2011 mcfarland iee ucsb solar chemical conversion

Upload: mikaela-mennen

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    1/40

    Solar Production of Fuels and Chemicals;is there a cost-effective path forward?

    1

    Bi Picture

    Outline

    Solar Energy Conversion: What Works, What Doesnt , and Why

    Strategies and Tactics: Potentially Cost-Effective ArtificialPhotosynthetic Processes

    Im roved Li ht Absorbers and Electrocatal sts

    2

    Beyond Water Splitting

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    2/40

    Radiation From Thermonuclear Reactions Has BeenAnd Always Will Be The Most Important Source

    Of Energy For The Earth and Human Beings

    Societal prosperity through the 19thcentury was powered

    by renewable biomass.

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    3/40

    5

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    4/40

    Mtoe/year

    20117 billion~ 17 TW

    Prosperity + Population Demand

    19122 billion people

    ~ 1 TW

    Societal prosperity through the 19thcentury was powered by renewable biomass. Global prosperity in the 20th Century was possible due to the availability of large quantities

    of inexpensive fossil hydrocarbon resources.

    Global prosperity in the 22ndcentury will depend on availability of enormous quantities ofsustainable energy resources (32+TW) and/or significant unprecedented population control.

    The 21st Century Better Figure Out How to Get Us There.

    Low cost, solar derived, hydrocarbonfuels have provided unprecedentedopportunities for global egalitarian

    prosperity.

    8

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    5/40

    $ 63,000,000,000,000~ $120/GJ

    512,000,000,000 GigaJoules

    9

    Yes, there is a limit on how much we can spend

    Society can not spend (for long) more on energy

    than the value createdConservation of Money

    World GDP 2010 ~ $63 Trillion/y(US/Ger/China/India 14/3.6/6/1.5)

    ~

    World Gross Domestic Product (GDP)

    (US/Ger/China/India 3.5/0.6/3.5/0.9)

    Absolute Spending Limit (GDP/Energy Use)U.S. $120/GJ Germany $190/GJChina $50/GJ India $50/GJ

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    6/40

    Fraction of U.S. GDP

    Max Total Spending on Energy ~ 10-15% of GDP< $5 -15/GJ: the lower the better.

    spen on energy

    11

    Raising the price of energy meansthe money must come from somewhere else.

    Decreased Prosperity.

    During times of relative economic stability and increasing

    world prosperity food and fuel are inexpensive< 10-15% GDP

    Food ~ $5 - 15/GJ and Fuel ~ $2 - 15/GJ

    Corn $2.00 /bushel $7.90 /GJ

    Rice $2.00 /cwt $4.40 /GJ

    Oil $85.00 /barrel $13.94 /GJ

    Coal $50.00 /ton $1.70 /GJ

    Natural

    4.00 MMBTU . . .

    Gasoline $2.50 /Gallon $20.00 /GJ

    Electricity $0.05 /kWhr $14.00 /GJ

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    7/40

    Bad Things Happen WhenFood and/or fuel > $15/GJ

    2008Oil @ $150/bbl ~ $24/GJea us e ~

    Electricity @ $0.15/kW-hr = $30/GJ

    Cause or Effect ?

    Here we go again?

    14

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    8/40

    Where do most people (including scientists) think the money

    will come from for new sources of sustainable energy?

    15

    Sustainable = Environmental and Economical

    (non-toxic, renewable) (< $5 - 15/GJ)

    n1

    Annual Net Revenue($)Total Capital($)

    (1 discount rate)

    nn

    year

    Production Cost

    nProduct Price1

    n1

    Total Capital($) 1Product Price(1- )

    System Output(GJ/y) (1 discount rate)

    1~ 8 - 3 for DR~ 10 - 30%, n~10 years

    (1 discount rate)

    Total Capit

    n

    year

    n

    year

    Production Cost

    Product Price

    al($)~ 15($/GJ) (1- ) * 5 ~ 60($ / / )

    System Output(GJ/y) y GJ y

    16

    Energy Production Cost

    Energy Product PriceTotal Capital($/Watt) 1.8 *(1 - )

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    9/40

    Science and Engineering have provided society with low costprocesses for economically sustainable energy production.

    $0.25 - 1/Watt

    $1-3/Watt

    Solar Wind Electricity

    EnvironmentallyAnd EconomicallySustainably ?

    $0.5-1/Watt

    2050

    ~ 30 TWfrom where?

    Solar Conversion Processes

    200 W/m2 ~ 1 mMoles photons/m2s

    Inputs Outputs

    18

    Output Value - Input Costs - CapX - OpX > 0

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    10/40

    How to use solar radiation ?

    Inputs Outputs

    19

    Utilization of electrochemical potential from electronic excitations (e-,h+) EMF Photovoltaics (e-,h+) EMF, EChem Photosynthesis (e-,h+) EMF, ThermalWind, Hydro, Solar-Thermal

    Earth as a conversion system (e-,h+) EMF, Thermal Wind, Hydro (e-,h+) EMF, EChem Photosynthesis

    ~ 1% Wind

    ~ 10% Hydro

    20

    , omass, t e

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    11/40

    Cost-Effective Solar Energy Conversion: Wind and Hydro-Power

    21

    Why Solar-to-Chemical Photosynthesis Works

    m

    =0.1%

    0.2 J/s-m2

    ~ - ~ -

    22

    0.0063 GJ/y-m2

    ~ $ 0.1/m2 year Revenue

    Because, it costs farmers less than $0.1/m2-year to grow biomass,AND only because they dont need to produce very much of it.

    ~ 200 Watts/person

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    12/40

    Why Solar-to-Electricity Does Not Work

    m

    ~ 10%

    20 J/s-m2Electricity Value ~ $15/GJ

    23

    0.63 GJ/y-m2

    ~ $ 10/y-m2 Revenue

    A modern cell system installed @ $5/Wpeak

    Capital Cost ~ $500/m2

    Why $500/m2

    Its a wild world out there

    $$$

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    13/40

    price ($)

    per m2

    To be cost effective on capital alone, a solar convertermust cost less than ~ $40/m2 for ~10% and less than ~ $400/m2@ =100%

    no or an

    paint (3 mils) 0.6

    plastic (6 mils PE) 1.1

    plywood 6.5

    astro-turf 8.2

    sod lawn 8.6

    vinyl flooring 10.8

    1" concrete 13.5+ lots of

    land.roof tile 64.6

    Asphalt road 172.2

    Si Solar Cell($5/W) 500.0

    Home Construction 1500.0

    Only VERY Inexpensive Systems

    26

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    14/40

    2009

    27

    Google: Grid Parity?

    28https://docs.google.com/present/view?id=dfhw7d9z_0gtk9bsgc&pli=1

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    15/40

    29

    30

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    16/40

    Wealthy nations (with low GDP growth) tolerate economicallyunsustainable renewables such as solar cells because

    they are balanced by relatively low cost fossil/nuclear/wind

    China ~ 3.5 TW

    U.S. ~ 3.5 TW Germany~ 0.6 TW

    31

    Chemical sciences and engineering must create optionsfor massive quantities of sustainable sources

    of energy that are affordable by all people

    Cost reductions over the last decade

    32

    are arge y ue to use o ncreas ngnumbers of low wage workers notimproved technology. The majorityof the costs are paid from taxpayersubsidies.

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    17/40

    33

    ~1780

    ~1880 Adams&Day, Fritts

    Se Solar Cells 1-2% efficiency)

    More than

    100 years of

    Development

    No Significant

    Cost-Effective

    Applications

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    18/40

    C*(e-,h+)

    e-

    h+

    A

    D

    e-

    h+

    A-

    What about Solar-to-Chemical ? chemical potential

    CC

    D+

    2e- + 2H+ +xCO2 CxH2OzH2O + 2h

    + O2 + 2H

    +

    ReducingPotential

    35

    Growth Driven By Unsustainable Economics

    36

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    19/40

    Growth Driven By Unsustainable Economics

    Biodiesel

    37

    Can Man Beat Nature ? Artificial Photosynthesis

    G. Ciamician, Science 1912

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    20/402

    Solar Energy, Volume 2, Issue 2, April1958

    Semiconductor Photoelectrodes

    E

    RED

    Photocathode

    h+

    + +

    OX

    -

    Photoanode

    +

    h

    RED

    OX

    E

    n-type SC

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    21/402

    SuspendedPVplatelets 1981

    Hydrogen

    Platelets

    N-type semiconductorp-typesemiconductor

    Ohmiccontact

    Platelet

    100 + Years of

    Photoelectrocatalysis (PEC)Science has provided efficient systemsbut not cost-effective energy production

    TiO2 PEC

    42

    PEC AirPurifier

    Mosquito Trap

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    22/402

    Going Forward: Strategies and TacticsHow to do the right thing and get others to pay for it.

    Options:1) Scare them into it.2) Keep making promises that are impossible

    to keep.3) Create options that, if tough problems are

    creatively solved, might ultimately proveeconomically sustainable.

    43

    Is there a cost-effective solarPEC Process that can

    make use of the material system?

    Find and understand anefficient PEC material system

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    23/402

    ConceptualEngineeringProcessModels

    Photoelectrodes = PV ($$) + electrolyzer($$)

    Un-biasedPhotoelectrode(s)

    Chemically biasedPhotoelectrode(s)

    Electrically biasedPhotoelectrode(s)

    BottomUpvsTopDown

    donotunderestimatetheengineeringDesign a conceptual cost-effective

    Solar Chemical Process

    Can a material system befound that meets the

    minimum requirements ?

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    24/402

    Artificial Photosynthesis

    47

    ~ 10%~ 0.1 %~ 0.1 %

    ConceptualEngineeringProcessModels

    Photoelectrodes = PV ($$) + electrolyzer($$)

    Un-biasedPhotoelectrode(s)

    Chemically biasedPhotoelectrode(s)

    Electrically biasedPhotoelectrode(s)

    -+A

    -D

    Split Z-SchemeSlurry Photoreactor

    Single TankSlurry Photoreactor

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    25/402

    Today,thereisonlyoneknownsystemforsolarfuels

    (hydrogen)whichmight makeeconomicsense.

    ASSUMES that a stable, =10% slurry material exists

    Only slurry-based

    James B, Baum G, Perez J, B.K. Technoeconomic Analysis of Photoelectrochemical(PEC) Hydrogen Production. Analysis22201, (2009).

    systems might meet basiceconomic targets. $6/GJ

    h

    Can we do better than Nature?

    What structures should we make and calculate

    D-

    D

    A

    A-

    e-

    e-

    50

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    26/402

    Hybrid PEC NanoreactorsLow cost inorganic semiconductor based heterostructures

    Our Strategy

    Theory New/improved low cost semiconductors Understanding of excitation/separation/

    h+

    e-

    h A-AD-

    - , ,Interface charge transfer. RecombinationElectrocatalysis

    Synthesis/Experiment

    New/improved low cost, high-quality semiconductors Heterostructures Diffusion barrier/encapsulation

    AA-Zn2+ Zno -0.76

    -0.26V3+ V2+

    Approach

    h

    Maximize Stored SolarChemical Potential

    D-

    DA

    A-

    2I-1I2 0.54

    D- D

    (CnHm)OH(CnHm)O 0.6

    2H+ H2 0.00

    AgCl Cl-+Ago

    0.34

    0.22

    Cu2+ Cuo

    CO2 CH4 0.17

    1) Identify cost effective optimal solar absorbingsemiconductor Egap~ 1eV systems with IQE >90%.

    h+

    e-

    H2O2H++1/2O2 1.23

    2Br-1Br2 1.07

    Fe2+Fe3+ 0.77

    2Cl-1Cl2 1.36

    2) Select and match best practical redox systems thatcould provide stored energy G ~ 0.9*Egap

    3) Maximize selective kinetics (minimize back reaction)

    4) Determine means for stabilizing the material in theredox system

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    27/402

    HighThroughputMethodology

    Al2O33000

    Al2O31500

    V800

    V1600

    SnO24800

    4000

    1000

    La2O3

    4000

    1000

    Y2O3

    4000

    1000

    MgO

    4000

    1000

    SrCO3

    Sample: 826962

    Theory Guided

    0530

    0260

    0240

    0250Eu2O3 Tb4O7 Tm2O3 CeO2

    Science279, 837-839 (1998)

    Library Design:Diversity in CompositionDiversity in Synthesis

    Rapid Synthesis and Processing:Electrochemical DepositionPVD, Ink Jet, Solgel,Parallel vs Rapid SerialSmall vs Large Element Size

    High-Throughput Screening:Optical, Chemo-opticalPhotoelectrochemicalGC-MS

    Start with a known reasonable host Try to make it better

    Make efficient materialmore stable

    Bak et. al., Int. J. Hydrogen Energy,vol 27 (2002) 991-1022

    ZnnXmO

    45

    WnXmOp

    H2O/H2

    O2/H2O

    1.23 eV

    Cu2O TiO2 Electrolyte

    Eabs(eV)

    - 4

    - 5

    - 6

    - 7

    - 8

    - 3

    ENHE(eV)

    0

    +1

    +2

    +3

    - 1

    - 2

    2.0 eV

    3.0 eV

    0.30

    Cu2O/XOn

    0 20 40 60 80 1000

    1

    2

    3

    4

    1520253035

    Photocurrent(A/cm

    2)

    [Mo]

    1V bias

    zero bias

    J. Combi. Chem. 4(6), 573-578, 2002

    4 6 8 10 120.10

    0.15

    0.20

    0.25

    Photocurrent(mA/cm

    2)

    pH

    J. Comb. Chem., 7, 264-271, (2005)

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    28/402

    Doped: ZnO

    TheScienceofSynthesis

    55

    J. Comb. Chem., 7, 264-271, (2005)

    WO3

    15202530354045

    rent(A/cm

    2) 1V bias

    WnXmOp

    MoO3

    MoO3

    W0 2Mo0 8O3

    56

    0 20 40 60 80 1000

    1

    2

    3

    Photocur

    [Mo]

    zero bias

    J. Combi. Chem. 4(6), 573-578, 20025 00 5 50 6 00 6 50 7 00 7 50 8 00 8 50 9 00 9 50 1 00 0 10 50 1 10 0

    W0.2Mo0.8O3

    W0.3

    Mo0.7

    O3

    W0.5

    Mo0.5

    O3

    W0.7

    Mo0.3

    O3

    W0.8

    Mo0.2

    O3

    WO3

    Intensity(a.u.)

    Raman Shift (cm-1)

    20 22 24 26 28 30

    . .

    W0.5Mo0.5O3

    W0.8Mo0.2O3

    WO3

    Intensity(a.u.)

    2

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    29/402

    In spite of decades of research, there is no evidence thatwide gap oxides (TiO2, WO3, ZnO, ) can be modified to serveas efficient solar absorbing hosts. Fe ? Cu ?

    Fe2O3

    n-Type Indirect Bandgap 2 - 2.2 eV

    40% solar spectrum absorbed

    Globally scalable

    Abundant, inexpensive

    Non-toxic

    Photo-stable against corrosion

    Mott Insulator (Poor carrier transport )

    Anisotropic conductivity Low electrocatalytic activity

    TheoryGuidedExperimentationUndoped Fe3+

    Fe2O3 Pt4+ doped Cr+3 doped Al+3 doped

    58

    Flat Conduction band large effective mass, poor conductivity.1) Majority Carrier Donor Concentration (traditional doping)2) Create Impurity bands which have smaller mass3) Break C-T Mott Insulator, spin forbidden electron transport

    U=5.7eV12Fe+18O

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    30/403

    CharacterizationofsubstitutedFe2O3

    Bg=2.1 eV

    J. Phys Chem C. 20(12),3803, (2008)

    Chem. Mater., 20, 38033805, (2008)

    Energy Env. Sci. 4,1020, (2011) 1%Ti

    Optical properties show little change with dopants Higher valence dopants (n-dope) helps Isovalant substitutions with large cation size differences (strain) helps

    De l a f o ss i t e s (Cu M X 2)

    Cu+

    Theoretical bandgap

    Direct: 3.0 eV

    Indirect: 2.1 eV

    Experimental bandgap: 1.3 eV

    2r

    In general, poor efficiency.

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    31/403

    Phosphides(start with an efficient material and make it more stable)

    Easytomake(fromlibrariesofoxides) MxOy +H3PO4 ; H2 at900C

    .

    Easy to break Zn3P2 + 6H2O 2PH3 + 3Zn(OH)2

    Strategy -> keep

    H+

    Na6 [HxMyOz] + NH4HPO4MPOx + NH4OH +NaOH +H2O

    H2 at 900 C

    FeP InP Zn3P2 NixPy WP MoP

    t em sa e

    Sulfides (SnS)

    ElectrodepositedFilm powder

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    32/403

    Identification of efficient, stable, cost effective solarabsorbing materials remains

    the #1 challenge for solar energy PEC

    Work to date with all oxides has been discouraging.

    - ,enough. The common wide gap oxide semiconductors (TiO2, ZnO, WO3)will not work as absorbers for solar fuel applications.

    - Iron oxides are intrinsically poor candidates for solar PEC applications

    TiO2

    63

    and in spite of attempts to improve their properties they remain far tooinefficient by 10-100x.

    Sulfides and Phosphides Deserve More Attention

    Dont forget Si !

    Silicon

    Fe2O3 Last oxide hope CuxO

    TheoryGuidedIdentificationofActive,Stable,

    andSelective

    Electrocatalysts

    h+

    e-

    h D

    D-2H+

    HIn situ membrane

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    33/403

    65

    Pt-Au Alloy Nanoparticles for ORR

    Slope ~ ne

    66

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    34/403

    Co/AuFe/Ni

    Bimetallic OER Electrocataysts

    CoAu

    67

    Electrochem.Com. 11 (2009) 11501153

    u

    Choice of the electrocatalyst assumes you know the reaction you want.

    2H+ H2AA-

    What is the best form of the chemical potential product?

    H2 fast, separable, easily reacted (H2+ CO2CH4)

    1) High efficiency, cost-effective absorbers, Egap~ 1eV.2) Identify stable redox chemistry that can be integrated into a major

    chemical cycle.

    10

    12

    14

    16

    18

    Zero BiasNaOHGlycerolErythritolXylitol

    (%)

    D- D

    (CnHm)OH(CnHm)O2 electrodes 1 sun

    Ti Doped Fe2O3

    H2S2H++ S

    2HBr2H++ Br2

    Avoid zero value products

    350 400 450 500 550 600

    0

    2

    4

    6

    8IPCE

    Wavelength (nm)

    H2O2H++1/2 O2

    2HCl2H++ Cl2

    Get over water splitting!

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    35/403

    The formation of adsorbed OOH is limitingand only at high electrode potential is thisstep downhill in free energy. The processtakes place on an oxidized surface.Ox en evolution should start at E>1.8 V

    69

    Functional Nanoparticulate Heterostructures

    Fe2O3@ZrO2

    7010 nm

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    36/403

    Hybrid PEC NanoreactorsLow cost inorganic semiconductor based

    heterostructures

    Al2O3

    Absorber

    Ag

    (OhmicContact)

    h+

    e

    Oxidizing

    reactant

    Reduced

    product

    AuorPt(Schottkycontact)

    Reducing

    agent

    Oxidized

    product

    Mubeen J. HussainiFrancesca Toma

    Martin MoscovitsGalen Stucky

    NiO

    AAb

    Electrodeposited Heterojunction in Porous Alumina

    CdSe

    Au

    TiO2

    l2O3

    sorber

    Mubeen J. HussainiFrancesca TomaMartin MoscovitsGalen Stucky

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    37/403

    Large Scale, Cost Effective Processes Are Typically Integrated

    Large Scale, Cost Effective Processes Are Typically Integrated

    Process Alternative: CnHmOz H2+ CO2

    (CnHm)OH + h+(CnHm)O + H

    +

    2e- + 2H+ H2

    2

    Biomass orWastewater

    CO2

    X-ols

    CatalystRegeneration

    Reactor SeparationTreatmentSeparation

    ~ 1 kg/person/day organic waste (~ 1 TW )

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    38/403

    2e- + 2H+ H22Br-1Br2

    Large Scale, Cost Effective Processes Are Typically IntegratedExample Process Alternative: 2HBr H2+ Br2

    Biomass

    Regeneration

    O2 + HBr Br2 + H2O

    Water Air

    HBrBr2

    Activation

    CH4 + Br2 CH3-Br + HBr

    Coupling

    CH3-Br Gasoline + HBrBioMethane Gasoline

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    39/403

    77

    Net Reaction: 8CH4 + (16/ C8H16 + 8H2 (Ideal)

    Summary

    Todaytherearenosignificant,costeffective,manmadesolarconversionprocessesbecausenoefficient,stable,scalable,andcosteffectiveabsorbingmaterialsystemisknown.

    Recentadvancesintheory,complexsurfaces,andsynthesisofnovelmaterialsmayhavesignificantimpactifdirectedwisely.

    Watersplittingmayormaynoteverbecosteffective,buttherearepotentiallymanyothersolartochemicalconversionsthatmightbemorecosteffectiveandultimatelymoreusefultomankind. Thesystemmatters,manycanneverwork.

    Fundamentallyproductionofchemicalfuelsfromsolarenergyatlessthan$15/GJispossible,practicallyitisveryverydifficult.

    Thinkoutsidetheboxorwewillnotsucceed

  • 8/3/2019 2011 McFarland IEE UCSB Solar Chemical Conversion

    40/40

    an ou

    Collaborators: Alan Kleiman, Yong-Sheng Hu, PengZhang, Nirala Singh, Galen Stucky, Eric McFarland