2014 12 lyp physics compt 01 delhi

16
55/1/1 1 P.T.O. narjmWu H moS H mo CÎma-nwpñVH m Ho _wI-n¥ð na Adí` {bIo§ & Candidates must write the Code on the title page of the answer-book. Series OSR/1/C H moS Z§ . 55/1/1 Code No. amob Z§. Roll No. ^m¡{VH {dkmZ (g¡ÕmpÝVH ) PHYSICS (Theory) {ZYm©[aV g_` : 3 KÊQo A{YH V_ A§H : 70 Time allowed : 3 hours Maximum Marks : 70 H¥ n`m Om±M H a b| {H Bg àíZ-nÌ _o§ _w{ÐV n¥ð 16 h¢ & àíZ-nÌ _| Xm{hZo hmW H s Amoa {XE JE H moS Zå~a H mo NmÌ CÎma -nwpñVH m Ho _wI-n¥ð na {bI| & H¥ n`m Om±M H a b| {H Bg àíZ-nÌ _| 30 àíZ h¢ & H¥ n`m àíZ H m CÎma {bIZm ewê H aZo go nhbo, àíZ H m H« _m§H Adí` {bI| & Bg àíZ-nÌ H mo n‹TZo Ho {bE 15 {_ZQ H m g_` {X`m J`m h¡ & àíZ-nÌ H m {dVaU nydm©• _| 10.15 ~Oo {H `m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH NmÌ Ho db àíZ-nÌ H mo n‹T|Jo Am¡a Bg Ad{Y Ho Xm¡amZ do CÎma-nwpñVH m na H moB© CÎma Zht {bI|Jo & Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. Please check that this question paper contains 30 questions. Please write down the Serial Number of the question before attempting it. 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

Upload: aishwarya-naidu

Post on 12-Sep-2015

226 views

Category:

Documents


8 download

DESCRIPTION

Physics Delhi class 12 paper cbse boards 2014

TRANSCRIPT

  • 55/1/1 1 P.T.O.

    narjmWu H$moS >H$mo Cma-nwpVH$m Ho$ _wI-n >na Ad` {bIo & Candidates must write the Code on the

    title page of the answer-book.

    Series OSR/1/C H$moS> Z. 55/1/1 Code No.

    amob Z. Roll No.

    ^m{VH$ {dkmZ (gmpVH$) PHYSICS (Theory)

    {ZYm[aV g_` : 3 KQ>o A{YH$V_ AH$ : 70

    Time allowed : 3 hours Maximum Marks : 70

    H$n`m OmM H$a b| {H$ Bg Z-n _o _w{V n> 16 h &

    Z-n _| Xm{hZo hmW H$s Amoa {XE JE H$moS >Z~a H$mo N>m Cma-nwpVH$m Ho$ _wI-n> na {bI| &

    H$n`m OmM H$a b| {H$ Bg Z-n _| >30 Z h &

    H$n`m Z H$m Cma {bIZm ew$ H$aZo go nhbo, Z H$m H$_mH$ Ad` {bI| & Bg Z-n H$mo nT>Zo Ho$ {bE 15 {_ZQ >H$m g_` {X`m J`m h & Z-n H$m {dVaU nydm

    _| 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>m Ho$db Z-n H$mo nT>|Jo Ama Bg Ad{Y Ho$ XmamZ do Cma-nwpVH$m na H$moB Cma Zht {bI|Jo &

    Please check that this question paper contains 16 printed pages.

    Code number given on the right hand side of the question paper should be

    written on the title page of the answer-book by the candidate.

    Please check that this question paper contains 30 questions.

    Please write down the Serial Number of the question before

    attempting it.

    15 minutes time has been allotted to read this question paper. The question

    paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the

    students will read the question paper only and will not write any answer on

    the answer-book during this period.

  • 55/1/1 2

    gm_m` {ZX}e : (i) g^r Z A{Zdm` h & (ii) Bg Z-n _| Hw$b 30 Z h & Z 1 go 8 VH$ Ho$ Z A{V-bKwCmar` Z h Ama

    `oH$ EH$ AH$ H$m h & (iii) Z 9 go 18 _| `oH$ Z Xmo AH$ H$m h, Z 19 go 27 _| `oH$ Z VrZ AH$ H$m

    h Ama Z 28 go 30 _| `oH$ Z nmM AH$ H$m h & (iv) VrZ AH$m| dmbo Zm| _| go EH$ _y`naH$ Z h & (v) Z-n _| g_J na H$moB {dH$n Zht h & VWm{n, Xmo AH$m| dmbo EH$ Z _|, VrZ AH$m|

    dmbo EH$ Z _| Ama nmM AH$m| dmbo VrZm| Zm| _| AmV[aH$ M`Z XmZ {H$`m J`m h & Eogo Zm| _| AmnH$mo {XE JE M`Z _| go Ho$db EH$ Z hr H$aZm h &

    (vi) H$bHw$boQ>a Ho$ Cn`moJ H$s AZw_{V Zht h & VWm{n `{X Amd`H$ hmo Vmo Amn bKwJUH$s` gmaUr H$m `moJ H$a gH$Vo h &

    (vii) Ohm Amd`H$ hmo Amn {ZZ{b{IV ^m{VH$ {Z`VmH$m| Ho$ _mZm| H$m Cn`moJ H$a gH$Vo h :

    c = 3 108 m/s

    h = 6.63 1034 Js

    e = 1.6 1019 C

    o = 4 107 T mA1

    o4

    1

    = 9 109 N m2 C2

    me = 9.1 1031 kg

    General Instructions :

    (i) All questions are compulsory.

    (ii) There are 30 questions in total. Questions No. 1 to 8 are very short answer type questions and carry one mark each.

    (iii) Questions No. 9 to 18 carry two marks each, questions 19 to 27 carry three marks each and questions 28 to 30 carry five marks each.

    (iv) One of the questions carrying three marks weightage is value based question.

    (v) There is no overall choice. However, an internal choice has been provided in one question of two marks, one question of three marks and all three

    questions of five marks each weightage. You have to attempt only one of

    the choices in such questions.

    (vi) Use of calculators is not permitted. However, you may use log tables if necessary.

  • 55/1/1 3 P.T.O.

    (vii) You may use the following values of physical constants wherever necessary :

    c = 3 108 m/s

    h = 6.63 1034 Js

    e = 1.6 1019 C

    o = 4 107 T mA1

    o4

    1

    = 9 109 N m2 C2

    me = 9.1 1031 kg

    1. AmaoI _| XemE JE AZwgma Xmo {~X Amdoe q1 VWm q

    2 EH$-Xgao go d Xar na pWV

    h & BZH$mo OmoS>Zo dmbr gab aoIm na pWV EH$ {~X P na {dwV-jo H$s VrdVm ey` h & Bggo Amn Omo Xmo {ZH$f {ZH$mb gH$Vo h, CZH$m CoI H$s{OE & 1

    Two point charges q

    1 and q

    2 are placed at a distance d apart as shown

    in the figure. The electric field intensity is zero at a point P on the line

    joining them as shown. Write two conclusions that you can draw from

    this.

    2. {H$gr MmbH$ Ho$ {gam| na EH$ {d^dmVa AZw`w$ {H$`m (bJm`m) OmE, Vmo Cg_| _w$ BboQ>mZm| H$s `mpN>H$ J{V na `m ^md nS>Vm h ? 1 How does the random motion of free electrons in a conductor get affected

    when a potential difference is applied across its ends ?

    3. {H$gr nXmW H$s Amno{jH$ nmaJ`Vm (Mw~H$erbVm) r = 0.5 h & Bg Mw~H$s` nXmW

    H$s H${V H$s nhMmZ H$s{OE Ama BgH$m Mw~H$s` d{m go g~Y {b{IE & 1 Relative permeability of a material,

    r = 0.5. Identify the nature of the

    magnetic material and write its relation to magnetic susceptibility.

    4. C Amd{m H$s `mdVu Ymamdmhr {H$gr Hw$S>br go {Kam hAm YmVw H$m Qw>H$S>m J_ `m| hmo OmVm h ? 1 A metallic piece gets hot when surrounded by a coil carrying high

    frequency alternating current. Why ?

    5. {H$gr aoIr` E|Q>rZm go {d{H$[aV ^mdr e{$, o{fV {H$E JE gHo$Vm| ({gZbm|) H$s VaJX` na {H$g H$ma {Z^a H$aVr h ? 1 How does the effective power radiated from a linear antenna depend on

    the wavelength of the signal to be transmitted ?

    6. `mnH$sH$V gMma `dWm H$m EH$ bmH$ AmaoI ~ZmBE & 1 Draw a block diagram of a generalized communication system.

  • 55/1/1 4

    7. `J Ho$ {{Par `moJ _| `{VH$aU nQ>Z Cn H$aZo Ho$ {bE Amd`H$ H$bm-g~ moVm| H$mo n[a^m{fV H$s{OE & 1 Define the term coherent sources which are required to produce interference pattern in Youngs double slit experiment.

    8. {d^d_mnr (nmoQ>ope`mo_rQ>a) {H$g {gmV na AmYm[aV h ? CoI H$s{OE & 1 State the underlying principle of a potentiometer.

    9. YmVw Ho$ EH$ N>moQ>o Jmobo na +Q Amdoe h & Bgo {H$gr ~S>o, YmVw Ho$ JmobmH$ma H$moe (eb) H$s, Jmobr` H$moQ>a (H${dQ>r) Ho$ Ho$ na aIm J`m h & JmobmH$ma H$moe na H$moB Amdoe Zht h & JmobmH$ma H$moe H$s ~m (~mhar) VWm ^rVar n>m| na Amdoe Ho$ ~mao _| {b{IE & {~X P

    1 na {dwV-jo Ho$ {bE `OH$ {b{IE & 2

    A small metal sphere carrying charge +Q is located at the centre of a spherical cavity in a large uncharged metallic spherical shell. Write the

    charges on the inner and outer surfaces of the shell. Write the expression

    for the electric field at the point P1.

    10. EH$ b~r n[aZm{bH$m go dm{hV {dwV Ymam Ho$ H$maU Cn, Mw~H$s` jo aoImAm| H$mo XemBE & `{X Bg_| I Ymam dm{hV hmo ahr hmo Ama BgH$s {V BH$mB b~mB _| \o$am| H$s g`m n hmo, Vmo Eopn`a Ho$ n[anWr` {Z`_ Ho$ Cn`moJ mam, Bg Ymam Ho$ H$maU Mw~H$s` jo Ho$ {bE EH$ `OH$ m H$s{OE & 2 Draw the magnetic field lines due to a current passing through a long solenoid. Use Amperes circuital law, to obtain the expression for the magnetic field due to the current I in a long solenoid having n number of

    turns per unit length.

  • 55/1/1 5 P.T.O.

    11. {H$gr H$me-gdoXr n> na Eg-{H$aUm| Ho$ AmnVZ go H$me-{dwV CgOZ hmo ahm h &

    Bg n> Ho$ H$m`-\$bZ H$mo ZJ` _mZVo hE, Amn{VV \$moQ>mZm| H$s D$Om (Ev) VWm Cg{OV

    BboQ>mZm| H$s Xo-~mbr VaJX ` () Ho$ ~rM g~Y kmV H$s{OE & Ev Ho$ \$bZ Ho$ $n _|

    Ho$ {bE Jm\$ (AmboI) H$s H${V H$mo XemBE & 2 X-rays fall on a photosensitive surface to cause photoelectric emission.

    Assuming that the work function of the surface can be neglected, find the

    relation between the de-Broglie wavelength () of the electrons emitted to

    the energy (Ev) of the incident photons. Draw the nature of the graph for

    as a function of Ev.

    12. namdVu XaXeH$ (H$goJoZ) H$m EH$ `dWm AmaoI ~ZmBE & AndVu XaXeH$ H$s VwbZm _| BgHo$ Xmo JwU (bm^) {b{IE & 2 Draw a schematic diagram of a reflecting telescope (Cassegrain). Write

    its two advantages over a refracting telescope.

    13. Xmo NOT JoQ>m| Ho$ {ZJVm| H$mo NOR JoQ> _| nwZ {Z{d>> {H$`m OmVm h & BZ Xmo JoQ>m| Ho$ g`moOZ H$m VH$ n[anW ~ZmBE & Bg g`moOZ mam {Z${nV JoQ> H$mo nhMmZ H$a CgH$m Zm_ {b{IE VWm BgHo$ {bE g`_mZ gmaUr ~ZmBE & 2 The outputs of two NOT gates are fed to a NOR gate. Draw the logic

    circuit of the combination of gates. Give its truth table. Identify the gate

    represented by this combination.

    14. EH$ Am`VmH$ma Hw$S>br, {OgH$s b~mB l VWm MmS>mB b h, go I Ymam dm{hV hmo ahr

    h & BgH$mo EH$ EH$g_mZ Mw~H$s` jo B _| aIm J`m h & Mw~H$s` jo H$s {Xem,

    Hw$S>br Ho$ Vb Ho$ b~dV h & Hw$S>br na bJZo dmbo ~b-AmKyU Ho$ {bE `OH$ m

    H$s{OE & 2

    A rectangular coil of sides l and b carrying a current I is subjected to a

    uniform magnetic field B acting perpendicular to its plane. Obtain the

    expression for the torque acting on it.

    15. Vmn _| d{ Ho$ gmW (i) {H$gr MmbH$ VWm (ii) {H$gr AYMmbH$ H$s {VamoYH$Vm _| n[adVZ H$mo XemZo Ho$ {bE EH$ Jm\$ (AmboI) ~ZmBE &

    BZHo$ Bg `dhma H$mo Amdoe dmhH$m| Ho$ g`m KZd VWm {dlm{V H$mb Ho$ nXm| _| H$go n> {H$`m OmVm h ? 2 Draw a plot showing the variation of resistivity of a (i) conductor and

    (ii) semiconductor, with the increase in temperature.

    How does one explain this behaviour in terms of number density of

    charge carriers and the relaxation time ?

  • 55/1/1 6

    16. EH$ Am`VmH$ma nme (byn) PQMN H$s ^wOm PQ H$mo AmJo-nrN>o {IgH$m`m Om gH$Vm h & PQ H$s b~mB 10 cm h VWm BgH$m {VamoY 2 h & BgH$mo AmaoI _| XemE JE AZwgma EH$ EH$g_mZ Mw~H$s` jo _| aIm J`m h & Bg Mw~H$s` jo H$s VrdVm 0.1 T h VWm BgH$s {Xem nme (byn) Ho$ g_Vb Ho$ b~dV h & MN, NP VWm MQ ^wOmAm| Ho$ {VamoY ZJ` h & ^wOm PQ H$mo 20 m/s Ho$ doJ go ~mha {ZH$mbZo na (i) ^wOm PQ Ho$ {gam| Ho$ ~rM o[aV {dwV-dmhH$ ~b VWm (ii) nme _| ~hZo dmbr o[aV {dwV Ymam H$m n[aH$bZ H$s{OE & 2

    A rectangular loop PQMN with movable arm PQ of length 10 cm and

    resistance 2 is placed in a uniform magnetic field of 0.1 T acting perpendicular to the plane of the loop as is shown in the figure. The

    resistances of the arms MN, NP and MQ are negligible. Calculate the

    (i) emf induced in the arm PQ and (ii) current induced in the loop when

    arm PQ is moved with velocity 20 m/s.

    17. Xmo EH$dUu {d{H$aUm| H$s Amd{m`m H$_e v1 VWm v

    2 (v

    1 > v

    2) h & BZH$s VrdVmE

    Amng _| g_mZ h & `o {d{H$aU {H$gr H$me-gdoXr n> na ~mar-~mar go Amn{VV hmoH$a H$me-{dwV CgOZ H$aVo h & H$maU g{hV n> H$s{OE {H$, {H$g Xem _| (i) A{YH$ g`m _| BboQ>mZm| H$m CgOZ hmoJm VWm (ii) Cg{OV H$me-BboQ>mZm| H$s A{YH$V_ J{VO D$Om A{YH$ hmoJr & 2 Two monochromatic radiations of frequencies v

    1 and v

    2 (v

    1 > v

    2) and

    having the same intensity are, in turn, incident on a photosensitive

    surface to cause photoelectric emission. Explain, giving reason, in which

    case (i) more number of electrons will be emitted and (ii) maximum

    kinetic energy of the emitted photoelectrons will be more.

  • 55/1/1 7 P.T.O.

    18. Xmo {~X Amdoe q1 VWm q

    2 {H$gr ~m {dwV-jo

    E _| H$_e

    1r VWm

    2r na pWV

    h & Bg {d`mg H$mo m H$aZo Ho$ {bE Amd`H$ Hw$b H$m` Ho$ {bE EH$ `OH$ m

    H$s{OE & 2

    AWdm

    Xmo {ZH$Q>W g_{d^d n>m| A Ama B Ho$ {d^d V VWm V + V h (Ohm V, V _| n[adVZ h), Bh| {M _| XemE JE AZwgma EH$-Xgao go l Xar na aIm J`m h & BZHo$ ~rM {dwV-jo VWm {d^d dUVm Ho$ {bE g~Y `wn H$s{OE & {dwV-jo VWm {dwV {d^dm| Ho$ ~rM g~Y Ho$ ~mao _| Xmo _hdnyU {ZH$fm] H$m CoI H$s{OE & 2

    Two point charges q1 and q

    2 are located at

    1r and

    2r respectively in an

    external electric field .E

    Obtain the expression for the total work done in

    assembling this configuration.

    OR

    Two closely spaced equipotential surfaces A and B with potentials V and

    V + V, (where V is the change in V), are kept l distance apart as shown in the figure. Deduce the relation between the electric field and

    the potential gradient between them. Write the two important

    conclusions concerning the relation between the electric field and electric

    potentials.

  • 55/1/1 8

    19. Xmo g_mVa boQ> (n{>H$m) gYm[am| H$s Ym[aVmE C1 VWm C

    2 h, Ohm C

    1 = 2C

    2 & BZH$mo

    AmaoI _| XemE JE AZwgma EH$ V dmoQ> H$s ~Q>ar go OmoS>m J`m h & ma^ _| Hw$Or (H$s)

    k, H$mo ~X {H$`m OmVm h, Vm{H$ XmoZm| gYm[a nyUV Amdo{eV hmo gH|$ & {\$a, Hw$Or (k)

    H$mo Imob {X`m OmVm h Ama XmoZm| gYm[am| H$s n{>H$mAm| Ho$ ~rM Ho$ WmZ H$mo EH$

    namdwV nXmW H$s n>r go nyam ^a {X`m OmVm h & `{X Bg n>r H$m namdwVmH$ K hmo, Vmo

    Hw$Or ImobZo go nhbo Ama ImobZo Ho$ ~mX g`moOZ H$s (i) ^mdr Ym[aVm Ama (ii) ^mdr

    g{MV D$OmAm| H$m AZwnmV kmV H$s{OE & 3

    Two parallel plate capacitors of capacitances C1 and C

    2 such that

    C1 = 2C

    2 are connected across a battery of V volts as shown in the figure.

    Initially the key (k) is kept closed to fully charge the capacitors. The key

    is now thrown open and a dielectric slab of dielectric constant K is

    inserted in the two capacitors to completely fill the gap between the

    plates. Find the ratio of (i) the net capacitance and (ii) the energies stored

    in the combination, before and after the introduction of the dielectric

    slab.

  • 55/1/1 9 P.T.O.

    20. EH$ Amdo{eV H$U {OgH$m `_mZ m h Ama {Og na q Amdoe h, {H$gr Mw~H$s` jo B _|

    doJ go J{V H$a ahm h &

    (a) `{X Mw~H$s` jo

    B Ho$ b~dV h, Vmo XemBE {H$ `h H$U EH$ dmmH$ma

    nW na J{V H$aoJm, {OgH$s H$moUr` Amd{m, = qB/m hmoJr &

    (b) `{X doJ H$m Mw~H$s` jo

    B H$s {Xem Ho$ g_mVa H$moB KQ>H$ hmo, Vmo H$U

    mam M{bV nW H$m AZwaoIU H$s{OE & AnZo Cma H$s nw{> H$s{OE & 3

    AWdm

    Mb Hw$S>br Ymam_mnr H$m EH$ `dWm AmaoI ~ZmBE Ama BgH$s H$m`{d{Y H$m g{j dUZ H$s{OE &

    JdZmo_rQ>a (Ymam_mnr) H$s Ymam gwJm{hVm _| d{ go CgH$s dmoQ>Vm gwJm{hVm _| ^r d{

    H$m hmoZm Amd`H$ Zht h & Bg H$WZ H$s nw{> _| H$maU {b{IE & 3 Consider the motion of a charged particle of mass m and charge q

    moving with velocity in a magnetic field .B

    (a) If is perpendicular to ,B

    show that its describes a circular path

    having angular frequency = qB/m.

    (b) If the velocity has a component parallel to the magnetic field

    ,B

    trace the path described by the particle. Justify your answer.

    OR

    Draw a schematic sketch of a moving coil galvanometer and describe

    briefly its working.

    Increasing the current sensitivity of a galvanometer does not necessarily increase the voltage sensitivity. Justify this statement.

    21. {ZZm{H$V Zm| Ho$ Cma Xr{OE : 3

    (i) EH$ gab CXmhaU mam XemBE {H$ {dwV-Mw~H$s` VaJ| D$Om VWm gdoJ H$s dmhH$ H$go hmoVr h &

    (ii) gy_VaJ| H$go Cn hmoVr h ? _mBH$modod Myhm| (AmdZ) _| Amd{m`m| H$m M`Z Bg H$ma H$aZm Amd`H$ `m| h {H$ dh Ob Ho$ AUwAm| H$s AZwZmX-Amd{m go _ob (gw_o{bV hmo) Im OmE ?

    (iii) Ada$ {H$aUm| Ho$ Xmo _wI Cn`moJ `m h ?

  • 55/1/1 10

    Answer the following questions :

    (i) Show, by giving a simple example, how em waves carry energy and

    momentum.

    (ii) How are microwaves produced ? Why is it necessary in microwave

    ovens to select the frequency of microwaves to match the resonant

    frequency of water molecules ?

    (iii) Write two important uses of infra-red waves.

    22. H$me H$s EH$ {H$aU PQ, {H$gr nmaXeu nXmW Ho$ ~Zo {^wOmH$ma {_ Ho$ \$bH$ AB na AmaoI _| XemE JE AZwgma Amn{VV hmoVr h & {_ H$m AndVH$ H$moU 60 h Ama BgHo$

    nXmW H$m AndVZmH$ 32 / h & {_ go JwOaVo hE Bg {H$aU Ho$ nW H$m AZwaoIU

    H$s{OE & {ZJV H$moU VWm {dMbZ H$moU Ho$ _mZ H$m ^r n[aH$bZ H$s{OE & 3

    A ray PQ is incident normally on the face AB of a triangular prism of

    refracting angle of 60, made of a transparent material of refractive index

    32 / , as shown in the figure. Trace the path of the ray as it passes through the prism. Also calculate the angle of emergence and angle of

    deviation.

  • 55/1/1 11 P.T.O.

    23. (a) MA

    Z `_mZ, na_mUw H$_mH$ (Z) VWm `_mZ g`m (A), Ho$ EH$ Zm{^H$ H$s

    ~YZ D$Om (MeV _|) Ho$ {bE EH$ g~Y (`OH$) CgHo$ KQ>H$m| `yQ>mZ VWm moQ>mZ Ho$ `_mZm| Ho$ nXm| _| {b{IE &

    (b) BE/A VWm `_mZ g`m A Ho$ ~rM EH$ Jm\$$ (AmboI), 2 A 170, gr_m Ho$ {bE ~ZmBE & Bg Jm\$ H$m Cn`moJ, Xmo hHo$ Zm{^H$m| Ho$ Zm{^H$s` gb`Z Ho$ H$_ _|, D$Om Ho$ {d_moMZ H$s `m`m H$aZo _| H$s{OE & 3

    (a) Write the relation for binding energy (BE) (in MeV) of a nucleus of

    mass MA

    Z, atomic number (Z) and mass number (A) in terms of the

    masses of its constituents neutrons and protons.

    (b) Draw a plot of BE/A versus mass number A for 2 A 170. Use this graph to explain the release of energy in the process of nuclear

    fusion of two light nuclei.

    24. (a) hmBS>moOZ na_mUw _| AVaV_ BboQ>mZ H$jm H$s {`m 5.3 1011 m h & n = 3 H$jm _| BgH$s {`m H$m n[aH$bZ H$s{OE &

    (b) hmBS>moOZ na_mUw H$s W_ Cmo{OV AdWm _|, BboQ>mZ H$s Hw$b D$Om 3.4 eV h & kmV H$s{OE BgH$s Bgr AdWm _|, (i) J{VO D$Om VWm (ii) pW{VO D$Om & 3

    (a) The radius of the innermost electron orbit of a hydrogen atom is

    5.3 1011 m. Calculate its radius in n = 3 orbit.

    (b) The total energy of an electron in the first excited state of the

    hydrogen atom is 3.4 eV. Find out its (i) kinetic energy and

    (ii) potential energy in this state.

    25. AZwO H$s _mVmOr Ho$ {ga _| bJmVma XX (nrS>m) hmo ahm Wm & S>mQ>ar narjU go CZHo$ {ga _| Q>`y_a hmoZo H$m nVm Mbm & AZwO Zo XoIm {H$ CZHo$ Ka Ho$ nmg hr EH$ XagMma Q>mda h & CgZo S>mQ>a go nyN>m {H$ `m Q>mda go {ZH$bo {d{H$aU Bg Q>`y_a H$m H$maU hm o gH$Vo h ? S>mQ>a mam gh_{V Ho$ nMmV, CgZo nw{bg go {eH$m`V H$s Ama dh Q>mda H$mo Amdmgr` H$mbmoZr go Xa hQ>dmZo _| g\$b hmo J`m &

    {ZZm{H$V Zm| Ho$ Cma Xr{OE :

    (i) AZwO Zo {H$Z _y`m| H$m XeZ {H$`m ?

    (ii) AZwO Zo AXmO bJm`m {H$ E|Q>rZm H$s y^-Vb go D$MmB bJ^J 20 m Wr & n[aH$bZ H$s{OE {H$ Bg Q>mda go {d{H$aU A{YH$V_ {H$VZr Xar VH$ nhM gH$Vo h & ndr H$s {`m H$m _mZ 6400 103 m `moJ H$s{OE & 3

  • 55/1/1 12

    Anujs mother was having constant headaches. After a medical check-up, she was diagnosed with tumour. Anuj realized there was a

    telecommunication tower very close to their house. He enquired from the

    doctor if the radiation from the tower could have caused the tumour. As

    the doctor supported his anxiety, he lodged a complaint with the police

    and ultimately succeeded in getting the tower removed to a distant place

    away from the residential colony.

    Answer the following :

    (i) What values were displayed by Anuj ?

    (ii) Anuj made a rough estimate about the height of the antenna to be

    about 20 m from the ground. Calculate the maximum distance upto

    which radiations from the tower are likely to reach. Use the value

    of radius of the Earth = 6400 103 m.

    26. EH$dUu H$me H$s EH$ g_mVa {H$aU nwO, a MmS>mB H$s nVbr {Par (pbQ>) na b~dV Q>H$amH$a, {Par Ho$ g_Vb Ho$ g_mVa aIo EH$ nX} na, {ddVZ nQ>Z ~ZmVr h & hmBJog Ho$ {gmV Ho$ Cn`moJ mam n> H$s{OE {H$

    (i) Ho$r` Xr C{> H$s MmS>mB, A` C{>m| go X wJwZr hmoVr h &

    (ii) Ho$ go Xa XmoZm| Amoa Ho$ C{>m| H$s VrdVm _| {ZaVa H$_r hmoVr OmVr h & 3 A parallel beam of monochromatic light falls normally on a narrow slit of

    width a to produce a diffraction pattern on the screen placed parallel to the plane of the slit. Use Huygens principle to explain that

    (i) the central bright maxima is twice as wide as the other maxima.

    (ii) the intensity falls as we move to successive maxima away from the

    centre on either side.

    27. {M _| XemE JE {dwV ZoQ>dH$ (n[anW Omb) _|, {H$aImo\$ Ho$ {Z`_m| H$m Cn`moJ H$aVo hE, {VamoY, R = 4 _| `{`V (Cn^w$) e{$ Ho$ _mZ H$m n[aH$bZ H$s{OE & 3

  • 55/1/1 13 P.T.O.

    In the electric network shown in the figure, use Kirchhoffs rules to

    calculate the power consumed by the resistance R = 4 .

    28. (a) EH$ loUr LCR n[anW, n[adVu Amd{m Ho$ {H$gr E.gr. (a.c.) moV go OwS>m h &

    Cn w`$ \o$Oa AmaoI ~ZmBE Ama Bggo Ymam Ho$ Am`m_ VWm H$bm H$moU (\o$O

    EJb) Ho$ {bE EH$ `OH$ `wn H$s{OE &

    (b) AZwZmX Ho$ {bE {V~Y (eV) m H$s{OE & Xmo {VamoYm|, R1 VWm R2

    (R1 > R2) Ho$ {bE E.gr. (a.c.) moV H$s Amd{m Ho$ gmW {dwV Ymam Ho$ n[adVZ

    H$mo XemZo Ho$ {bE EH$ Jm\$ (AmboI) ~ZmBE & Bggo JwUdmm JwUmH$ Q H$mo

    n[a^m{fV H$s{OE VWm {b{IE {H$ BgH$s n[anW H$s Q>`yqZJ (g_daU) _| `m

    ^y{_H$m hmoVr h & 5

    AWdm

    (a) E.gr. (a.c.) O{Z H$m EH$ Zm_m{H$V AmaoI ~ZmBE VWm BgH$s H$m`{d{Y H$m

    {gmV {b{IE &

    (b) {H$gr O{Z _|, Am_}Ma Hw$S>br go g~ Mw~H$s` bg _| {H$g H$ma n[adVZ {H$`m OmVm h ?

    (c) o[aV {dwV-dmhH$ ~b (B.E_.E\$.) Ho$ A{YH$V_ _mZ Ho$ {bE EH$ `OH$ `wn H$s{OE VWm o[aV {dwV-dmhH$ ~b H$s {Xem Ho$ {bE {Z`_ {b{IE &

    (d) Mw~H$s` jo H$s {Xem Ho$ gmnoj Am_}Ma H$mo Kw_mZo na, O{ZV {dwV-dmhH$ ~b (B.E_.E\$.) Ho$ g_` Ho$ gmW n[adVZ H$mo XemBE & 5

  • 55/1/1 14

    (a) A series LCR circuit is connected to an a.c. source of variable

    frequency. Draw a suitable phasor diagram to deduce the

    expressions for the amplitude of the current and phase angle.

    (b) Obtain the condition at resonance. Draw a plot showing the

    variation of current with the frequency of a.c. source for two

    resistances R1 and R2 (R1 > R2). Hence define the quality factor, Q

    and write its role in the tuning of the circuit.

    OR

    (a) Draw a labelled diagram of a.c. generator and state its working

    principle.

    (b) How is magnetic flux linked with the armature coil changed in a

    generator ?

    (c) Derive the expression for maximum value of the induced emf and

    state the rule that gives the direction of the induced emf.

    (d) Show the variation of the emf generated versus time as the

    armature is rotated with respect to the direction of the magnetic

    field.

    29. {H$gr JmobmH$ma Cmb n> Ho$ EH$ Amoa n1 AndVZmH$ H$m _m`_ h Ama Xgar Amoa n2 AndVZmH$ H$m _m`_ h & Cmb n> H$s _w` Aj na EH$ {~X dVw pWV h, n1

    AndVZmH$ dmbo A{YH$ {dab _m`_ _| & BgHo$ {V{~~ H$m ~ZZm XemZo Ho$ {bE EH$

    {H$aU AmaoI ~ZmBE & Bggo, _m`_ Ho$ AndVZmH$ VWm Cmb n> H$s dH$Vm {`m Ho$ nXm| _| dVw H$s Xar VWm {V{~~ H$s Xar Ho$ ~rM g~Y `wn H$s{OE &

    Bg g~Y go nVbo Cmb b|g Ho$ {bE b|g-_oH$a gy H$m `OH$ m H$s{OE & 5

    AWdm

    (a) a{IH$V Yw{dV H$me VWm AYw{dV H$me _| AVa (^oX) {b{IE &

    (b) XemBE {H$ H$me VaJm| H$s H${V AZwW hmoVr h &

    (c) AmH$me Ho$ {H$gr dN> Zrbo ^mJ go AmVo hE H$me H$mo$ `{X {H$gr nmoboamBS> go XoI|, Vmo nmoboamBS> H$mo Kw_mZo na H$me H$s VrdVm _| d{ Ama H$_r hmoVr ahVr

    h & BgH$s Amd`H$ AmaoI Ho$ mam `m`m H$s{OE & 5

  • 55/1/1 15 P.T.O.

    Draw a ray diagram showing the formation of the image by a point object

    on the principal axis of a spherical convex surface separating two media

    of refractive indices n1 and n2, when a point source is kept in rarer

    medium of refractive index n1. Derive the relation between object and

    image distance in terms of refractive index of the medium and radius of

    curvature of the surface.

    Hence obtain the expression for lens-makers formula in the case of thin convex lens.

    OR

    (a) Distinguish between linearly polarised and unpolarised light.

    (b) Show that the light waves are transverse in nature.

    (c) Why does light from a clear blue portion of the sky show a rise and

    fall of intensity when viewed through a polaroid which is rotated ?

    Explain by drawing the necessary diagram.

    30. (a) EH$ AmaoI H$s ghm`Vm go XemBE {H$ g{Y-S>m`moS> _| mgr naV VWm amo{YH$m {d^d H$go ~ZVo h &

    (b) nyU-VaJ {X>H$mar H$m n[anW AmaoI ~ZmBE & BgH$s H$m`{d{Y H$m dUZ H$s{OE

    VWm {Zdoer Ama {ZJV VaJ$nm| H$mo XemBE & 5

    AWdm

    (a) EH$ n[anW AmaoI mam gjon _| n> H$s{OE {H$ {Zdoer VWm {ZJV A{^bjUm| H$m

    A``Z H$aZo Ho$ {bE C.E. {d`mg _| {H$gr n-p-n Q>m{OQ>a H$m Cn`moJ H$go

    {H$`m OmVm h &

    (b) {H$gr$ Q>m{OQ>a dYH$ H$m Xmo{b Ho$ $n _| {H$`m H$aZo Ho$ {gmV H$m gjon _|

    dUZ H$s{OE & Bggo, Amd`H$ n[anW AmaoI Ho$ Cn`moJ mam n> H$s{OE {H$

    Xmo{b _| dV n[anm{bV XmobZ H$go m hmoVo h & 5

    (a) Explain with the help of a diagram, how a depletion layer and

    barrier potential are formed in a junction diode.

    (b) Draw a circuit diagram of a full wave rectifier. Explain its working

    and draw input and output waveforms.

    OR

  • 55/1/1 16

    (a) Explain briefly, with the help of a circuit diagram how an n-p-n

    transistor in C.E. configuration is used to study input and output

    characteristics.

    (b) Describe briefly the underlying principle of a transistor amplifier

    working as an oscillator. Hence, use the necessary circuit diagram

    to explain how self sustained oscillations are achieved in the

    oscillator.