2007c 2 multi-hydrationmodel

16
Yonsei University Civil. CMME Lab. Multi-component Hydration Model Civil and Env. Eng. Yonsei Univ. Ha-Won Song Behavior of Concrete

Upload: hyunkyoun-jin

Post on 02-May-2017

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 2007c 2 Multi-HydrationModel

Yonsei University Civil. CMME Lab.

Multi-component Hydration Model

Civil and Env. Eng.Yonsei Univ.

Ha-Won Song

Behavior of Concrete

Page 2: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Hydration Heat Process of CementHydration Heat Process of Cement

Exothermic Hydration Process of Cement

STEP 1

STEP 2STEP 3 STEP 4 STEP 5

Initial stage Intermediate stage Latter stage

Elapsed time

Hyd

ration h

eat ra

te

General stages in the hydration process in OPC(Nagashima, M. 1992)

Step 1 (the first peak)Ettringite formation reaction

Step 2 Dormant periodThe rate of heat generation is too small and the hydration seems to be stagnant.

Step 3 Rate of heat generation increasesBeginning of the crystallization of the CSH.

Step 4Rate of heat generation becomes gradually slower.Surface area of the unhydrated parts are reduced according to the progress of hydration.

Step 5Rate of hydration is remarkably reduced by the thicker layer of hydrates around particlesSpace filled by liquid water is almost occupied by cement hydrates.

Page 3: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Conventional Thermal Analysis using Adiabatic Temperature Rise

C : kg/m3

The weight replacement of ggbs and fly ash in the binding power are 40% and

20%, respectively.

0.0590.003011.00.1130-0.1430.00288.00.12200.1410.0007-3.00.1510

Fly ash

0.3320.003515.00.10300.2070.002515.00.10200.7230.001414.00.1110

ggbs

0.2990.00219.00.11300.2790.00159.00.10200.3030.00036.00.1110

MC

0.3370.004012.00.1130-0.0360.003813.00.11200.1350.001511.00.1210

OPC

hgba

casting temperature

cement

Hydration Heat Process of CementHydration Heat Process of Cement

Page 4: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

0

1

2

3

4

5

6

0 50 100 150 200

Accumulated Heat (kcal/kg) Qi

Heat ra

te (

kcal/kg/h

r) H

i

SLAG

FLY ASH

SILICA FUME

-10000

-7500

-5000

-2500

0

0 50 100 150 200

Accumulated Heat (kcal/kg) Qi

Therm

al Activity

-E/R

(K)

SLAG

FLY ASH

SILICA FUME

Cement mineral composition

Amount of gypsum Type of admixture

Unit cement content Unit water content

Replacement ratio Dosage of SPInitial temp. tint

Materials to use Mix proportion Initial condition

Input data

Basic equation of mineral’s heat rateMulti component heat of hydration model

Exothermic characteristics of mineralsFormation of ettringite Secondary cementitious powders

Retarding effect of SP and fly ash γi Effect of difference of mineral composition μi

Effect of shortage of Ca(OH)2 λi Effect of free water reduction βi

Effect of powder fineness

Heat of hydration rate of cement

Input data

Thermal conductivity Specific heatEnvironmental temp. Heat trans. coeff.

Temperature history Hydration degreeTemperature distribution Accumulated heat

Output dataTemperature

analysis

Temperature T

0/i i is S S=

3 3 3 4 4 4( ) ( )C C A C AET C A C AET C AFET C AFH p H H p H H= + + +

3 3 2 2 4C S C S C S C S SG C AF FA FA SF SFp H p H p H p H p H+ + + + + CH CH=

Multi-component Model Computation

0

1

2

3

4

5

6

0 50 100 150 200

Accumulated Heat (kcal) Q i

Hea

t ra

te (

kca

l/kg

/hr)

Hi

C3A

C4AF

C3S

C2S

0

20

40

60

80

0 100 200 300 400

Accumulated Heat (kcal) Qi

Heat

rate

(kca

l/kg/h

r) H

i

C3AET

C4AFET

-10000

-7500

-5000

-2500

0

0 50 100 150 200 250

Accumulated Heat (kcal/kg) Qi

Therm

al A

ctiv

ity -

E/R

(K

)

C3A

C4AF

C3S

C2S

-10000

-7500

-5000

-2500

0

0 100 200 300 400

Accumulated Heat (kcal/kg) Qi

Therm

al A

ctiv

ity

-E

/R (

K)

C3AET

C4AFET

Page 5: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Concept of Multi-component Heating Model

3 3 3 4 4 4( ) ( )C A C AET C A C AET C AFET C AFp H H p H H= + + +

CH CH=

Arrehenius law

3 3 2 2 4C S C S C S C S SG C AF FA FA SF SFp H p H p H p H p H+ + + + +

Page 6: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Change of heat rate by difference of mineral composition

Reduction of hydration heat rate by reduction of free water

Delaying Effect of Secondary Cementitious Powders on Hydration

Page 7: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Evaluation of Reaction Rate Dependent on Calcium Hydroxide

XRD patterns by Ren-Bin Lin et al., 2003

9/1

7/3

5/5

3/7

1/9

Ca(OH)2/silica fume

0 10 20 30 40 50 602θ (degree)

0 10 20 30 40 50 602θ (degree)

Rel

ativ

e in

tens

ity (c

ps)

Rel

ativ

e in

tens

ity (c

ps)

16h

8h

25 min

h : Ca(OH)2s : silica fumet : CSHsh

h

h h

h : Ca(OH)2s : silica fumet : CSHs

hhs t h

h

h h hhs t

Slurrying time

Page 8: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Quantification of the Hydration Process

Adiabatic temperature rises

Tem

pera

ture

(K)

Time

High

Low

Initial temp.

Hyd

ration h

eat ra

te H

Accumulated heat QQa Qb Qc

Hydration heat rate at different temp.

H=dQ/dt

Accumulated heat Q

Hyd

ration h

eat ra

te H

Qa Qb Qc

Reference heat rate at constant temp. Ts

Thermal activityQa Qb Qc

-E/R

0

Accum

ula

ted h

eat (c

al/g)

Gradient= dQ/dt = H

Qa

Qb

Qc

Time

1/T1/Ts0

Qa

Qb

Qc

log H

Arrhenius’ plots

Gradient: -E/R

Procedures to derive thermal properties of cement hydration(Suzuki model, 1990)

Page 9: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Heat generation rates

0

1

2

3

4

5

6

0 50 100 150 200

Accumulated Heat (kcal) Qi

Heat ra

te (

kcal/kg

/hr)

Hi

C3A

C4AF

C3S

C2S

Temperature dependency

-10000

-7500

-5000

-2500

0

0 50 100 150 200 250

Accumulated Heat (kcal/kg) Qi

Therm

al A

ctiv

ity -

E/R

(K)

C3A

C4AF

C3S

C2S

0

20

40

60

80

0 100 200 300 400

Accumulated Heat (kcal) Qi

Heat ra

te (

kcal/kg

/hr)

Hi

C3AET

C4AFET

-10000

-7500

-5000

-2500

0

0 100 200 300 400

Accumulated Heat (kcal/kg) Qi

Therm

al A

ctiv

ity -

E/R

(K)

C3AET

C4AFET

0

1

2

3

4

5

6

0 50 100 150 200

Accumulated Heat (kcal/kg) Qi

Heat ra

te (

kcal/kg

/hr)

Hi

SLAG

FLY ASH

SILICA FUME

-10000

-7500

-5000

-2500

0

0 50 100 150 200

Accumulated Heat (kcal/kg) Qi

Therm

al A

ctivi

ty -

E/R

(K

SLAG

FLY ASH

SILICA FUME

SCPs

Ettringite formation

Cement components

Page 10: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Heat rate as functions at temperatures (Weiping Ma, et al., 1994)

(a) ordinary Portland cement (b) fly ash blended cement (17%)

(c) silica fume blended cement (7.5%) (d) GGBS slag blended cement (65%)

0

4

8

12

16

20

0 20 40 60 80

Accumulated heat Q

Hydra

tion h

eat ra

te (

kcal/kg

/hr) H

i

10C15C

20C25C30C35C

40C45C50C

55C

0

4

8

12

16

20

0 20 40 60 80

Accumulated heat Q

Hydra

tion h

eat ra

te (

kcal/kg

/hr)

Hi

10C15C20C25C30C35C40C45C50C55C

0

4

8

12

16

20

0 20 40 60 80

Accumulated heat Q

Hydra

tion h

eat ra

te (

kacl/kg

/hr)

Hi

10C15C20C25C30C35C40C45C50C55C

0

4

8

12

16

20

0 20 40 60 80

Accumulated heat Q

Hydra

tion h

eat ra

te (

kcal/kg

/hr)

Hi

10C15C20C25C30C35C40C45C50C55C

Converted results of calorimeteric tests

Page 11: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Comparison heat rate of ordinary Portland cement with heat rate of silica fume blended cement

-1

0

1

2

3

4

5

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r)

OPCSF-blended

Hiopc-Hisf

-1

0

1

2

3

4

5

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r)

OPC

SF-blended

Hiopc-Hisf

-4

-2

0

2

4

6

8

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r)

OPC

SF-blended

Hiopc-Hisf

-4

-2

0

2

4

6

8

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r)

OPC

SF-blended

Hiopc-Hisf

10℃ 15℃

20℃ 25℃

-4

-2

0

2

4

6

8

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r) OPC

SF-blended

Hiopc-Hisf

-4

-2

0

2

4

6

8

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r)

OPC

SF-blended

Hiopc-Hisf

-6

0

6

12

18

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r)

OPC

SF-blended

Hiopc-Hisf

-6

0

6

12

18

0 6 12 18 24

hour

Heat

rate

(kcal/

kg/h

r) OPC

SF-blended

Hiopc-Hisf

30℃ 35℃

40℃ 45℃

-4

-2

0

2

4

6

0 10 20 30 40 50

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc-4

-2

0

2

4

6

0 10 20 30 40 50

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc

-4

-2

0

2

4

6

0 10 20 30 40 50

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc-4

-2

0

2

4

6

0 10 20 30 40 50

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc

-8

-4

0

4

8

12

0 10 20 30 40 50 60

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc

-8

-4

0

4

8

12

0 10 20 30 40 50 60

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc

-8

-4

0

4

8

12

0 10 20 30 40 50 60

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc

-8

-4

0

4

8

12

0 10 20 30 40 50 60

Accumulated heat (kcal/kg)

Heat ra

te (

kcal/kg

/hr)

OPC

SF

Hsf-Hopc

Page 12: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Arrhennious Plots

y = -3810.5x + 13.649

y = -4055.2x + 14.712

y = -4331.5x + 15.784

0

0.5

1

1.5

2

2.5

3

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.00361/ T

log H

10kcal/kg15kcal/kg20kcal/kg선형 (10kcal/kg)선형 (15kcal/kg)선형 (20kcal/kg)

y = -3836.4x + 13.923

y = -4149.7x + 15.196

y = -4271.9x + 15.722

0

0.5

1

1.5

2

2.5

3

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.00361/T

log H

10kcal/kg15kcal/kg20kcal/kg선형 (10kcal/kg)선형 (15kcal/kg)선형 (20kcal/kg)

y = -3184.3x + 11.062

y = -3637.6x + 12.379

y = -3968.1x + 13.339

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036

1/T

log H

10kcal/kg15kcal/kg20kcal/kg선형 (10kcal/kg)선형 (15kcal/kg)선형 (20kcal/kg)

y = -3821.3x + 13.498

y = -4199.4x + 14.966

y = -4122.1x + 14.807

0

0.5

1

1.5

2

2.5

3

0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036

1/T

log H

10kcal/kg15kcal/kg20kcal/kg선형 (10kcal/kg)선형 (15kcal/kg)선형 (20kcal/kg)

Ordinary Portland cement Fly ash blended cement

GGBF Slag blended cementSilica fume blended cement

Page 13: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Verification

Calculated heat rates of concrete in the multi- component model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 6 12 18 24

Hour

Heat ra

te (

kcal/kg

/hr)

OPC

O9G1

O8G2

O7G3

O6G4

O5G5

O4G6

GGBF slag blended cement

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 6 12 18 24

Hour

Heat

rat

e (kc

al/k

g/hr

)OPCC9F1C8F2C7F3C6F4

0.0

1.0

2.0

3.0

4.0

5.0

0 6 12 18 24

Hour

Hea

t ra

te (kc

al/k

g/hr

)

OPCC9SF1C8SF2C7SF3

Silica fume blended cement

Fly ash blended cement

Page 14: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Temperature Analysis results

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Time (Hour)

Tem

pera

ture

(C

)

Silica fume concrete1

normal concrete 1

Silica fume concrete 2

normal concrete 2

Experimental results

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

TIME (hour)

Tem

pera

ture

(C

)

analysis

experiment1

experiment2

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

TIME (hour)

Tem

pera

ture

(C

)

analysis

experiment1

experiment2

80cm 90cm

110c

m

Normal concrete Silica fume concrete

Verification

Page 15: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160

Time (hours) .

Tem

pera

ture

(℃

)

surface-opccenter-opcsurface-silica fume 5center-silica fume 5surface-silica fume 10center-silica fume 10surface-silica fume 15center-silica fume 15

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

time (hour)

tem

pera

ture

(℃)

cneter (experiment)center (analysis)surface (experiment)surface (analysis)ambient temperature

0

10

20

30

40

50

60

0 40 80 120 160 200 240

time (hour)

tem

pera

ture

(℃)

center (experiment)center (analysis)surface (experiment)surface (analysis)ambient temperature

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

Time (hours) .

Tem

pera

ture

(℃

)

surface-opccenter-opcsurface-silica fume 5center-silica fume 5surface-silica fume 10center-silica fume 10surface-silica fume 15center-silica fume 15

Verification

Temperature Analysis results in wall structure

80cm thick wall 60cm thick wall

80cm thick wall 60cm thick wall

Temperature ()

Page 16: 2007c 2 Multi-HydrationModel

Yonsei CMME Lab.

Remark

The hydration heat model for blended cement can be developed by incorporating reactions of blast furnace slag, fly ash and silica fume in the system.

The reactions of blast furnace slag, fly ash and silica fume can be modeled to be dependent on the amount of calcium hydroxide produced by cement hydration.

The applicability of the proposed model can be verified by analyzing the results of existing adiabatic temperature rise tests and temperature histories.