2014 kias-snu winter camp - lecture_yu

Upload: fifaonline756593583

Post on 04-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    1/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Topological Ideas

    in Condensed Matter Systems

    2014 KIAS-SNU Physics Winter Camp

    2014.02.09-16

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    2/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Geometric phases in Physics

    Jeeva Anandan, Joy Christian, and Kazimir Wanelik, American Journal of Physics 65, 180 (1997).

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    3/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Fi .1

    Falling Cats

    Have you ever wondered why a falling cat

    always lands on her feet?Apparently, the problem of the cat is that

    due to angular momentum conservation

    there seems to be no way for the cat to

    right herself.

    However, by changing her shape she can

    affect a rotation as a whole, a geometric

    effect. In the quantum world, such

    geometric effects give rise to additional

    phase factors depend only on the way the

    system evolves.

    3R. Montgomery, Commun. Math. Phys. 128, 565 (1990).

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    4/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Foucaults Pendulum

    4M. Berry, Scientific American, December 1988.

    The start of the pendulums rotation hasshifted by a certain angle, called

    Hannays angle which is equal to the

    solid angle subtended by the pendulums

    axis of rotation around the globe.

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    5/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Aharonov-Bohm effect

    5

    B = 0

    B6= 0

    2 = ei22

    1 = ei11

    1 =

    e

    h

    ZC1

    Adl

    2 =e

    h

    ZC2

    Adl

    Q=1+2= ei1

    11

    +(2/1)ei(e/h)B

    B= (1 2)/(e/h) =IC12

    Adl

    Question:

    geometric ortopological effect?

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    6/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Magnetic monopole and Dirac string

    6Images from wikipedia http://en.wikipedia.org/wiki/Magnetic_monopole

    B , 0

    B = A

    B = gC

    http://en.wikipedia.org/wiki/Magnetic_monopole
  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    7/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Anholonomy and topology

    7

    Px =!- y

    1-x =!+y

    P

    When transported along C,P moves fromytoy. When transported along C,P moves fromyto -y.

    x =!- y

    1-x =!+y

    Anholonomy,e.g.,sgn(y),

    comes from the topology of manifold.

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    8/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Fiber bundles, connection, curvature, and topology

    Holonomy: Connection:

    Curvature:

    Topology

    8

    C = (s2)

    (s1)(s1)

    (s2)

    A(r)

    C = 2 1 +q

    ~

    ZC12

    A(r)dl

    (r)

    F

    =

    IS

    ~F ds =e

    ~

    IS

    A(r) ds

    ~F =e

    ~ A(r)

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    9/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Geometric phase in superconductors:magnetic vortex

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    10/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    GinzburgLandau theory

    Superconducting order parameter: G-L free energy:

    Superconducting current:

    10

    (r) = |(r) |ei(r)

    (x)

    x

    0

    1

    j =2e~

    m

    | |2( 2e

    ~A)

    (r)

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    11/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    What if

    11

    (r ,) = ?

    supercurrent

    along the edge?

    j =2e~

    m| |

    2

    ( 2e

    ~ A)

    The kinetic energy of the edge current can be suppressed if

    A(r ) =~

    2e

    =

    ~

    2er

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    12/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Abrikosov vortex in type-II superconductors

    12

    (r,) = |(r) |ei

    |(r = 0) | = 0

    otherwise singular at r=0

    STM image of Vortex lattice

    H. F. Hess et al., Phys. Rev. Lett. 62, 214 (1989)

    A(r > ro ,) =~

    2er

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    13/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Geometric phase in quantum mechanics:Berry phase

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    14/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    (C) =

    ZS

    1

    i

    dn

    dx1

    dn

    dx2

    dn

    dx2

    dn

    dx1

    !dx1 dx2

    (C) =

    iIC

    n

    n

    dxdx

    Parallel transport and anholonomy angle:Mathematical formulation

    14Ming-Che Chang, Berry phase in solid state physics, http://phy.ntnu.edu.tw/~changmc/Paper/Berry_IFF_FF_4.pdf

    12

    34

    vi

    vf

    r

    e1

    e2

    r

    e1

    e2

    ~

    r

    e1

    e2

    r

    u

    v

    fixed frame

    u

    v

    e1e2

    (x) = n(x)ei(x)

    r = 0

    e1 = ~ e1 e1 e2 = 0

    e2 = ~ e2

    e2

    e1 = 0

    =12

    (e1 + ie2) Im

    = 0

    d = n dn i d

    http://phy.ntnu.edu.tw/~changmc/Paper/Berry_IFF_FF_4.pdf
  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    15/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Adiabatic theorem

    15

    i~t(x, t) = H(x, t)

    (x, t) =X

    n

    cnn (x)eien t/~ Hn (x) = enn (x)

    Time-dependent perturbation theory for tH(t) , 0

    a general solution:(t) =

    Xn

    cn (t)n (t)ei(t)

    wheren (t) =(1/~)

    Z t

    0

    en (t0)dt0

    cm (t) =X

    n

    cnhm |niei(nm )

    =cmhm |niX

    n,m

    cn

    hm |H |ni

    en emei(nm )

    adiabatic approximation

    cm (t) = cm (0)exp

    "

    Z t

    0

    hm (t0) |m (t

    0)idt0# = cm (0)e

    im (t)

    n (t) =n (t)ein (t)

    ein (t) n (t) Berry phase

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    16/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Anholonomy in quantum mechanics:Berry phase

    16

    H(r,p;R,P)

    slow variables

    fast variables

    |(t)i = ein(R)ei/~

    R t

    0 d t en(R(t)) |n;Ri

    n (t) =

    ihn|ni

    n (C) = i

    IC

    *n|n

    R

    + dR =

    IC

    A dR

    A(R) = i *n|n

    R+ Berry connection

    n (C) = i

    ZS

    *n

    R| |

    n

    R

    + d2R =

    ZS

    ~F d2R

    ~F(R) =R A(R) Berry curvature

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    17/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    A spin in a rotating solenoid

    17Ming-Che Chang, Berry phase in solid state physics, http://phy.ntnu.edu.tw/~changmc/Paper/Berry_IFF_FF_4.pdf

    S

    x

    y

    z

    H=

    L2

    2I+B

    B

    |+;B=

    cos

    2

    ei sin 2

    , |; B=

    ei sin

    2

    cos 2

    Electromagnetism quantum anholonomy

    vector potential A(r) Berry connection A(R)

    magnetic field B(r) Berry curvatureF(R)

    magnetic monopole point degeneracy

    magnetic flux (C) Berry phase(C)

    A = 121 cos Bsin

    F = 1

    2

    B

    B2.

    (C) = 12(C)

    http://phy.ntnu.edu.tw/~changmc/Paper/Berry_IFF_FF_4.pdf
  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    18/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Berry phase and Bloch state:Electric polarization

    18

    P

    P

    P

    Unit cell

    +

    +

    Electric polarization in a periodic solid is

    an ill-defined quantity!

    P() = q

    V

    i

    i|r|i

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    19/30

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    20/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Berry phase in a discrete form

    20

    !u3!

    !u2!

    !un!=!u1!

    !u4!

    !un-1!

    Check that a local gauge does not affect the Berry phase:

    In the continuum limit:

    !u!"

    !=0!=1

    "Nothing physical changes for a !-dependent gauge:

    () ei()()

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    21/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Berry phase in momentum space

    21

    !uk!

    kx

    ky

    0 2"/a

    #

    Bloch function

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    22/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Electric polarization in momentum space

    22

    instead of

    !uk!

    "=0 "=1

    kx

    ky

    0 2#/a

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    23/30

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    24/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Anomalous Hall effect:unquantized version of quantum Hall effect

    24

    xy = e2

    h

    Z dk(2)d

    f(k)kxky

    H= h2k2

    2m + (k )ez z

    = 2

    2(2k2 +2)3/2

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    25/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Magnets:Spins and geometric phases

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    26/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Spin ice crystals

    26D. J. P. Morris et al., Dirac Strings and Magnetic Monopoles in the Spin Ice Dy2Ti2O7, Science 326, 411 (2009).

    a b

    | l |

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    27/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Monopoles in momentum space of SrRuO3

    27

    0

    20

    40

    60

    80

    Res

    xy

    (W1

    cm1)

    Im

    sxy

    (W1

    cm1)

    100

    E EF

    k

    m

    120

    2|m|

    20

    0

    experiment

    calculationT=10K

    m=2meVm=1meVm=2meVm=3meV

    20

    40

    60

    0 2 4 6

    energy (meV)

    8 10 12

    (a)

    (b)

    4

    2

    0

    2

    4

    E(k)

    (a)

    21

    01

    2

    10

    1

    kykx

    H= kxsx+ kysy + msz

    sxy=

    e2

    2 hsign(m)

    bn(k) = k

    2|k|3

    N.Nagaosa, X.Z. Yu and Y. Tokura, Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions,

    Phil. Trans. R. Soc. A 370, 58065819 (2012)

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    28/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Anomalous Hall effect in Nd2Mo2O7

    28

    6

    (a) (b)

    umbrella structureM

    Jfd

    Nd 4fNd

    Mo 4d

    Mo

    (c)6

    4

    2

    0 50 100

    2K

    H||(100)

    10K

    20K30K40K

    50K

    60K

    70K

    80K

    90K100K

    T(K)

    H=0.5 T

    4

    2rH

    (106

    Wc

    m)

    rH

    (106

    W

    cm)

    0 2 4magnetic field (T)

    6 8 10

    N.Nagaosa, X.Z. Yu and Y. Tokura, Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions,

    Phil. Trans. R. Soc. A 370, 58065819 (2012)

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    29/30

    2014 KIAS-SNU Physics Winter Camp, 2014.02.09-16

    Skyrmion

    29N.Nagaosa, X.Z. Yu and Y. Tokura, Gauge fields in real and momentum spaces in magnets: monopoles and skyrmions,

    Phil. Trans. R. Soc. A 370, 58065819 (2012)

    ei= via0 1c

    ai= h2e

    (n vin n)

    hi= [V a]i=hc

    2ediz(n vxn vyn)

    Effective electromagnetic fields

  • 8/13/2019 2014 KIAS-SNU Winter Camp - Lecture_YU

    30/30

    2014 KIAS SNU Physics Winter Camp 2014 02 09 16

    Liquid crystals

    30

    http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0m/s15-08-liquid-crystals.html

    http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0m/s15-08-liquid-crystals.html