   2   5

   5 .   5   0

   0 .   2   5

   5

 .   7   5

   0 .   2   5

   6 .   0   0

   0 .   2   5

   6 .   2

   5

   4

   0 .   2   5

   5 .   7   5

   0 .   2   5

   6

 .   0   0

   0 .   2   5

   6 .   2   5

   0 .   2   5

   6 .   5

   0

   4 .   5

   0 .   2   5

   6 .   0   0

   0 .   2   5

   6

 .   2   5

   0 .   2   5

   6 .   5   0

   0 .   2   5

   6 .   7

   5

   5

   0 .   2   5

   6 .   2   5

   0 .   2   5

   6

 .   5   0

   0 .   2   5

   6 .   7   5

   0 .   2   5

   7 .   0

   0

   5 .   5

   0 .   2   5

   6 .   5   0

   0 .   2   5

   6

 .   7   5

   0 .   2   5

   7 .   0   0

   0 .   2   5

   7 .   2

   5

   6

   0 .   2   5

   6 .   7   5

   0 .   2   5

   7

 .   0   0

   0 .   2   5

   7 .   2   5

   0 .   2   5

   7 .   5

   0

   6 .   5

   0 .   2   5

   7 .   0   0

   0 .   2   5

   7

 .   2   5

   0 .   2   5

   7 .   5   0

   0 .   2   5

   7 .   7

   5

   7

   0 .   2   5

   7 .   2   5

   0 .   2   5

   7

 .   5   0

   0 .   2   5

   7 .   7   5

   0 .   2   5

   8 .   0

   0

   7 .   5

   0 .   2   5

   7 .   5   0

   0 .   2   5

   7

 .   7   5

   0 .   2   5

   8 .   0   0

   0 .   2   5

   8 .   2

   5

   8

   0 .   2   5

   7 .   7   5

   0 .   2   5

   8

 .   0   0

   0 .   2   5

   8 .   2   5

   0 .   2   5

   8 .   5

   0

   8 .   5

   0 .   2   5

   8 .   0   0

   0 .   2   5

   8

 .   2   5

   0 .   2   5

   8 .   5   0

   0 .   2   5

   8 .   7

   5

04Wells(30) 33 1/31/06, 9:36:48 AM

Page 5: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 5/23

34 Wells, Schneiderman-Walker, and Plyley

solution that contained 0.014 mg of potassium sorbate. Hemoglobin values weredetermined using a calibrated spectrophotometer (Bausch and Lomb, Rochester,

NY) and the Hycel procedure (2). Final hemoglobin concentration of the bloodsample was recorded in mg/100ml by comparing its absorbance against the absor-bance of the standard Hycel Cvnamethaemoglobin reagent at 540 nm. Hematocritwas determined by collecting blood into three heparinized microhematocrit tubesthrough capillary action. After centrifuging for 5 min, an MSE MicrohematocritHead and Reader were used to read the tubes individually. Results were recordedas a percentage of the average of the two closest readings. A trained technicianused an analog blood pressure cuff to measure resting blood pressure. Pulmonaryfunction was assessed by spirometry according to the procedures suggested by theNational Heart and Lung Institute (34).

Strength and Power Protocol.  Muscular strength and power were assessed bymeans of vertical jump, isokinetic movements via a strength assessment appara-tus, and tests on an isokinetic swim bench. The right and left handgrip strengthmeasures were collected only during the Youth National Team camps. Strengthwas assessed using a handgrip dynamometer in kilograms with the participant ina standing position maintaining a straight arm. Leg power was assessed by vertical

 jump; the result was recorded as the difference between reach and jump heightsin centimeters.

Isokinetic strength was measured using a Cybex Multi-Joint Evaluation System(Cybex International, Medway, MA) to assess the individual muscle(s) involved inswimming specific movement patterns. The movements tested were in the active

propulsion phase of stroke, contributed to a major percentage of stroke power, andwere consistent with the range of motion that provides the propulsion. Thus, wechose to examine shoulder internal rotation, elbow extension, and knee extensionat a movement speed of 180 degrees/s because this provides a close approximationto true swimming movements and speed. The peak torque value from the best of three maximal trials was used for analysis.

A Biokinetic Swim Bench (Biokinetics Inc., Albany, CA) was used to assessstroke-specific power and endurance. Athletes assumed a prone position on theswim bench with their arms extended forward grasping the hand paddles. Todetermine power, participants were asked, upon command, to make one maximalarm pull in which the sweeping motion mimicked their arm pull in their primaryswimming stroke. Athletes used their primary competitive strokes for the test. Thepeak power output (W) was recorded and used for subsequent analysis. The best of three efforts (highest recorded peak) was used for subsequent analysis. Endurancewas assessed by having participants use their specialty stroke to perform 4 min of maximal exercise on the swim bench. The total work output (J) was recorded andused for subsequent analysis.

Anthropometry Protocol.  Standing height to the nearest 0.2 m was assessed byusing a Health-O-Meter weighing scale (Health-O-Meter 400S, Sunbeam ProductsInc., Boca Raton, FL) with a vertical measuring rod. Mass was assessed to thenearest 0.5 kg with the same Health-O-Meter scale. A measuring tape was usedto assess girths on the right side of the body to the nearest millimeter. Chest girthwas measured at the level of the nipples for males and immediately distal to the

04Wells(30) 34 1/31/06, 9:36:50 AM

Page 6: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 6/23

Characteristics of Elite Swimmers 35

breasts (i.e., bra strap line) for females. Forearm girth was measured at the maxi-mum circumference immediately distal to the elbow joint with the participant s̓

arm hanging freely. Upper arm girth was measured at the maximum circumferencedistal to the shoulder joint with the participant s̓ arm hanging freely. Flexed upperarm girth was measured at the point of maximum girth with the participant s̓ armflexed to 90 degrees. Gluteal girth was measured at the level of maximum girth withthe participant standing. Thigh girth was measured just below the gluteal furrowat the maximal girth with the participant standing. Calf girth was measured at thelevel of maximum girth with the participant standing.

Limb length variables included: a) forearm and hand length, measured as thelength from the olecranon process of the ulna to the ulnar styloid; b) total arm,measured as the length from the greater tuberosity of the humerus to the ulnarstyloid with the elbow fully extended; c) shank and foot, with the participant instanding position, measured as the length from the lateral femoral condyle tothe level of the medial malleolus on the lateral side of the leg; and d) total leg,with the participant in standing position, measured as the length from the greatertrochanter of the femur to the level of the medial malleolus on the lateral sideof the leg.

A Harpenden skinfold caliper (British Indicators, St Albans, Hertfordshire,UK) was used to collect skinfold measurements to the nearest 0.2 mm two secondsafter the full pressure of the caliper jaws had been applied; the skinfold value wastaken as the average of 2 skinfold measurements separated by at least 1 min toavoid tissue compression. The triceps skinfold was measured on the back of the

unclothed pendant right arm at a level midway between the tip of the acromionand the elbow. The biceps skinfold was measured on the ventral side of the rightpendant upper arm (over the biceps) at a level midway between the acromion andthe olecranon process of the ulna. The subscapular skinfold was measured about1 cm below the lower (inferior) angle of the right scapula. The suprailiac skinfoldwas measured 3 cm above the suprailac crest with the fold running diagonally tothe crest. Body fat calculations were performed according to the recommendationsof Durnin and Wormersley (17).

The joint breadth measures were collected only during the Youth NationalTeam camps. These measures were also collected by using a sliding caliper. Bi-iliacbreadth was measured across the iliac crests for maximum diameter. Bi-acromial

breadth was measured with the arms of the caliper on the outside of the acromialprocesses of the shoulders. Femur epicondylar breadth was measured while theparticipants were sitting on a table with their knees bent at right angles. The widthacross the outermost parts of the lower end of the femur was recorded. Humerusepicondylar breadth was measured across the outermost parts of the lower end of the humerus.

Statistical Analyses.  Results were grouped according to age and gender andwere expressed as mean (± SEM ). A two-factor analysis of variance was used toevaluate the main effects of gender and age using a general linear model. Resultswere tested for interaction effects (Gender × Age), and if no interaction effects

were noted, then the results were grouped accordingly for  post-hoc analysis. ATukey test was used for post-hoc analysis if differences were observed in any of the conditions. Statistical significance was considered to be p < .05.

04Wells(30) 35 1/31/06, 9:36:52 AM

Page 7: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 7/23

36 Wells, Schneiderman-Walker, and Plyley

Results

Descriptive Characteristics

Descriptive characteristics are shown in Table 2. The analysis revealed a significantgender effect, with males having higher relative and absolute maximal aerobicpower ( p < .001), height ( p < .001), and mass ( p < .001) than females at all agesexcept mass at 13 years old. Relative maximal aerobic power was unchangedwith age ( p = .92), but absolute aerobic power ( p < .001), height ( p < .001), andmass ( p < .001) all showed significant increases with age. Interaction effects werefound for absolute maximal aerobic power ( p = .003), mass ( p = .001), and height

( p < = .001).

Cardiovascular Function

No interaction effects were noted for cardiovascular function variables; therefore,all results were grouped by age and gender for analysis. Males were observed tohave higher hemoglobin and hematocrit levels ( p < .001), a lower maximum heartrate ( p = .037), and lower diastolic ( p = .004) and systolic blood pressures ( p =.016) than female participants. Age had an effect (a decrease) on maximum heartrate ( p < .001), hematocrit levels ( p = .014), and on diastolic blood pressure ( p =.049) but not on hemoglobin and or systolic blood pressure. Results are shown inTable 3.

Respiratory Function

No interaction effects were noted for respiratory function variables, so all resultswere grouped by age and gender for analysis (see Table 4). Males had higher maxi-mal ventilation values ( p < .001) and lower maximal breathing frequency values( p = .017) than did the female participants. There was no difference between malesand females in maximal RER at the end of the exercise test. Pulmonary functiontesting revealed that males had higher residual volume ( p = .019) and higher forcedvital capacity ( p < .001) than did female participants. Age had an effect (an increase)on maximum ventilation ( p = .028), residual volume ( p < .001), and forced vitalcapacity ( p < .001), but not on RER or maximal breathing frequency.

Strength and Power

Males had higher grip strength ( p = < .001), vertical jump ( p = < .001), elbowextension ( p = < 0.001), knee extension ( p = < .001), stroke-specific power( p = .005), and nearly significant stroke-specific endurance ( p = .08) than didfemales (see Table 5). Right grip strength ( p = < .001), elbow extension ( p =.004), and knee extension ( p = < .001) increased with age, but shoulder internalrotation ( p = .125) and vertical jump ( p = .065) did not, although the vertical jumpresults approached significance. Interaction effects were noted for vertical jump( p = < .001) and knee extension ( p = .007). The results from the swim-bench testingindicated that stroke-specific power ( p = .474) and stroke-specific endurance ( p =.363) did not change with age.

04Wells(30) 36 1/31/06, 9:36:54 AM

Page 8: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 8/23

Characteristics of Elite Swimmers 37

   T  a   b   l  e   2

   D  e  s  c  r   i  p   t   i  v  e   V  a  r   i  a   b   l  e  s  :   M  e  a  n     ±      S

     D

   (    n   )

   A   g   e

   G   e   n   d   e   r

   M   a   x .   a   e   r   o   b

   i   c

   p   o   w   e   r   (   r   e   l   a   t   i   v   e   )  :

   m   l  ·   k   g  –   1  ·   m   i   n

  –   1

   M   a   x .   a   e   r   o   b   i   c

   p   o   w   e   r   (   a   b   s   o   l   u

   t   e   )  :

   L   /   m   i   n

   H   e   i   g   h   t  :   c   m

   M   a   s   s  :   k   g

   1   2

   F  e  m  a   l  e

    5   0 .   1   ±   5 .   0   (

   7   )

    2 .   7   ±   0 .   4   (   7   )   0   0

   1   6   3 .   3   ±   7 .   5   (   1

   2   )   0   0

   5   3 .   2   ±   6 .   8   (   1   2   )   0   0   0   0   0   0

   1   3

   M  a   l  e

    5   6 .   2   ±   6 .   6   (

   1   3   )  a

    3 .   2   ±   0 .   5   (   1   3

   )  a   0

   1   6   8 .   2   ±   7 .   7   (   1

   6   )  a   0   0

   5   8 .   1   ±   9 .   3   (   1   6   )   0   0   0   0   0   0

   F  e  m  a   l  e

    4   9 .   9   ±   5 .   3   9

   (   3   4   )

    2 .   7   ±   0 .   3   (   3   4

   )   0

   1   6   4 .   6   ±   6 .   1   (   4

   4   )   0   0

   5   4 .   9   ±   6 .   3   (   4   4   )   0   0   0   0   0   0

   1   4

   M  a   l  e

    5   7 .   6   ±   4 .   9   (

   2   5   )  a

 

   3 .   6   ±   0 .   5   (   2   5

   )  a   *   1   3

   1   7   4 .   2   ±   5 .   9   (   3   7   )  a   *   1   3

   6   3 .   9   ±   7 .   2   (   3   7   )  a   *   1   3   0   0   0

   F  e  m  a   l  e

    4   8 .   8   ±   3 .   9   (   2   6   )

    2 .   8   ±   0 .   3   (   2   6   )

    1   6   8 .   4   ±   4 .   9   (   3

   1   )   0   0   0

   5   8 .   6   ±   6 .   7   (   3   1   )   0   0   0   0   0   0

   1   5

   M  a   l  e

    5   6 .   8   ±   5 .   3   (

   4   2   )  a

 

   3 .   7   ±   0 .   4   (   4   2

   )  a   *   1   3

   1   7   6 .   9   ±   5 .   7   (   5   4   )  a   *   1   3

   6   5 .   8   ±   6 .   5   (   5   4   )  a   *   1   3   0   0   0

   F  e  m  a   l  e

    5   0 .   8   ±   5 .   7   (

   3   4   )

    2 .   9   ±   0 .   4   (   3   4   )

    1   6   7 .   3   ±   5 .   3   (   4

   8   )   0   0   0

   5   8 .   6   ±   6 .   4   (   4   8   )   0   0   0   0   0   0

   1   6

   M  a   l  e

    5   5 .   2   ±   3 .   0   (

   1   2   )  a

 

   3 .   7   ±   0 .   4   (   1   2

   )  a   *   1   3

   1   7   7 .   8   ±   6 .   0   (   1   5   )  a   *   1   3

   6   7 .   5   ±   6 .   2   (   1   5   )  a   *   1   3   0   0   0

   F  e  m  a   l  e

    5   2 .   7   ±   3 .   7   (

   1   3   )

 

   3 .   1   ±   0 .   2   (   1   3

   )   *   1   2 ,   1   3

    1   6   8 .   0   ±   3 .   7   (   1

   7   )   0   0   0

   6   0 .   5   ±   3 .   9   (   1   7   )   *   1   2 ,   1   3   0   0

   1   7

   M  a   l  e

    5   7 .   7   ±   3 .   4   (

   1   1   )  a

 

   4 .   3   ±   0 .   3   (   1   1

   )  a   *   1   3 ,   1   4 ,   1   5 ,   1   6

    1   8   0 .   6   ±   7 .   3   (   1

   8   )  a   *   1   3 ,   1   4

    7   5 .   6   ±   7 .   4   (   1   9   )  a   *   1   3 ,   1   4 ,   1   5 ,   1   6

   F  e  m  a   l  e

    4   9 .   3   ±   4 .   7   (

   1   2   )

 

   3 .   1   ±   0 .   3   (   1   2

   )   *   1   2 ,   1   3

    1   6   6 .   4   ±   5 .   0   (   2

   1   )   0   0   0

   6   1 .   2   ±   4 .   9   (   2   1   )   *   1   2 ,   1   3   0   0

   1   8

   M  a   l  e

    5   5 .   1   ±   5 .   1   (

   8   )  a

 

   4 .   2   ±   0 .   5   (   8   )

  a   *   1   3 ,   1   4 ,   1   5 ,   1   6

    1   8   4 .   0   ±   7 .   9   (   8   )  a   *   1   3 ,   1   4 ,   1   5

   7   7 .   6   ±   7 .   5   (   8   )  a   *   1   3 ,   1   4 ,   1   5 ,   1   6

   F  e  m  a   l  e

   5   0 .   8   ±   4 .   5   (   4   )

 

   3 .   3   ±   0 .   6   (   4   )   *   1   2 ,   1   3

    1   6   9 .   2   ±   4 .   8   (   1   1   )   0   0   0

   6   4 .   1   ±   5 .   9   (   1   1   )   *   1   2 ,   1   3   0   0   0   0

   *   S   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  v  a   l  u  e  c  o  m  p  a  r  e   d

  w   i   t   h   t   h  e  s  u  p  e  r  s  c  r   i  p   t  e   d  a  g  e .

  a   S   i  g  n   i       fi  c  a  n

   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r  m  a   l  e  s  w

   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h   f  e  m  a   l  e  s .

04Wells(30) 37 1/31/06, 9:36:56 AM

Page 9: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 9/23

38 Wells, Schneiderman-Walker, and Plyley

   T  a   b   l  e   3

   C  a  r   d   i  o  v  a  s  c  u   l  a  r   R  e  s  u   l   t  s  :   M  e  a  n   ±     S     D

   (    n   )

    A   g   e

   (   y   e   a   r   s   )

   G   e   n   d   e   r

   H   e   m   o   g   l   o   b   i   n

   (   m   g   /   1   0   0   m   l   )

   H   e   m   a   t   o   c   r   i   t   (   %   )

   M   a   x   i   m   u   m   h   e   a   r   t

   r   a   t   e   (   b   /   m   i   n   )

   S   y

   s   t   o   l   i   c   b   l   o   o   d

   p   r   e   s

   s   u   r   e   (   m   m   H   g   )

   D   i   a   s   t   o   l   i   c

   b   l   o   o   d   p   r   e   s   s

   u   r   e

   (   m   m   H   g   )

    1   2

   F  e  m  a   l  e

   1   3 .   6   ±   0 .   6   (   8   )

   4   2 .   3   ±   1 .   7   (   8   )   0   0   0

   1   9   2 .   4   ±   7 .   4   (   7   )   0   0   0   0

   1   0   5 .   3   ±   6 .   9   (   6   )

   6   1 .   6   ±   9 .   3   (   6

   )   0   0

    1   3

   M  a   l  e

    1   5 .   1   ±   0 .   8   (   1   3

   )  a

   4   7 .   1   ±   5 .   0   (   1   2   )  a   0   0

   1   8   3 .   0   ±   9 .   6   (   1   3   )   0   0   0

    1   1   5 .   8   ±   1   6 .   4   (   1   0   )

   6   8 .   0   ±   6 .   7   (   1

   0   )   0

   F  e  m  a   l  e

    1   3 .   5   ±   0 .   9   (   3   4

   )

   4   3 .   1   ±   2 .   9   (   3   4   )   0   0

   1   9   0 .   1   ±   8 .   7   (   3   4   )   b   0   0   0

    1   1   3 .   1   ±   8 .   4   (   3   2   )

   6   7 .   5   ±   8 .   1   (   3

   2   )   0

    1   4

   M  a   l  e

    1   4 .   8   ±   0 .   9   (   2   5   )  a

   4   6 .   0   ±   2 .   1   (   2   5   )  a   0   0

   1   8   7 .   8   ±   8 .   6   (   2   5   )   0   0   0

    1   1   8 .   9   ±   1   0 .   5   (   2   3   )

   6   7 .   1   ±   7 .   0   (   2

   3   )   0

   F  e  m  a   l  e

    3 .   9   ±   0 .   9   (   2   7   )

   4   3 .   2   ±   3 .   1   (   2   7   )   0   0   0

   1   8   8 .   7   ±   7 .   6   (   2   6   )   0   0   0

    1   1   4 .   5   ±   1   1 .   5   (   2   2   )

   6   9 .   5   ±   7 .   9   (   2

   2   )   0

    1   5

   M  a   l  e

    1   5 .   0   ±   1 .   0   (   4   3

   )  a

   4   5 .   9   ±   3 .   2   (   4   3   )  a   0   0

   1   8   6 .   9   ±   7 .   8   (   4   2   )   0   0   0

    1   2   1 .   2   ±   8 .   4   (   3   9   )  a

   6   9 .   2   ±   9 .   3   (   3

   9   )   0

   F  e  m  a   l  e

    1   4 .   0   ±   1 .   2   (   3   8

   )

   4   2 .   8   ±   2 .   9   (   3   8   )   0   0   0

   1   8   8 .   6   ±   7 .   7   (   3   4   )   0   0   0

    1   1   0 .   7   ±   1   1 .   1   (   2   9   )

   6   8 .   2   ±   8 .   4   (   2

   9   )   0

    1   6

   M  a   l  e

    1   4 .   9   ±   1 .   1   (   1   3

   )  a

   4   6 .   2   ±   2 .   2   (   1   3   )  a   0   0

   1   8   3 .   5   ±   7 .   2   (   1   2   )   0   0   0

    1   1   7 .   3   ±   9 .   7   (   1   3   )

    7   3 .   3   ±   8 .   2   (   1

   3   )   0   0

   F  e  m  a   l  e

    1   3 .   8   ±   1 .   4   (   1   7

   )

   4   0 .   4   ±   4 .   2   (   1   7   )   0   0   0

   1   8   1 .   6   ±   8 .   5   (   1   3   )   *   1   2 ,   1   3

   1   1   5 .   0   ±   7 .   5   (   9   )

   6   7 .   7   ±   8 .   2   (   9

   )   0   0

    1   7

   M  a   l  e

    1   5 .   1   ±   1 .   2   (   1   8

   )  a

   4   3 .   5   ±   3 .   3   (   1   8   )   0   0   0

   1   7   7 .   3   ±   8 .   8   (   1   0   )   *   1   4 ,   1   5

   1   2   0 .   7   ±   9 .   8   (   8   )

    7   7 .   0   ±   4 .   4   (   8   )   *   1   4   0

   F  e  m  a   l  e

    1   3 .   3   ±   3 .   2   (   2   0

   )

   4   2 .   4   ±   7 .   6   (   2   0   )   0   0   0

   1   8   3 .   3   ±   9 .   9   (   1   0   )   0   0   0

    1   1   3 .   8   ±   8 .   0   (   1   0   )

   7   2 .   1   ±   6 .   4   (   1   0   )   0

    1   8

   M  a   l  e

    1   5 .   4   ±   1 .   7   (   7   )  a

    4   5 .   0   ±   2 .   0   (   7   )  a   0   0   0

   1   7   3 .   7   ±   6 .   3   (   8   )   *   1   4 ,   1   5   0

   1   1   7 .   5   ±   3 .   8   (   4   )

   8   0 .   2   ±   7 .   3   (   4   )  a   *   1   4

   F  e  m  a   l  e

    1   3 .   5   ±   1 .   3   (   1   0

   )

    3   8 .   6   ±   4 .   3   (   1   0   )   *   1   3 ,   1   4 ,   1   5

   1   7   7 .   6   ±   4 .   0   (   3   )   *   1   2 ,   1   3   0

    1   1   7 .   5   ±   1   6 .   4   (   4   )

   *   S   i  g  n   i       fi  c  a

  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  v  a   l  u  e  c  o  m  p  a  r  e   d

  w   i   t   h   t   h  e  s  u  p  e  r  s  c  r   i  p   t  e   d  a  g  e .

  a   S   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r  m  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h   f  e  m  a   l  e  s  ;   b  s   i  g  n   i       fi

  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r   f  e  m

  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h  m  a   l  e  s .

04Wells(30) 38 1/31/06, 9:36:58 AM

Page 10: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 10/23

Characteristics of Elite Swimmers 39

   T  a   b   l  e   4

   R  e  s  p   i  r  a   t  o  r  y   R  e  s  u   l   t  s  :   M

  e  a  n   ±     S     D

   (    n   )

   A   g   e

   G   e   n   d   e   r

   R   e   s   i   d   u   a   l

   v   o   l   u   m   e   (   L   )

   F   o   r   c   e   d   v   i   t   a   l

   c   a   p   a   c   i   t   y   (   L   )

   M   a   x   v   e   n   t   i   l   a   t   i   o   n

   (   L   /   m   i   n   )

   M   a   x   b   r   e   a   t   h   i   n   g

   f   r   e   q   u   e   n   c   y

   (   b   r   /   m   i   n   )

   M   a   x   R   E

   R

   (   V   C   O   2   /   V

   O   2   )

   1   2

   F  e  m  a   l  e

   0 .   8   ±   0 .   0   4   (   5   )

   4 .   3   ±   0 .   5   8   (   8   )   0

    7   7 .   2   ±   1   2 .   9   1   (   7   )

   4   6 .   3   ±   5 .   2   (   7   )

    1 .   0   5   ±   0 .   0

   9   (   7   )

   1   3

   M  a   l  e

   1 .   0   ±   0 .   3   (   1   1   )

   4 .   9   ±   1 .   1   (   8   )  a   0   0

    9   3 .   1   ±   1   8 .   1   (   8   )  a

    4   1 .   0   ±   1   1 .   1   (   8   )

    1 .   0   ±   0 .   1

   (   8   )

   F  e  m  a   l  e

   0 .   8   ±   0 .   2   (   2   3   )

    4 .   2   ±   0 .   5   (   3   2   )   0   0

    7   8 .   7   ±   1   3 .   3   (   3   0   )

    4   2 .   4   ±   7 .   1   (   3   0   )

    1 .   0   ±   0 .   1

   (   3   0   )

   1   4

   M  a   l  e

   1 .   0   ±   0 .   1   (   1   6   )

    5 .   4   ±   0 .   9   (   2   4   )  a   0

    1   0   1 .   6   ±   1   9 .   3   (   2   4   )  a

    4   0 .   3   ±   8 .   5   (   2   4   )

    1 .   1   ±   0 .   1

   (   2   4   )

   F  e  m  a   l  e

   1 .   0   ±   0 .   1   (   1   8   )

    4 .   6   ±   0 .   4   (   1   9   )   0   0

    8   3 .   2   ±   1   3 .   1   (   1   8   )

    4   1 .   9   ±   6 .   3   (   1   8   )

    1 .   0   ±   0 .   1

   (   1   8   )

   1   5

   M  a   l  e

   1 .   1   ±   0 .   2   (   2   8   )

   5 .   6   ±   0 .   8   (   4   0   )  a   0

 

   9   9 .   7   ±   1   3 .   3   (   4   0   )  a

    3   7 .   1   ±   7 .   4   (   4   0   )

    1 .   1   ±   0 .   1

   (   4   0   )

   F  e  m  a   l  e

   1 .   0   ±   0 .   2   (   3   2   )

   4 .   6   ±   0 .   6   (   3   2   )   0

    8   1 .   2   ±   1   7 .   8   (   3   0   )

    4   2 .   1   ±   7 .   2   (   2   9   )   b

    1 .   0   ±   0 .   1

   (   3   0   )

   1   6

   M  a   l  e

   1 .   1   ±   0 .   2   (   9   )   0

   5 .   5   ±   0 .   6   (   1   1   )   0

    9   9 .   7   ±   1   9 .   2   (   1   0   )

 

   3   7 .   8   ±   1   0 .   4   (   1   0   )

    1 .   1   ±   0 .   1

   (   1   0   )

   F  e  m  a   l  e

   1 .   0   ±   0 .   2   (   1   1   )

   5 .   0   ±   0 .   6   (   9   )   0

    8   7 .   9   ±   9 .   5   (   1   0   )

   4   3 .   8   ±   8 .   3   (   6   )

    1 .   0   ±   0 .   1

   (   1   0   )

   1   7

   M  a   l  e

   1 .   3   ±   0 .   2   (   1   1   )

 

   6 .   5   ±   0 .   9   (   9   )  a   *   1   3 ,   1   4 ,   1   5 ,   1   6

    1   1   3 .   6   ±   1   7 .   4   (   9   )  a

   4   2 .   3   ±   5 .   1   (   6   )

    1 .   0   ±   0 .   1

   (   9   )

   F  e  m  a   l  e

   1 .   1   ±   0 .   4   (   6   )   0

   5 .   0   ±   0 .   7   (   5   )   0   0

    7   2 .   5   ±   1   0 .   5   (   6   )

   4   5 .   9   ±   5 .   8   (   5   )

    1 .   0   ±   0 .   1

   (   6   )

   1   8

   M  a   l  e

 

   1 .   4   ±   0 .   4   (   7   )   *

   1   3 ,   1   4 ,   1   5

 

   6 .   8   ±   1 .   2   (   6   )  a   *   1   3 ,   1   4 ,   1   5 ,   1   6 

   1   1   9 .   8   ±   1   0 .   5   (   7   )   *   1   3 ,   1   5

   4   6 .   3   ±   9 .   8   (   3   )

    1 .   0   ±   0 .   1

   (   7   )

   F  e  m  a   l  e

   1 .   2   ±   0 .   3   (   3   )   0

   5 .   3   ±   1 .   1   (   2   )   0   0

    9   9 .   2   ±   4 .   1   (   2   )

  —

    1 .   1   ±   0 .   2

   (   2   )

     N   o    t   e .   V   C   O   2  =  v  o   l  u  m  e  o   f  c  a  r   b  o  n   d   i  o  x   i   d  e  ;   V   O   2  =  v  o   l  u  m  e  o   f  o  x  y  g  e  n  ;   b  r  =  n  u  m   b  e  r  o   f   b  r  e  a   t   h  s .

  a   S   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r  m  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h   f  e  m  a   l  e  s  ;   b  s   i  g  n   i       fi

  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r   f  e  m

  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h  m  a   l  e  s .

   *   S   i  g  n   i       fi  c  a

  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  v  a   l  u  e  c  o  m  p  a  r  e   d

  w   i   t   h   t   h  e  s  u  p  e  r  s  c  r   i  p   t  e   d  a  g  e .

04Wells(30) 39 1/31/06, 9:36:59 AM

Page 11: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 11/23

40 Wells, Schneiderman-Walker, and Plyley

   T  a   b   l  e   5

   S   t  r  e  n  g   t   h  a  n   d   P  o  w  e  r   R  e  s  u   l   t  s  :   M  e  a  n     ±      S

     D

   (    n   )

   A   g   e   (   y   e   a   r   s   )

   V   a   r   i   a   b   l   e

   1   2

   1   3

   1   4

   1   5

   1   6

   1   7

   1   8

   R   i  g   h   t  g  r   i  p

  s   t  r  e  n  g   t   h   (   k  g   )

   m  a   l  e  a

  —

   3   9 .   2

   ±   1   0 .   2

   (   1

   3   )  a

   4   3 .   3   ±   7 .   4

   (   2   5   )  a

   4   7 .   1   ±   7 .   6

   (   4   1   )  a   *   1   3

   5   0 .   2   ±   7 .   3

   (   1   1   )  a   *   1   3 ,   1   4

   5   2 .   0   ±   6 .   5

   (   6   )  a   *   1   3 ,   1   4

   5   6 .   3   ±   2 .   3

   (   3   )  a   *   1   3 ,   1

   4

    f  e  m  a   l  e

   2   8 .   3   ±   3 .   6

   (   8   )

   2   9 .   7

   ±   3 .   8

   (   3   5   )

   3   2 .   2   ±   5 .   3

   (   2   5   )

   3   3 .   7   ±   4 .   9

   (   3   0   )

   3   3 .   4   ±   2 .   5

   (   5   )

   3   8 .   3   ±   3 .   5

   (   3   )

  —

   V  e  r   t   i  c  a   l

   j  u  m  p   (  c  m

   )

   m  a   l  e  a

  —

   1   6 .   7

   ±   3 .   1

   (   1

   3   )  a

   1   7 .   1   ±   1 .   9

   (   2   5   )  a

   1   8 .   6   ±   2 .   6

   (   4   1   )  a

   1   9 .   3   ±   2 .   5

   (   1   1   )  a

   2   0 .   5   ±   2 .   8

   (   1   8   )  a   *   1   3 ,   1   4

   1   9 .   1   ±   2 .   7

   (   8   )  a

    f  e  m  a   l  e

   1   2 .   8   ±   1 .   3

   (   7   )

   1   4 .   6

   ±   2 .   3

   (   3   5   )

   1   5 .   5   ±   2 .   5

   (   2   5   )

   1   4 .   9   ±   2 .   2

   (   3   5   )

   1   4 .   4   ±   1 .   8

   (   1   3   )

   1   4 .   4   ±   2 .   5

   (   1   4   )

   1   3 .   7   ±   2 .   5

   (   7   )

   S   h  o  u   l   d  e  r

   i  n   t  e  r  n  a   l

  r  o   t  a   t   i  o  n   (   N

     .  m   )

   m  a   l  e

  —

   2   9 .   3

   ±   1   0 .   7

   (   1   1   )

   2   8 .   9   ±   6 .   0

   (   1   2   )

   3   5 .   6   ±   6 .   9

   (   1   9   )

   4   3 .   9   ±   1   3 .   2

   (   4   )

   3   9 .   2   ±   9 .   5

   (   1   5   )

   3   7 .   5   ±   3 .   2

   (   5   )

    f  e  m  a   l  e

   2   3 .   1   ±   4 .   6

   (   4   )

   2   4 .   9

   ±   5 .   7

   (   1   6   )

   2   5 .   9   ±   6 .   4

   (   1   5   )

   2   5 .   1   ±   4 .   8

   (   2   4   )

   2   8 .   4   ±   1   0 .   5

   (   1   3   )

   2   9 .   7   ±   1   1 .   1

   (   1   3   )

   3   2 .   9   ±   1   3

 .   1

   (   7   )

04Wells(30) 40 1/31/06, 9:37:01 AM

Page 12: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 12/23

Characteristics of Elite Swimmers 41

   E   l   b  o  w  e  x   t  e  n  s   i  o  n

   (   N     .  m   )

   m  a   l  e  a

  —

   3   2

 .   4   ±

   6 .   8

   (   1   1   )

   3   8 .   3   ±   5 .   5

   (   1   6   )  a

   4   2 .   8   ±   9 .   2

   (   3   0   )  a   *   1   3

   4   1 .   5   ±   4 .   5

   (   1   0   )  a

   4   0 .   5   ±   1   0 .   3

   (   1   6   )  a

   3   7 .   4   ±   8 .   9

   (   6   )

    f  e  m  a   l  e

   3   0 .   9   ±   3 .   6

   (   5   )

   2   6 .   9

   ±   5 .   4

   (   2   4   )

   3   1 .   8   ±   6 .   8

   (   2   0   )

   3   1 .   9   ±   8 .   8

   (   3   5   )

   2   9 .   1   ±   8 .   5

   (   1   5   )

   3   1 .   9   ±   1   1 .   0

   (   1   3   )

   3   4 .   1   ±   1   2

 .   9

   (   7   )

   K  n  e  e  e  x   t  e  n  s   i  o  n

   (   N     .  m   )

   m  a   l  e  a

  —

   8   8 .   6

   ±   2   7 .   1

   (   1   3   )

   1   1   0 .   5   ±   2   1 .   0

   (   2   5   )  a

   1   1   7 .   7   ±   2   5 .   8

   (   4   3   )  a   *   1   3

   1   2   1 .   6   ±   3   0 .   2

   (   1   2   )  a   *   1   3

   9   9 .   4   ±   2   6 .   3

   (   1   6   )  a

   9   8 .   1   ±   2   9

 .   7

   (   8   )  a

    f  e  m  a   l  e

   7   9 .   8   ±   1   0 .   7

   (   7   )

   8   3 .   4

   ±   1   3 .   9

   (   3   5   )

   9   4 .   9   ±   2   4 .   0

   (   2   7   )

   8

   5 .   9   ±   2   0 .   8

   (   3   7   )

   7   6 .   4   ±   1   9 .   7

   (   1   5   )

   7   3 .   7   ±   1   8 .   2

   (   1   5   )   *   1   4

   7   1 .   7   ±   2   6

 .   0

   (   7   )

   S   t  r  o   k  e  -  s

  p  e  c   i       fi  c

  p  o  w  e  r  :  s  w   i  m

   b  e  n  c   h   (   W

   )

   m  a   l  e  a

  —

   3   1   0   ±

   1   7   8 .   2

   (   2   )

   2   5   3 .   6   ±   1   0   9 .   7

   (   1   3   )

   2   7

   0 .   3   ±   1   1   3 .   9

   (   2   4   )  a

   3   1   9 .   2   ±   1   2   4 .   4

   (   6   )

  —

  —

    f  e  m  a   l  e

   1   4   2   ±   6   1 .   8

   (   3   )

   1   7   1 .   7

   ±   7   5 .   2

   (   1   9   )

   1   7   2 .   6   ±   6   3 .   9

   (   1   1   )

   1   9

   0 .   4   ±   1   1   5 .   2

   (   1   2   )

   2   5   3 .   5   ±   1   1   5 .   3

   (   2   )

  —

  —

   S   t  r  o   k  e  -  s

  p  e  c   i       fi  c

  e  n   d  u  r  a  n  c

  e  :  s  w   i  m

   b  e  n  c   h   (   J   )

   m  a   l  e  a

  —

   5   6   9

   ±   1   4   0

   (   2   )

   1   4   0   8 .   6   ±   8   3   9 .   4

   (   1   3   )

   1   3   4   0 .   3   ±   6   9   3 .   1

   (   2   4   )

   1   3   8   2 .   5   ±   7   8   1 .   3

   (   6   )

  —

  —

    f  e  m  a   l  e

   3   5   3 .   7   ±   1   4   1 .   6

   (   3   )

   7   9   1 .   9

   ±   5   5   7 .   6

   (   1   9   )

   6   5   6 .   9   ±   3   9   8 .   5

   (   1   1   )

   9   2

   4 .   3   ±   4   8   2 .   5

   (   1   2   )

   9   5   2 .   5   ±   2   8   5

   (   2   )

  —

  —

     N   o    t   e .   N  =

  n  e  w   t  o  n  s  ;   W  =  w  a   t   t  s  ;   J  =   j  o  u   l  e  s .

  a   S   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r  m  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h   f  e  m  a   l  e  s .

   b   S   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r   f  e  m

  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h  m  a   l  e  s .

   *   S   i  g  n   i       fi  c  a

  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  v  a   l  u  e  c  o  m  p  a  r  e   d

  w   i   t   h   t   h  e  s  u  p  e  r  s  c  r   i  p   t  e   d  a  g  e .

04Wells(30) 41 1/31/06, 9:37:02 AM

Page 13: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 13/23

42 Wells, Schneiderman-Walker, and Plyley

Body Composition

The effect of gender was significant for this set of variables (see Table 6), withthe males having a higher body density ( p = < .001) and a lower triceps skinfold( p = < .001), biceps skinfold ( p = < .001), subscapular skinfold ( p = < .001), andsuprailiac skinfold ( p = .046), as well as a lower body fat percentage ( p = < .001)than females. There were no differences between males and females in suprailiacskinfold ( p = .24) results. The results from several body composition tests variedsignificantly with age, including triceps skinfold ( p = .012), biceps skinfold ( p =.012), and subscapular skinfold ( p = < .001). Other variables did not change withage including body density ( p = .46), suprailiac skinfold ( p = .45), and body fatpercentage ( p = .30).

Anthropometry

Males had greater inspired and expired chest circumferences ( p < .001), upperarm circumferences ( p < .001), bi-acromial breadth ( p < .001), and epicondylarfemur and humerus breadth ( p < .001) than the females, but there was no differ-ence between genders in gluteal, calf, or thigh girth or bi-iliac breadth (see Table7). Age was a significant determinant of inspired and expired chest circumferences( p < .001), upper arm circumferences ( p < .001), and gluteal, thigh and calf girths( p < .001), as well as bi-iliac and bi-acromial breadths ( p < .001).

DiscussionThe present research establishes normative physiological data for a sample of 195national-team-level competitive male and female swimmers ranging in age from12 to 18 years. This data augments the literature on the characteristics of swimmersbecause it is derived from more comprehensive physiological variables from alarger pool of participants and over a wider range of ages than has been previouslyreported. The research design that was employed in this study has both cross-sectional and longitudinal elements. As such, the sample therefore contains data onparticipants who were chosen for the Canadian National and Youth National teamsonce or on more than one occasion, and in some cases as many as four times. It is

important to note that although the study design has limitations, the sample thatwe have obtained is reflective of the athletes who were chosen for the CanadianNational and National Youth Teams during the study period at each age level. Thus,if the athletes were included in the study on more than one occasion, it is becausethat athlete was able to achieve the performance level necessary for selection onrepeated occasions and thus was the highest ranked Canadian swimmer availablefor study at that time.

Descriptive Characteristics

Maximal aerobic power is a widely accepted measure of endurance fitness. Our

results for this variable were similar to those from previous studies of maximalexercise testing in swimmers (17). Of note is that aerobic power, once corrected

04Wells(30) 42 1/31/06, 9:37:03 AM

Page 14: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 14/23

Characteristics of Elite Swimmers 43

   T  a   b   l  e   6

   B  o   d  y  c  o  m  p  o  s   i   t   i  o  n   R  e  s

  u   l   t  s  :   M  e  a  n   ±     S     D

   (    n   )

   A   g   e   (   y   e   a   r   s   )

   a   n   d   g   e   n

   d   e   r

   B   o   d   y   d   e   n   s   i   t   y

   (   g  ·   c   m   2   )   a

   T   r   i   c   e   p   s

   s   k   i   n   f   o   l   d   (   m   m   )   b

   B   i   c   e   p   s

   s   k   i   n   f   o   l   d   (   m   m   )   b

   S   u   b   s   c   a   p   u   l   a   r

   s   k   i   n   f   o   l   d   (   m   m   )   b

   S   u   p   r   a   i   l   i   a   c

   s   k   i   n   f   o   l   d   (   m   m   )   b

   B   o   d   y

   c   o   m   p   o   s

   i   t   i   o   n

   (   b   o   d   y   f   a

   t   %   )   b

   1   2    f  e

  m  a   l  e

   1 .   0   5   5   ±   0 .   0   (   8   )   0

   1   0 .   6   ±   3 .   0   (   1   2   )

   5 .   7   ±   2 .   1

   (   1   2   )

   7 .   8   ±   1 .   6   (   1   2   )

    8 .   8   ±   2 .   3   (   1   2   )

    2   1 .   1   ±   3 .   8   (   5   )

   1   3   m  a   l  e

   1 .   0   7   2   ±   0 .   0   1   (   8   )

    7 .   6   ±   1 .   0   (   1   6   )

   4 .   3   ±   1 .   1

   (   1   6   )

   6 .   6   ±   1 .   3   (   1   6   )

    7 .   9   ±   3 .   3   (   1   6   )

    1   3 .   7   ±   3 .   1   (   1   1   )

   f  e  m  a   l  e

    1 .   0   5   8   ±   0 .   0   1   (   3   2   )

    9 .   8   ±   3 .   0   (   4   4   )

   5 .   8   ±   1 .   5

   (   4   4   )

   7 .   7   ±   1 .   8   (   4   4   )

    9 .   8   ±   3 .   3   (   4   4   )

    1   8 .   8   ±   3 .   9   (   2   4   )

   1   4   m  a   l  e

    1 .   0   7   1   ±   0 .   0   1   (   2   3   )

    7 .   5   ±   2 .   0   (   3   7   )

   4 .   2   ±   1 .   0

   (   3   7   )

   6 .   9   ±   1 .   5   (   3   7   )

    9 .   7   ±   4 .   1   (   3   7   )

    1   3 .   2   ±   1 .   9   (   1   5   )

   f  e  m  a   l  e

    1 .   0   5   4   ±   0 .   0   1   (   1   7   )

   1   1 .   2   ±   5 .   0   (   3   1   )

   5 .   8   ±   2 .   1

   (   4   8   )

   9 .   0   ±   3 .   5   (   3   1   )

   1   0 .   5   ±   4 .   4   (   3   1   )

    2   0 .   0   ±   4 .   6   (   1   8   )

   1   5   m  a   l  e

    1 .   0   7   2   ±   0 .   0   1   (   4   0   )

    6 .   6   ±   2 .   0   (   5   4   )

   4 .   0   ±   1 .   1

   (   5   4   )

   6 .   9   ±   1 .   4   (   5   4   )

    9 .   1   ±   3 .   3   (   5   4   )

    1   2 .   2   ±   2 .   1   (   2   7   )

   f  e  m  a   l  e

    1 .   0   5   4   ±   0 .   0   1   (   3   2   )

   1   0 .   6   ±   3 .   0   (   4   8   )

   5 .   7   ±   1 .   8

   (   1   7   )

   8 .   4   ±   2 .   1   (   4   8   )

   1   0 .   0   ±   3 .   5   (   4   8   )

    2   0 .   1   ±   5 .   0   (   3   2   )

   1   6   m  a   l  e

   1 .   0   6   9   ±   0 .   0   1   (   8   )

    6 .   5   ±   2 .   0   (   1   5   )

   3 .   6   ±   0 .   8

   (   1   5   )

   7 .   4   ±   1 .   7   (   1   5   )

    9 .   5   ±   3 .   8   (   1   5   )

   1   2 .   9   ±   2 .   9   (   7   )

   f  e  m  a   l  e

    1 .   0   5   2   ±   0 .   0   1   (   1   1   )

   1   0 .   9   ±   3 .   0   (   1   7   )

   7 .   8   ±   3 .   5

   (   2   1   )

   8 .   8   ±   1 .   7   (   1   7   )

    8 .   9   ±   2 .   4   (   1   7   )

    2   0 .   6   ±   3 .   2   (   1   1   )

   1   7   m  a   l  e

    1 .   0   7   1   ±   0 .   0   1   (   1   0   )

    6 .   7   ±   3 .   0   (   1   9   )

   3 .   9   ±   1 .   1

   (   1   9   )

   8 .   0   ±   1 .   4   (   1   9   )

    7 .   9   ±   2 .   3   (   1   9   )

    1   1 .   9   ±   2 .   8   (   1   0   )

   f  e  m  a   l  e

   1 .   0   5   5   ±   0 .   0   1   (   5   )

   1   3 .   0   ±   4 .   0   (   2   1   )

   6 .   8   ±   1 .   9

   (   1   1   )

   1   0 .   8   ±   2 .   8   (   2   1   )

    9 .   6   ±   3 .   2   (   2   1   )

   1   9 .   4   ±   2 .   5   (   5   )

   1   8   m  a   l  e

   1 .   0   6   2   ±   0 .   0   1   (   3   )

   7 .   9   ±   3 .   0   (   8   )

   4 .   3   ±   0 .   8

   (   8   )   0

   7 .   9   ±   1 .   5   (   8   )

   1   0 .   3   ±   4 .   5   (   8   )   0

   1   6 .   2   ±   2 .   4   (   4   )

   f  e  m  a   l  e

   1 .   0   4   7   ±   0 .   0   2   (   3   )

   1   3 .   0   ±   4 .   0   (   1   1   )

   5 .   3   ±   2 .   5

   (   3   )   0

    9 .   4   ±   2 .   2   (   1   1   )

    8 .   5   ±   2 .   9   (   1   1   )

   2   2 .   9   ±   7 .   1   (   3   )

  a   S   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r  m  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h   f  e  m  a   l  e  s  ;   b  s   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r   f  e  m

  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h  m  a   l  e  s .

04Wells(30) 43 1/31/06, 9:37:05 AM

Page 15: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 15/23

44 Wells, Schneiderman-Walker, and Plyley

   T  a   b   l  e   7

   A  n   t   h  r  o  p  o  m  e   t  r  y   R  e  s  u   l   t  s  :   M  e  a  n   ±     S     D

   (    n   )

   A   g   e   (   y   e   a   r   s   )

   V   a   r   i   a   b   l   e

   1   2

   1   3

   1   4

   1   5

   1   6

   1   7

   1   8

   I  n  s  p   i  r  e   d  c   h  e  s   t

  g   i  r   t   h   (  c  m

   )

  m  a   l  e

  —

   8   9 .   5   ±

   6 .   9

   (   1   6

   )  a

   9   4 .   0   ±   4 .   4

   (   3   7   )  a   *   1   3

   9   5 .   6   ±   5 .   2

   (   5   2   )  a   *   1   3

   9   6 .   8   ±   3 .   1

   (   1   3   )  a   *   1   3

   1   0   0 .   8   ±   3 .   1

   (   1   1   )  a   *   1   3 ,   1   4 ,   1   5

   1   0   3 .   8   ±   3 .   8

   (   7   )  a   *   1   3 ,   1   4 ,   1   5 ,   1   6

   f  e  m  a   l  e

   8   2 .   7   ±   4 .   3

   (   1   2   )

   8   2 .   9   ±

   3 .   7

   (   4   4   )

   8   5 .   5   ±   4 .   1

   (   2   9   )

   8   6 .   2   ±   4 .   1

   (   4   5   )   *   1   2 ,   1   3

   8   7 .   7   ±   1 .   3

   (   1   1   )   *   1   2 ,   1   3

   8   7 .   1   ±   3 .   3

   (   6   )

   8   8 .   2   ±   4

 .   5

   (   3   )

   E  x  p   i  r  e   d  c   h  e  s   t

  g   i  r   t   h   (  c  m

   )

  m  a   l  e  a

  —

   8   1 .   1   ±

   7 .   5   (

   1   3   )  a

   8   7 .   2   ±   5 .   2

   (   2   6   )  a   *   1   3

   8   9 .   7   ±   5 .   2

   (   4   1   )  a   *   1   3

   9   0 .   1   ±   3 .   5

   (   1   1   )  a   *   1   3

   9   4 .   7   ±   3 .   1

   (   1   1   )  a   *   1   3 ,   1   4 ,   1   5

   9   7 .   4   ±   3

 .   5

   (   7   )  a   *   1   3 ,   1   4   1   5 ,   1   6

   f  e  m  a   l  e

   7   6 .   1   ±   4 .   4

   (   8   )

   7   6 .   6   ±   3

 .   1   (   3   5   )

   7   7 .   6   ±   4 .   5   (   2   5   )

   7   7 .   8

   ±   2 .   9   (   3   5   )

   7   9 .   4   ±   1 .   9   (   1   1   )

   7   9 .   4   ±   3 .   6   (   6   )

   8   0 .   7   ±   3

 .   6

   (   3   )

   U  p  p  e  r  a  r  m

  g   i  r   t   h   (  c  m

   )

  m  a   l  e  a

  —

   2   6 .   1   ±

   2 .   5   2

   (   1   3   )

   2   7 .   8   ±   2 .   2

   (   2   6   )

   2   8 .   1   ±   2 .   2

   (   4   3   )   *   1   3

   2   9 .   0   ±   2 .   1

   (   1   2   )   *   1   3

   3   0 .   2   ±   1 .   7

   (   1   9   )  a   *   1   3 ,   1   4 ,   1   5

   3   0 .   8   ±   1

 .   4

   (   8   )  a   *   1   3 ,   1   4 ,   1   5

   f  e  m  a   l  e

   2   5 .   6   ±   1 .   0

   (   8   )

   2   6 .   1   ±

   1 .   7   7

   (   3   5   )

   2   7 .   3   ±   2 .   5   1

   (   2   7   )

   2

   7 .   1   ±   2

   (   3   8   )

   2   7 .   7   ±   1 .   7

   (   1   7   )

   2   8 .   1   ±   1 .   9

   (   2   1   )

   2   8 .   5   ±   1

 .   7

   (   1   1   )   *   1   2 ,   1   3

   F   l  e  x  e   d  u  p  p  e  r  a  r  m

  g   i  r   t   h   (  c  m

   )

  m  a   l  e  a

  —

   2   8 .   6   ±

   2 .   7

   (   1   3   )

   3   0 .   1   ±   2 .   2

   (   2   6   )  a

   3   0 .   6   ±   2 .   0

   (   4   1   )  a   *   1   3

   3   1 .   5   ±   2 .   3

   (   1   1   )  a   *   1   3

   3   2 .   7   ±   1 .   3

   (   1   1   )  a   *   1   3 ,   1   4

   3   3 .   5   ±   1

 .   4

   (   7   )  a   *   1   3 ,   1   4

   f  e  m  a   l  e

   2   7 .   3   ±   1 .   3

   (   8   )

   2   7 .   6   ±

   1 .   8

   (   3   5   )

   2   8 .   9   ±   2 .   4

   (   2   5   )

   2   8 .   7   ±   1 .   9

   (   3   5   )

   2   9 .   6   ±   1 .   8

   (   1   1   )   *   1   2 ,   1   3

   3   0 .   3   ±   0 .   5   3

   (   6   )   *   1   2 ,   1   3

   2   9 .   9   ±   1 .   4

   (   3   )

04Wells(30) 44 1/31/06, 9:37:06 AM

Page 16: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 16/23

Characteristics of Elite Swimmers 45

   G   l  u   t  e  a   l  g

   i  r   t   h

   (  c  m   )   m

  a   l  e

  —

   8   4 .   9   ±   6 .   7

   (   1   3   )

   8   8 .   6   ±   6 .   4

   (   2   6   )

   9   0 .   6   ±   3 .   6

   (   4   2   )   *   1   3

   9   1 .   5   ±   3 .   4

   (   1   1   )   *   1   3

   9   3 .   7   ±   3 .   6

   (   1   6   )   *   1   3 ,   1   4

   9   6 .   5   ±   5

 .   1

   (   7   )   *   1   3 ,   1   4 ,   1   5

   f  e  m  a   l  e

   8   6 .   9   ±   4 .   1

   (   8   )

   8   7 .   9   ±   4 .   1

   (   3   5

   )   b

   9   0 .   3   ±   5 .   5

   (   2   5   )

   9   0 .   1   ±   4 .   2

   (   3   7   )

   9   1 .   5   ±   3 .   8

   (   1   4   )

   9   1 .   3   ±   3 .   9

   (   1   6   )

   9   2 .   1   ±   7

 .   2

   (   8   )

   T   h   i  g   h  g   i  r   t   h

   (  c  m   )   m

  a   l  e

  —

   4   9 .   3   ±   4 .   1

   (   1   3   )

   5   1 .   8   ±   3 .   7

   (   2   6   )

   5   1 .   9   ±   3 .   0

   (   4   3   )

   5   2 .   9   ±   2 .   8

   (   1   2   )

   5   4 .   7   ±   2 .   9

   (   1   9   )   *   1   3

   5   6 .   3   ±   2

 .   7

   (   8   )   *   1   3 ,   1   4 ,   1   5

   f  e  m  a   l  e

   5   1 .   3   ±   2 .   9

   (   8   )

   5   2 .   1   ±   4 .   6

   (   3   5

   )   b

   5   3 .   7   ±   4 .   3

   (   2   7   )

   5   3 .   4   ±   2 .   9

   (   3   8   )

   5   4 .   5   ±   2 .   5

   (   1   7   )

   5   3 .   2   ±   6 .   9

   (   2   1   )

   5   5 .   3   ±   4

 .   1

   (   1   1   )

   C  a   l   f  g   i  r   t   h

   (  c  m   )   m

  a   l  e  a

  —

   3   3 .   7   ±   2 .   1

   (   1   3   )

   3   5 .   0   ±   2 .   2

   (   2   6   )

   3   5 .   4   ±   1 .   7

   (   4   1   )  a

   3   5 .   4   ±   2 .   0

   (   1   1   )

   3   7 .   3   ±   1 .   5

   (   1   1   )  a   *   1   3

   3   8 .   0   4   ±   1 .   9

   (   7   )   *   1   3 ,   1   4

   f  e  m  a   l  e

   3   3 .   0   ±   1 .   9

   (   8   )

   3   3 .   8   ±   3 .   9

   (   3   5   )

   3   4 .   1   ±   2 .   2

   (   2   5   )

   3   4 .   1   ±   1 .   8

   (   3   5   )

   3   5 .   4   ±   1 .   9

   (   1   1   )

   3   5 .   0   ±   1 .   8

   (   6   )

   3   5 .   8   ±   1

 .   1

   (   3   )

   B   i  -  a  c  r  o  m

   i  a   l

   b  r  e  a   d   t   h   (

  c  m   )

  m  a   l  e  a

  —

   3   6 .   7   ±   2 .   8

    (   1   3   )

   3   9 .   0   ±   1 .   9

   (   2   6   )  a   *   1   3

   4   0 .   2   ±   1 .   8

   (   4   1   )  a   *   1   3

   3   9 .   9   ±   1 .   4

   (   1   1   )  a   *   1   3

   4   1 .   2   ±   1 .   5

   (   1   1   )  a   *   1   3 ,   1   4

   4   2 .   1   ±   1

 .   5

   (   7   )   *   1   3 ,   1   4

   f  e  m  a   l  e

   3   6 .   4   ±   1 .   5

   (   8   )

   3   7 .   8   ±   4 .   7

   (   3   5   )

   3   7 .   9   ±   1 .   3

   (   2   5   )

   3   7 .   6   ±   2 .   6

   (   3   5   )

   3   8 .   1   ±   1 .   6

   (   1   1   )

   3   7 .   9   ±   1 .   5

   (   6   )

  —    (   c   o   n    t     i   n   u   e     d   )

04Wells(30) 45 1/31/06, 9:37:08 AM

Page 17: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 17/23

46 Wells, Schneiderman-Walker, and Plyley

   B   i  -   i   l   i  a  c

   b  r  e  a   d   t   h   (  c  m   )

  m  a   l  e

  —

   2   5 .   9   ±

   1 .   1

   (   1   3

   )

   2   7 .   3   ±   1 .   5

   (   2   6   )

   2   7 .   6   ±   1 .   2

   (   4   1   )   *   1   3

   2   7 .   6   ±   1 .   3

   (   1   1   )   *   1   3

   2   7 .   4   ±   1 .   4

   (   1   1   )

   2   8 .   4   ±   2

 .   2

   (   7   )   *   1   3

   f  e  m  a   l  e

   2   5 .   3   ±   1 .   4

   (   8   )

   2   8 .   2   ±

   9 .   5

   (   3   5

   )

   2   6 .   6   ±   1 .   4

   (   2   5   )

   2   7 .   4   ±   1 .   6

   (   3   5   )

   2   8 .   1   ±   1 .   5

   (   1   1   )

   2   7 .   4   ±   2 .   1

   (   6   )

  —

   E  p   i  c  o  n   d  y

   l  a  r

   h  u  m  e  r  u  s

   b  r  e  a   d   t   h   (  c  m   )

  m  a   l  e  a

  —

   6 .   9   ±

   0 .   5

   (   1   3

   )

   7 .   1   ±   0 .   4

   (   2   6   )  a

   7 .   2   ±   0 .   4

   (   4   1   )  a

   7 .   1   ±   0 .   3

   (   1   1   )

   7 .   1   ±   0 .   2

   (   1   1   )

   7 .   3   1   ±   0

 .   3

   (   7   )

   f  e  m  a   l  e

   6 .   3   ±   0 .   3

   (   8   )

   6 .   7   ±

   2 .   4

   (   3   5

   )

   6 .   4   ±   0 .   3

   (   2   5   )

   6 .   3   ±   0 .   3

   (   3   5   )

   6 .   4   ±   0 .   3

   (   1   1   )

   6 .   4   ±   0 .   2

   (   6   )

  —

   E  p   i  c  o  n   d  y

   l  a  r   f  e  m  u  r

   b  r  e  a   d   t   h   (  c  m   )

  m  a   l  e  a

  —

   9 .   6   ±

   0 .   4

   (   1   6

   )  a

   9 .   7   ±   0 .   4

   (   3   7   )  a

   9 .   7   ±   0 .   4

   (   5   2   )  a

   9 .   6   ±   0 .   4

   (   1   3   )  a

   9 .   6   ±   0 .   5

   (   1   1   )  a

   9 .   5   ±   0 .   7

   (   7   )

   f  e  m  a   l  e

   8 .   7   ±   0 .   3

   (   1   2   )

   8 .   4   ±   1 .   2   (   4   4   )

   8 .   8   ±   0 .   4   (   2   8   )

   8 .   7

   ±   0 .   3   (   4   5   )

   8 .   8   ±   0 .   4   (   1   1   )

   8 .   7   ±   0 .   5   (   6   )

  —

  a   S   i  g  n   i       fi  c  a  n

   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r  m  a   l  e  s  w

   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h   f  e  m  a   l  e  s  ;   b   S   i  g  n   i       fi

  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  r  e  s  u   l   t   f  o  r   f  e  m  a   l  e  s  w   h  e  n  c  o  m  p  a  r  e   d  w   i   t   h  m  a   l  e  s .

   *   S   i  g  n   i       fi  c  a  n   t   l  y   (   p   < .   0   5   )   h   i  g   h  e  r  v  a   l  u  e  c  o  m  p  a  r  e   d  w   i   t   h   t   h  e  s  u  p  e  r  s  c  r   i  p   t  e   d  a  g  e .

   A   g   e   (   y   e   a   r   s   )

   V   a   r   i   a   b   l   e

   1   2

   1   3

   1   4

   1   5

   1   6

   1   7

   1   8

   T  a   b   l  e   7

   (    c    o    n     t     i    n    u    e     d   )

04Wells(30) 46 1/31/06, 9:37:09 AM

Page 18: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 18/23

Characteristics of Elite Swimmers 47

for body mass, did not vary with age. This result confirmed previous suggestionsthat improving athletic performance might be more closely related to developing

the ability to work at a high percentage of maximal aerobic power than to increas-ing maximal aerobic power per se (39). Our study also confirmed that males havehigher absolute and relative aerobic power values than females (15,26). More spe-cifically, Drinkwater et al. (15) found that absolute maximal aerobic power (VO

2max,

L/min) was 52% higher in males. In the current study, the maximal aerobic powervalues for the males were approximately 36% higher than the values for females.This result might be the result of the combination of larger cardiac volume, bloodvolume, and hemoglobin concentration in the male participants. Further, Drink-water et al. (15) reported that when maximal aerobic power was expressed per kgof body weight, the gender difference declined to 18%; the current study s̓ resultsare in agreement, with the difference in relative VO

2max

declining to 17%. Theseresults were expected because the athletes were standardized for the amount of metabolically active tissue.

Cardiovascular Function

The values obtained for hemoglobin and hematocrit were in agreement with find-ings from other reports on elite swimmers (22,31). Blood pressure values obtainedfor swimmers in the current research were similar to those Mujika et al. (33) andKirwan et al. (25) reported for competitive swimmers during intense training. Ourstudy also confirmed that males have lower maximal heart rates during exercisethan females (54). Maximal heart rates decreased with age for both male and femaleswimmers in the current research. These findings agreed with age-related decreasesin aerobic parameters found in studies of older women (18) and men (55), althoughthis trend has not been previously reported in children.

Respiratory Function

The pulmonary function data that we reported for female swimmers were similarto Wilson and Tanaka s̓ (55) findings about pulmonary function in university-levelfemale swimmers. The higher maximal ventilation values that the males in our studyachieved during exercise compared with the females likely could be attributed tohigher tidal volumes because we found that female participants maintained a breath-ing frequency during the exercise tests. An increase was observed in both residualvolume and forced vital capacity with age. This result supported Clanton et al. s̓(12) hypothesis that intensive swimming training enhances static and dynamic lungvolumes and improves the conductive properties of both the large and the smallairways. Courteix et al. (13) suggested that the larger values for vital capacity seenin swimmers versus nonswimmers (49) might result from both training during thegrowth period and genetic endowment, which, in turn, supported Andrew et al. s̓(1) finding that female swimmers had higher lung volumes than their nonathleticcounterparts. In addition, Astrand et al. (3) reported that changes in physical activitypositively correlated to changes in forced vital capacity. In our study respiratory

exchange ratio was higher (1.5%) in the males than in the females, but the resultsdid not reach significance. These results are similar to previous research that foundthat females have a 3–4% lower RER during submaximal exercise, which reflects

04Wells(30) 47 1/31/06, 9:37:10 AM

Page 19: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 19/23

48 Wells, Schneiderman-Walker, and Plyley

the use of a greater proportion of fat as fuel (46), although the current results arebased on a younger population.

Strength and Power

The swim-bench measurements were used to assess overall muscular power andendurance during the task-specific movements of swimming. Although swim-benchresults for competitive swimmers have been reported previously (45), the currentresearch was the first to report values for single-stroke maximal power and for 4-min stroke-specific muscular endurance. The Cybex measurements were importantfor assessing individual muscle(s) involved in swimming movement patterns. Iso-kinetic strength results for specific muscle groups involved in swimming strokeshave not been previously measured. Sharp et al. (40) reported a strong correlation

between arm muscular power output and sprint swimming speed (r = 0.90); thus,the currently reported measurement might offer an objective assessment of a com-ponent essential for success in swimming. It has also been reported that vertical

 jump and force–velocity relationships are related to muscle-fiber-type compositionand event specialization in swimmers (19). Therefore, the characterization of legpower, arm strength, and swimming-movement-specific force measurements inelite-level swimmers in the current research provides an important set of data fortalent identification and event selection.

The observed gender differences in strength and power in our study confirmedBencke et al. s̓ (5) results regarding younger swimmers. It is interesting that,although strength increased across the age ranges sampled in the current research,there were no significant increases in either vertical jump (a measure of leg power)or in stroke-specific arm power. Because increases in power output have been cor-related with increases in swimming speed, the current results suggest that greateremphasis should be placed on power training as part of the overall training programfor competitive swimming. The observed gender differences in strength and powermight be a result of the greater muscle mass in males than in females.

Body Composition

The gender differences observed in the current research were in agreement withthose in previous research (42) that indicated that body composition measurementsmay be predictors of swimming performance in women but not in men. Our resultswere consistent with previously reported values for elite adolescent competitiveswimmers (47). Measures of body size (height, weight, and girths) were found toincrease with age, as expected, but body fat percentage did not, which suggestedthat it might be important to establish good nutritional habits and fitness at ayoung age. The larger proportion of fat mass in the female swimmers might allowfor more buoyancy, which could be an advantage that allows females to kick ata higher rate and with a better buoyancy profile than male swimmers (30). It isimportant to note that internal and external pressures on girls to achieve or maintainunrealistically low body weight underlies the development of the female athlete

triad of disorders (disordered eating, amenorrhoea, and osteoporosis), leading toserious health consequences and thus poor athletic performances (36). Therefore,the body composition results of this research should be interpreted as descriptive

04Wells(30) 48 1/31/06, 9:37:12 AM

Page 20: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 20/23

Characteristics of Elite Swimmers 49

of this research population only and not used for other purposes. Further, we havenot analyzed the results to correlate with performance results, so inferences about

the body composition characteristics of these athletes related to performance shouldnot be made based on these results.

Anthropometry

Our results were consistent with previously reported values for elite adolescentcompetitive swimmers (47). Previous research on anthropometry in athletes hassuggested that certain physical characteristics such as height and limb length areassociated with higher levels of performance in a given population of athletes (28).Although previous research has been published on the anthropometric characteristicsof elite swimmers (47) and on anthropometric and other physical characteristics

related to performance (42), the current research has examined a larger participantpool, has included both male and female athletes, and has included results from abroader range of ages.

Conclusions

In summary, we have established normative data for healthy, highly trained maleand female swimmers by using standard protocols across ages 12 to 18 years.The current research represents a significant addition to the literature because of its comprehensive physiological analysis, the inclusion of both male and female

participants, and the wide age range studied. This normative data will (a) allowresearchers to fine tune future assessment packages by eliminating those variablesthat had no predictive power for performance, thereby decreasing both time andexpense; (b) provide researchers with an established database upon which to updatenorms with results from future research projects; and (c) provide a reference uponwhich talent-identification programs could be based and monitoring programs couldbe established. Further, the physiological characteristics of the general popula-tion and of individuals with medical conditions in similar age categories could beevaluated in the context of the upper extremes of human physiological functionthat have been included in this normative data.

Acknowledgments

We would like to thank the athletes and coaches of the Canadian National andYouth National teams for their participation. Dr. Wells is supported by the IrwinFoundation at the Hospital for Sick Children. We thank Barbara Bauer for hervaluable editorial assistance.

References

1. Andrew, G.M., M.R. Becklake, J.S. Guleria, and D.V. Bates. Heart and lung functions

in swimmers and non-athletes during growth. J. Appl. Physiol. 32:245-51, 1972.2. Arntsen, K.W., A.C. Deacon, and H.G. Worth. The Hycel-M multichannel analyzer—a

model for evaluation. Clin. Chem. 28:1338-43, 1982.

04Wells(30) 49 1/31/06, 9:37:13 AM

Page 21: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 21/23

50 Wells, Schneiderman-Walker, and Plyley

3. Astrand, P.O., B.O. Eriksson, I. Nylander, L. Engstroem, P. Karlberg, B. Saltin, and C.ThorʼEn. Girl swimmers. With special reference to respiratory and circulatory adapta-

tion and gynaecological and psychiatric aspects. Acta Paediatr. 43:147:1-75, 1963.4. Bagnall, K.M., and D.W. Kellett. A study of potential Olympic swimmers: I, the starting

point. Br. J. Sports Med . 11:127-32, 1977.5. Bencke, J., R. Damsgaard, A. Saekmose, P. Jorgensen, K. Jorgensen, and K. Klausen.

Anaerobic power and muscle strength characteristics of 11 years old elite and non-eliteboys and girls from gymnastics, team handball, tennis and swimming. Scand. J. Med.Sci. Sports. 12:171-8, 2002.

6. Berger, M.A., A.P. Hollander, and G. De Groot. Technique and energy losses in frontcrawl swimming. Med. Sci. Sports.29:1491-8, 1997.

7. Capelli, C., P. Zamparo, A. Cigalotto, M.P. Francescato, R.G. Soule, B. Termin, D.R.Pendergast, and P.E. Di Prampero. Bioenergetics and biomechanics of front crawlswimming. J. Appl. Physiol. 78:674-9, 1995.

8. Capelli, C., D.R. Pendergast, and B. Termin. Energetics of swimming at maximal speedsin humans. Eur. J. Appl. Physiol. 78:385-93, 1998.

9. Chatard, J.C., C. Collomp, E. Maglischo, and C. Maglischo. Swimming skill andstroking characteristics of front crawl swimmers.  Int. J. Sports Med . 11:156-61,1990.

10. Chatard, J.C., J.M. Lavoie, B. Bourgoin, and J.R. Lacour. The contribution of pas-sive drag as a determinant of swimming performance. Int. J. Sports Med . 11:367-72,1990.

11. Chollet, D., P. Pelayo, C. Delaplace, C. Tourny, and M. Sidney. Stroking characteristicvariations in the 100-M freestyle for male swimmers of differing skill. Percept. Mot.Skills 85:167-77, 1997.

12. Clanton, T.L., G. F. Dixon, J. Drake, and J.E. Gadek. Effects of swim training on lung

volumes and inspiratory muscle conditioning. J. Appl. Physiol. 62:39-46, 1987.13. Courteix, D., P. Obert, A.M. Lecoq, P. Guenon, and Koch, G. Effect of intensive swim-

ming training on lung volumes, airway resistance and on the maximal expiratory flow-volume relationship in pre-pubertal girls.  Eur. J. Appl. Physiol. Occup. Physiol. 76:264-9, 1997.

14. Damsgaard, R., J. Bencke, G. Matthiesen, J.H. Petersen, and J. Muller. Body propor-tions, body composition and pubertal development of children in competitive sports.Scand. J. Med. Sci. Sports.11:54-60, 2001.

15. Drinkwater, B.L. Women and exercise: physiological aspects. Exerc. Sport Sci. Rev.12:21-51, 1984.

16. Durnin, J.V., and J. Womersley. Body fat assessed from total body density and itsestimation from skinfold thickness: measurements on 481 men and women aged from16 to 72 years. Br. J. Nutr. 32:77-97, 1974.

17. Dwyer, J. Marathon swimmers: physiologic characteristics. J. Sports Med. Phys. Fit-ness. 3:263-72, 1983.

18. Eskurza, I., A.J. Donato, K.L. Moreau, D.R. Seals, and H. Tanaka. Changes in maximalaerobic capacity with age in endurance-trained women: 7-yr follow-up. J. Appl. Physiol.92:2303-8, 2002.

19. Gerard, E.S., V.J. Caiozzo, B.D. Rubin, C.A. Prietto, and D.M. Davidson. Skeletalmuscle profiles among elite long, middle, and short distance swimmers. Am. J. Sports

 Med. 14:77-82, 1986.20. Hawley, J.A., M.M. Williams, M.M. Vickovic, and P.J. Handcock. Muscle power

predicts freestyle swimming performance. Br. J. Sports Med . 26:151-5, 1992.21. Haywood, K.M., B.A. Clark, and J.L. Mayhew. Differential effects of age-group gym-

nastics and swimming on body composition, strength, and flexibility. J. Sports Med.Phys. Fitness. 26:416-20, 1986.

04Wells(30) 50 1/31/06, 9:37:15 AM

Page 22: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 22/23

Characteristics of Elite Swimmers 51

22. Heinicke, K., B. Wolfarth, P. Winchenbach, B. Biermann, A. Schmid, G. Huber, B.Friedmann, and W. Schmidt. Blood volume and hemoglobin mass in elite athletes of 

different disciplines. Int. J. Sports Med. 22:504-12, 2001.23. Hooper, S.L., L. T. Mackinnon, A. Howard, R.D. Gordon, A. W. Bachmann. Markers

for monitoring overtraining and recovery. Med. Sci. Sports. 27:106-12, 1995.24. Kellett, D.W., P.L. Willan, and K.M. Bagnall. A study of potential Olympic swimmers.

Part 2. Changes due to three months intensive training. Br. J. Sports Med . 12:87-92,1978.

25. Kirwan, J.P., D. L. Costill, M. G. Flynn, J. B. Mitchell, W. J. Fink, P. D. Neufer, and J.A. Houmard. Physiological responses to successive days of intense training in competi-tive swimmers. Med. Sci. Sports. 20:255-9, 1988.

26. Kubukeli, Z.N., T.D. Noakes, and S.C. Dennis. Training techniques to improve endur-ance exercise performances. Sports Med . 32:489-509, 2002.

27. Lavoie, J.M., and R.R. Montpetit. Applied physiology of swimming. Sports Med . 3:

165-89, 1986.28. Leone, M., G. Lariviere, and A.S. Comtois. Discriminant analysis of anthropometric

and biomotor variables among elite adolescent female athletes in four sports. J. SportsSci. 20:443-9, 2002.

29. Magel, J.R., and J.A. Faulkner. Maximum oxygen uptakes of college swimmers.  J. Appl. Physiol. 22:929-33, 1967.

30. McLean, S.P., and R.N. Hinrichs. Sex differences in the centre of buoyancy locationof competitive swimmers. J. Sports Sci. 16:373-83, 1998.

31. McMurray, R.G., J.S. Harrell, C. B. Bradley, S. Deng, and S. I. Bangdiwala. Predictedmaximal aerobic power in youth is related to age, gender, and ethnicity.  Med. Sci.Sports. 34:145-51, 2002.

32. Millet, G.P., P. Dreano, and D.J. Bentley. Physiological characteristics of elite short-

and long-distance triathletes. Eur. J. Appl. Physiol. 88:427-30, 2003.33. Mujika, I., S. Padilla, A. Geyssant, and J.C. Chatard. Hematological responses to train-

ing and taper in competitive swimmers: relationships with performance. Arch. Physiol. Biochem. 105:379-85, 1998.

34. National Heart and Lung Institute. Recommended standardization procedures for NHLI lung program epidemiology studies. Author: Bethesda, MD: 221-225, 1971.

35. Obert, P., G. Falgairette, M. Bedu, and J. Coudert. Bioenergetic characteristics of swim-mers determined during an arm-ergometer test and during swimming.  Int. J. Sports

 Med . 13:298-303, 1992.36. Otis, C.L., B. Drinkwater, M. Johnson, A. Loucks, and J. Wilmore. American College

of Sports Medicine position stand. The female athlete triad. Med Sci Sports. 29:i-ix,1997.

37. Pyne, D.B., H. Lee, and K.M. Swanwick. Monitoring the lactate threshold in world-ranked swimmers. Med. Sci. Sports. 33:291-297, 2001.

38. Ready, A.E., R.B. Eynon, and D.A. Cunningham. Effect of interval training and detrain-ing on anaerobic fitness in women. Can. J. Appl. Sport Sci. 6:114-8, 1981.

39. Rodriguez, F.A. Maximal oxygen uptake and cardiorespiratory response to maximal400-m free swimming, running and cycling tests in competitive swimmers. J. Sports

 Med. Phys. Fitness. 40:87-95, 2000.40. Sharp, R.L., J.P. Troup, and D.L. Costill, Relationship between power and sprint free-

style swimming. Med. Sci. Sports. 14:53-6, 1982.41. Shephard, R.J., G. Godin, and R. Campbell. Characteristics of sprint, medium and

long-distance swimmers. Eur. J. Appl. Physiol. 32:99-116, 1974.42. Siders, W.A., H.C. Lukaski, and W.W. Bolonchuk. Relationships among swimming

performance, body composition and somatotype in competitive collegiate swimmers. J. Sports Med. Phys. Fitness. 3:166-71, 1993.

04Wells(30) 51 1/31/06, 9:37:17 AM

Page 23: 2006_PES_Normal Physiological Characteristics of Elite Swimmers

7/27/2019 2006_PES_Normal Physiological Characteristics of Elite Swimmers

http://slidepdf.com/reader/full/2006pesnormal-physiological-characteristics-of-elite-swimmers 23/23

52 Wells, Schneiderman-Walker, and Plyley

43. Smith, D.J., S.R. Norris, and J.M. Hogg. Performance evaluation of swimmers: scientifictools. Sports Med . 32:539-54, 2002.

44. Sprague, H.A. Relationship of certain physical measurements to swimming speed. Res.Q. 47:810-4, 1976.

45. Swaine, I.L. Cardiopulmonary responses to exercise in swimmer using a swim benchand a leg-kicking ergometer. Int. J. Sports Med. 18:359-62, 1997.

46. Tarnopolsky, M.A. Gender differences in metabolism; nutrition and supplements.  J.Sci. Med. Sport. 3:287-98, 2000.

47. Thorland, W.G., G.O. Johnson, T.J. Housh, and M.J. Refsell. Anthropometric charac-teristics of elite adolescent competitive swimmers. Hum. Biol. 55:735-48, 1983.

48. Toussaint, H.M., and A.P. Hollander. Energetics of competitive swimming. Implicationsfor training programmes. Sports Med. 18:384-405, 1994.

49. Twisk, J.W., B.J. Staal, M.N. Brinkman, H.C. Kemper, and W. van Mechelen. Trackingof lung function parameters and the longitudinal relationship with lifestyle. Eur. Respir.

 J. 12:627-34, 1998.50. Vaccaro, P., and D.H. Clarke. Cardiorespiratory alterations in 9- to 11-year-old children

following a season of competitive swimming. Med. Sci. Sports. 10:204-7, 1978.51. Vaccaro, P., D.H. Clarke, and A.F. Morris. Physiological characteristics of young well-

trained swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 44:61-6, 1980.52. Wakayoshi, K., T. Yoshida, Y. Ikuta, Y. Mutoh, and M. Miyashita. Adaptations to six

months of aerobic swim training. Changes in velocity, stroke rate, stroke length andblood lactate. Int. J. Sports Med. 14:368-72, 1993.

53. Wakayoshi, K., L.J. DʼAcquisto, J.M. Cappaert, and J.P. Troup. Relationship betweenoxygen uptake, stroke rate and swimming velocity in competitive swimming.  Int. J.Sports Med . 16:19-23, 1995.

54. Washington, R.L., J.C. van Gundy, C. Cohen, H.M. Sondheimer, and R.R. Wolfe.

Normal aerobic and anaerobic exercise data for North American school-age children. J. Pediatr. 112:223-33, 1988.

55. Wilson, T.M., and H. Tanaka. Meta-analysis of the age-associated decline in maximalaerobic capacity in men: relation to training status. Am. J. Physiol. Heart Circ. Physiol.278:H829-34, 2000.

56. Wutscherk, H. Value and possibilities of somatotype determination in young athletes. Arztl. Jugendkd . 74:330-44, 1983.

57. Zauner, C.W., and N.Y. Benson. Physiological alterations in young swimmers during3 years of intensive training. J. Sports Med. Phys. Fitness. 21:179-85, 1981