2016 forecast proposal 24apr2014€¦ · uptake and soil water evaporation in the context of a...

17
1 Project Proposal for Department of Ecology Water Forecast 2016 As described in our letter of transmittal (attached), Washington State University (WSU) would be pleased to partner with the Office of Columbia River (OCR) for the 2016 Long‐ Term Water Supply and Demand Forecast. We propose to focus the 2016 Forecast around six key issues as described in detail below. 1. Update and expand the 2011 water forecast (3tier analysis) This project comprises three types of updates to the 2011. WSU will 1) update the existing forecast estimates for the Columbia River Basin using improved modeling capabilities (see description below), 2) extend the forecast window forward 5 years while using future climate projections from the most recent Coupled Model Inter‐comparison Project (CMIP5); and 3) begin the preliminary work to eventually extend the forecast to Western Washington WRIAs. With the third option, this effort includes coordination with west side watershed planning, Puget Sound Partnership, King County demand projections, etc. This work will provide a (nearly) geographically complete summary of water forecasts in the State of Washington and could form a foundation for a geographically complete Washington State Water Plan. The update to the 2011 report will focus on the WRIA specific forecasts of the discrepancy between water availability and water demand. This analysis combines hydrological and economic modeling and was done for approximately 20 WRIAs in Eastern Washington. Changes in the crop mix were based on forecasts of economic drivers of food demand. Downscaled climate models were incorporated into VIC‐CropSyst to simulate physical water supply throughout the year on a daily time step. The impact of water shortages were incorporated based on the curtailment of interruptible rights holders in a spatially explicit way based on available water rights data. The integrated hydrology/crop growth/economic modeling framework has developed significantly since the previous forecast under the BioEarth and WISDM projects funded by the USDA (http://www.cereo.wsu.edu/bioearth/ and http://www.cereo.wsu.edu/wisdm/). The updated forecast will benefit substantially from this. Description of Integrated Modeling Framework The following elements are new for the 2016 Forecast: A tighter integration between hydrologic and cropping models (resulting in VIC‐ CropSyst v2.0) Development and incorporation of a mechanistic irrigation module for improved simulation of consumptive loss Improvement in reservoir and curtailment modeling for specific locations; e.g., main‐stem modeling at weekly time‐steps (rather than monthly) and incorporation of RiverWare modeling over the Yakima River basin (which includes projects specific to the Yakima Integrated Plan) Utilization of improved climate forecasting data and tools

Upload: others

Post on 02-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

1

ProjectProposalforDepartmentofEcologyWaterForecast2016

Asdescribedinourletteroftransmittal(attached),WashingtonStateUniversity(WSU)wouldbepleasedtopartnerwiththeOfficeofColumbiaRiver(OCR)forthe2016Long‐TermWaterSupplyandDemandForecast.Weproposetofocusthe2016Forecastaroundsixkeyissuesasdescribedindetailbelow.

1. Updateandexpandthe2011waterforecast(3‐tieranalysis)

Thisprojectcomprisesthreetypesofupdatestothe2011.WSUwill1)updatetheexistingforecastestimatesfortheColumbiaRiverBasinusingimprovedmodelingcapabilities(seedescriptionbelow),2)extendtheforecastwindowforward5yearswhileusingfutureclimateprojectionsfromthemostrecentCoupledModelInter‐comparisonProject(CMIP5);and3)beginthepreliminaryworktoeventuallyextendtheforecasttoWesternWashingtonWRIAs.Withthethirdoption,thiseffortincludescoordinationwithwestsidewatershedplanning,PugetSoundPartnership,KingCountydemandprojections,etc.Thisworkwillprovidea(nearly)geographicallycompletesummaryofwaterforecastsintheStateofWashingtonandcouldformafoundationforageographicallycompleteWashingtonStateWaterPlan.

Theupdatetothe2011reportwillfocusontheWRIAspecificforecastsofthediscrepancybetweenwateravailabilityandwaterdemand.Thisanalysiscombineshydrologicalandeconomicmodelingandwasdoneforapproximately20WRIAsinEasternWashington.Changesinthecropmixwerebasedonforecastsofeconomicdriversoffooddemand.DownscaledclimatemodelswereincorporatedintoVIC‐CropSysttosimulatephysicalwatersupplythroughouttheyearonadailytimestep.Theimpactofwatershortageswereincorporatedbasedonthecurtailmentofinterruptiblerightsholdersinaspatiallyexplicitwaybasedonavailablewaterrightsdata.Theintegratedhydrology/cropgrowth/economicmodelingframeworkhasdevelopedsignificantlysincethepreviousforecastundertheBioEarthandWISDMprojectsfundedbytheUSDA(http://www.cereo.wsu.edu/bioearth/andhttp://www.cereo.wsu.edu/wisdm/).Theupdatedforecastwillbenefitsubstantiallyfromthis.

DescriptionofIntegratedModelingFrameworkThefollowingelementsarenewforthe2016Forecast:

Atighterintegrationbetweenhydrologicandcroppingmodels(resultinginVIC‐CropSystv2.0)

Developmentandincorporationofamechanisticirrigationmoduleforimprovedsimulationofconsumptiveloss

Improvementinreservoirandcurtailmentmodelingforspecificlocations;e.g.,main‐stemmodelingatweeklytime‐steps(ratherthanmonthly)andincorporationofRiverWaremodelingovertheYakimaRiverbasin(whichincludesprojectsspecifictotheYakimaIntegratedPlan)

Utilizationofimprovedclimateforecastingdataandtools

Page 2: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

2

Figure1.Tosimulateflowsintothestate,wewillperformsimulationsfortheentireColumbiaRiverbasinaswellasallofWashingtonState.TheirrigationmapsarefromMODIS(OzdoganandGutman,2008)andGMIA(Siebertetal.,2005)andlandcoverarefromNationalLandCoverDataset(NLCD),theUSDACroplandDataLayer(CDL),andMODIS.

Figure2illustratestheintegrationdetailsforthebiophysicalmodelingframework.VIC‐CropSystprovidesrunoff,baseflow,aquiferrecharge,andtop‐of‐cropirrigationdemand;thisinformationispassedtothereservoirmodels.RiverWareand/orColSim(fortheYakimaandColumbiaRivers,respectively)routerunoffandbaseflowthroughthesurfaceflownetwork,andsimulatesreservoirmanagement.ThetopofthecropirrigationdemandsprovidedbyVIC‐CropSystareseparatedintosurfacevs.groundwaterdemandsandextractedfromthesystemaccordingly.Irrigationcanalconveyancelossesarealsoaccountedfor.Thereservoirmodeldeductssurfacewaterirrigationdiversionsandgivesestimatesofresultingsurfacewatervolumes,whichisthenusedtoinformreservoiroperationsandwaterrightscurtailmentdecisions.Forthisforecast,wewillenhanceourwatermanagementsimulationsbyacquiringandintegratingnewerwaterrightsinformationinadditiontoautomatinganddiscretizing(intime)ourreservoirsimulations.

Page 3: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

3

Figure 2. Integrated biophysical modeling framework to account for coupled dynamics between hydrology, cropping systems, and water management.

Figure3demonstratesthepassingofinformationbetweencoupledbiophysicalmodelsandeconomicmodelingregardingshort‐runproducerresponseinirrigationmanagementandlong‐runresponseincroppingdecisions.Economicmodelingprovidesdecisionsondeficitirrigationmanagementintheeventofwaterscarcityandtheentirebiophysicalmodelisrerununderdeficitirrigationtoquantifytheimpactsoncropproductivityanddownstreamwateravailability.

Figure3.Coupledbiophysicalandeconomicmodelingschematic.IndividualModelDescriptionsLarge‐ScaleHydrology.TheVariableInfiltrationCapacity(VIC;Liangetal.,1994)large‐scalemodelwillbeusedtosimulatethebroadaspectsofclimatechangeonregionallandsurfacehydrology,includingshallowsubsurfacemoisturedynamics,butnotdeepgroundwater

Page 4: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

4

dynamics.TheVICmodelisafully‐distributed,physically‐basedmodelwhichsolveswaterandenergybudgetsateverytimestep(from1‐24hours)andforeverygridcell.Itwasdevelopedforlarge‐scaleapplications(1/16th°forthisproject)withsub‐gridvariabilitybasedonstatisticalrelationshipsforlandcover,elevation,saturatedextent,andanumberofothervariables.CroppingSystems.CropSystis bio-physically based and uses hourly and daily time steps to capture diurnal progression of various biological, physical and chemical processes. The “growth engine” in the model is based on a combination of radiation-use efficiency (solar radiation capture) and transpiration-use efficiency (water capture), which are modulated by weather conditions affecting atmospheric evaporative demand and vapor pressure deficit, and by soil conditions and irrigation management affecting available soil water. This approach permits a tight integration of crop production, weather and management with atmospheric warming and atmospheric carbon dioxide concentration (e.g., El Afandi et al., 2010; Abraha and Savage, 2006; Stöckle et al., 2010), including responses to increased frequency of drought induced water shortages.

VIC‐CropSystIntegratedModel.WehavecompletedafullydynamiccouplingbetweenVICandCropSystwhereCropSystplugsintoVICasadynamicvegetationcyclingmodule,providingtoVICplantwateruptakefortranspirationbysoillayer,waterdemandforirrigation,andleafareaindex(Figure4).VICismodifiedtosimulatecrop‐specificpotentialevapotranspirationandtorepresentirrigationtechnology‐specificevaporationofirrigationwaterdropletsinaddition

tobaresoilandcanopy‐interceptionevaporationlosses(seeFigure5fordetails).CropSystalsosimulatescropyieldswhichareneededbytheeconomicmodel.VICinvokesCropSystforeachofitssub‐gridclassesthatareoccupiedbyacroplandcover.Ininformingcropproducerdecisions,VIC‐CropSystdoesnotresolveindividualfarmsbecausethesefarmsarerepresentedimplicitlyassub‐gridclasseswithinagridcell.Instead,VIC‐CropSyst’sstrengthliesinproducinginformationastothebroaderimplicationsofwidespreadchangesinirrigation,fertilization,orcropmanagementdecisions.However,issuesofaggregationofproductionfromtheindividualfarmtotheregionalscalearehandledexplicitlywithintheeconomicmodeling.

Figure4.VIC‐CropSystintegrationdetails.

Page 5: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

5

ReservoirsandPro‐ratableWaterRightsCurtailment.Wewilluseacombinationofwatermanagementmodules. The physical system of reservoirs and dams are represented using the Columbia Simulation Reservoir Model (ColSim) (Hamlet et al. 1999) which models the main storage reservoirs and run-of-the-river reservoirs on the Columbia River main stem. It also includes the Snake, Kootenai, Clark Fork and Pend Oreille tributaries. Smaller tributaries like the Yakima River are ignored. For the 2016 Forecast, we will update this model from a monthly to a weekly tiem-step to use routed, bias corrected VIC-CropSyst simulated stream flow as its input. Operation rules for hydropower production, flood evacuation and major flow targets are considered. In addition to ColSim, we have a simple reservoir model for the Yakima River subbasin. Multiple reservoirs in the Yakima are operated together as one system and we model the combined storage of these reservoirs based on a simplified set of operating rules as described in USBR (2002). The system is modeled to reach reservoir refill in June and simultaneously ensure that there is free reservoir space available to capture any flood events. Finally, we can also drive the Yakima RiverWare model by our VIC-CropSyst flows and demands.

Figure5.Detailsforthedevelopmentofamechanistically‐basedirrigationmoduleforVIC‐CropSyst.ModelInputsWeather.Forhistoricalweatherinformation(dailymaximumandminimumtemperatures,relativehumidity,precipitation,andwindspeed),wewillapplythe4‐kmgriddedproductdevelopedbyAbatzoglou(2011)fortheperiodof1979‐2010,whichisacombinationofinsituobservationsandreanalysisdata.Forfuture(2036‐2075)weather,wewillapplya4‐kmgriddedproductinwhichGCMresultsfromtheCoupledModelIntercomparisonProject5(CMIP5)havebeendownscaledfor3RepresentativeConcentrationPathways(RCPs4.5,6.0,and8.5)usingtheMultivariateAdaptedConstructedAnalogs(MACA)downscalingapproachas

Page 6: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

6

implementedbyAbatzoglouandBrown(2011).MACApreservesdynamicalrelationshipsbetweenvariablesandhasbeendemonstratedtobeusefulforecologicalapplications(AbatzoglouandBrown,2011).HistoricalLandCoverandUse.LandusehasbeentakenfromtheWashingtonStateDepartmentofAgriculture(WSDA)agriculturallandusegeodatabase,whichcombinesUSDA‐NASSCroplandDataLayer(CDL)with1meterNationalAgricultureImageryProgram(NAIP)imagery,FSA/USDACommonLandUnitfieldboundaries,andgroundtruthing.WSUextensionpersonnelhaveprovidedinformationregardingplanting,emergence,flowering,yieldformation,andmaturity.TheWSDAdataincludeinformationonirrigatedextent.

2. PilotApplicationofMETRICinWashingtonState

Wewilldevelopascientificallydefensiblemodelingtoolcombiningwaterresourcesmodelingwithremotesensingvalidationmethodologiestopredictagriculturalcropdemands,irrigationreturnflows,andstreamdischargesatreachtowatershedscales.MappingEvapoTranspirationathighResolutionwithInternalizedCalibration(METRIC)isasatellitebasedimageprocessingmethodologythatcalculatesspatialdistributionoffieldscale(~30m)evapotranspirationasaresidualofsurfaceenergybalance(Allenetal.2007).ItisavariantoftheSurfaceEnergyBalanceAlgorithmforLand(SEBAL)modelwherenear‐surfacetemperaturegradientsareexpressedasindexedfunctionofradiometricsurfacetemperature(Bastiaanssenetal.1998).TheprimaryMETRICinputsareshort‐andlong‐wavethermalimagesfromsatelliteimagery(e.g.,Landsat),adigitalelevationmodel,andgroundbasedweatherdatameasuredwithintheareaofinterest.

Figure6.Waterbalancedepictingimportantcomponentsforirrigatedagriculture.

EvapotranspirationatWatershedScale

Page 7: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

7

ArelativelylargeuncertaintyinthewaterbudgetoccursduetotheinherentvariabilityinETandassociatederrorsincomputationalapproaches,parameterestimation,trackingofstatevariables,availableforcingmeteorology,atmosphericfeedbacks,andprocessdefinition(Pomeroyetal.2010).Processestousesatelliteimageryhavebeenshowntoimproveevapotranspirationestimatesalthough“nudging”ofmodeledsoilmoisturetoanassumedclimatologyandprecipitationbiasdidnotfullyaccountfortheoverestimationofsummerET(Maureretal.2001).IntheiranalysisofETuncertainty,Kingstonetal.(2009)concludedthatchoiceofETmethodcandeterminethedirectionoffuturewaterresourcesprojections.Accuratelydefiningthecompletewaterbalancerequiresextrapolationofevapotranspiration(ET)estimatesfrompoint(orlysimeterscale)toirrigationacreagethroughoutthebasin.

Figure 7. Comparison of daily ET estimates from ASCE and CropSyst for clipped alfalfa under low- and high- frequency irrigation.

CropSystevapotranspirationmethodologyisbasedontheUnitedNationsFoodandAgricultureOrganization(FAO)proceduredescribedintheFAOIrrigationandDrainagePaperNo.56(FAO1998).Thisdocumentdefinesahypotheticalshortgrasswithprescribedcharacteristicsasareferencecrop(ETo).CropSystdeterminesadailyvalueof

Page 8: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

8

maximumcropETatfullcanopybymultiplyingETobyacropspecificcoefficient.TheactualdailycropETisbasedonsimulationofcropgrowth,groundcanopycover,andwateruptakeandsoilwaterevaporationinthecontextofacompletesoilprofilewaterbalance.ThecurrentrevisionoftheWashingtonIrrigationGuidelines(WIG)isbasedonanalfalfareferencecrop(ETr)standardizedbytheAmericanSocietyofCivilEngineering(ASCE2005),withcropETdeterminedbymultiplicationofETrbyacropcoefficientthatfluctuatesthroughoutthegrowingseason.TheASCE‐basedmethodologyintheWIGisintendedtoestablishalong‐termaverageestimationofETforthepurposeofprovidingguidanceforirrigationdesignanddefinitionofwaterrights.ThemethodologyinCropSystcanbeusedforthesamepurpose,butinadditionitallowscalculatingETforirrigationscheduling,accommodatingdifferentirrigationmethodsandmanagementpracticessuchasdeficitirrigation.ThesetwomethodsproducesomewhatdifferentreferenceETvalues(ETr>ETo),butthesedifferencesarecompensatedbyadifferentsetofcropcoefficients(Kc)specifiedforeachmethod.

Figure7showsdailycropETvaluesforaclippedalfalfa(multiplecuttings)referencecropinProsser,WA(YakimaRiverbasin)usingdailyclimatedatafromtheWSUAgWeatherNet.TheCropSystKctevolvesmoreslowlytoreachanuppervalue,whiletheASCEKcpredictsfasterinitialdevelopment.Inadditiontoearlyseasondiscrepancies,AlfalfaETisnotablydifferentwhenalfalfaharvestevents(clipping)areconsidered.Overall,CropSystETisslightlylowerthantheASCEvaluesforbothlow‐andhigh‐frequencyirrigationforalfalfa.Thedifferencescanbeseenacrosscroptypes.Table1showsyearlyandten‐yearaverageETcalculatedusingtheASCEmethodologyandCropSystsimulations.GraincornETestimatedbyASCEislowcomparedtoCropSyst,withthebulkofthedifferencebasedonlowerETearlyintheseasonwhensoilwaterevaporationcanbeanimportantcomponentdependingonirrigationfrequencyandirrigationmethod.CropSystETusingdripirrigation,wheresoilwaterevaporationisonlyaminorfractionofET,isclosetograincornETestimatedbyASCE.

ScalingCropSystpointETestimatestothewatershedscalewhileretainingpredictivepowerforfutureoperationalscenariosrequiresextensivecalibrationandfielddata.CouplingthemodelwiththeMETRICremotesensingmethodologywillgreatlyreducetheuncertaintyassociatedwiththisprocess.METRICcalculatesinstantaneousETthroughaseriesofcomputationstoestimatenetsurfaceradiation,soilheatflux,andsensibleheatfluxtotheair.AnadvantageofMETRICisthatcalibrationisdoneinternallyusingreferenceETvaluesratherthanevaporativefractions.Also,thecropcoefficientcurves,cropdevelopmentstage,andthecroptypeneednotbeknownastheimagesreflecttheseparameters.AlongwithETestimates,theseparameterswillbeusedtoverifytheCropSystmodelprediction.AlthoughMETRICiscompatiblewithanysatellitehavingthermalsensors,LandsatdataiscommonlyusedduetothehighresolutionofshortwaveandthermalbandswhichfacilitatesdetailedETinformationfromagriculturalfields.ThedrawbacksofusingLandsatimagesarethe16dayrevisittimeandthedifficultyinprocessingimagesduringcloudydays.ThelackofdailyimagesrequiresinterpolationofETusingagriddedreferenceETdataforthedaysinbetweentherevisitperiod.Uncertaintiesexistinselectionofdryand

Page 9: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

9

wetconditionsintheimageforcalibrationtherebyintheestimationofindividualfluxesoftheenergybalance.However,asETiscalculatedasresidualofenergybalance,alessbiasedestimateofETisgenerated.Currently,METRICisbeingusedinIdahotomonitorwaterrights,quantifynetgroundwaterpumpingandtoestimaterechargefromsurfaceirrigatedlands(Allenetal.2005)andhasbeensuccessfullydefendedincourtproceedings.CouplingtheCropSystandMETRICmodelswillenableaccuratepredictionsofchangesinirrigationpracticesandcroprotationandallowdevelopmentofmorerobustparametersinCropSyst.ThisisimperativeforprojectingthefutureeffectsofclimatevariationsincetheMETRICmethodologycannotbeusedtoevaluatefuturescenarios.

Table1.Ten‐yearseasonalET(mm)ofgraincorn,alfalfa,andappleatProsser,WAasestimatedbytherevisedWashingtonIrrigationGuidelinemethodology(ASCE)andCropSystsimulations(HF=high‐frequencyirrigation;LF=low‐frequencyirrigation;D=dripirrigation;U=unclipped;C=clipped).

GrainCorn Alfalfa ApplesASCE CropSyst ASCE CropSyst ASCE CropSyst HF LF D U‐HF U‐LF C‐HF C‐LF HF LF D

575 741 587 549 941 1141 1102 853 766 897 846 741 606526 711 589 530 862 1013 971 820 746 819 897 747 622531 716 586 538 894 1168 1142 941 832 862 898 751 621552 805 680 618 922 1119 1041 875 802 880 987 759 651623 823 676 624 1008 1265 1198 977 779 969 1019 837 698570 791 638 599 915 1124 1080 902 764 896 969 797 670531 752 619 561 854 1068 1044 851 767 832 904 738 630519 719 601 548 842 1042 999 842 758 813 914 697 615525 699 571 525 838 1082 1053 878 776 813 890 688 600507 747 604 552 858 1022 972 821 759 823 923 760 634

Average546 750 615 564 893 1104 1060 876 775 860 925 752 635

3. IntegratinggroundwaterandsurfacewateraccountingintheCRB

Inthe2006WaterSupplyandDemandForecast,WSUsimulatedsurfacewatersupplyandout‐of‐streamdemandswithanintegratedcomputermodelthatsimulatedtherelationshipsbetweenwatersupply,climate,hydrology,irrigationwaterdemand,cropproductivity,economics,municipalwaterdemandandwatermanagementoverthreegeographictiers.Theintegratedmodelincludedcurtailmentrulesbasedonwaterrightsthatwereinterruptibletoadoptedinstreamflows,andbasinswheresurfacerightswereroutinelyregulated(e.g.YakimaBasin1905proratables).However,theintegratedmodel

Page 10: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

10

didnotincludegroundwater/surfacewaterinteractionsandpresumedgroundwaterwasnotlimitingwhenhydratingwaterrights.

Groundwaterislimitinginmanyareasofthestateandthatlimitationhasimpactson:

Individualfarmercropchoices(e.g.orchard/grapeversusrowcrop) Economics(e.g.employmentandtaxcontributionsinareaswherelongterm

intensivewaterusemaynotbesustainable). Surfacewatersupplies–bothforinstreamandout‐of‐streamuses(astheyarere‐

routedandhencediminishedtohydratedeclininggroundwater). Publicwatersupplies(wherecleangroundwaterismoreadvantageousand

economicthantreatingsurfacewater).

Numerousareasofdeclininggroundwaterareknownorsuspectedandinsomecaseshavebeen/arebeingstudiedbyEcology,USGS,localwaterpurveyors,andothers,including:

TheOdessaSubarea,whereOCRismakingactiveinvestmentsindevelopinggroundwatersourcesubstitutionusingColumbiaRiversupplies.

The2011USGSColumbiaPlateauGroundwaterAvailabilityStudy1,whichlookedatdeclininggroundwaterareasthroughoutEasternWashington.

TheHorseHeavenHillsareainKlickitatandBentonCounties,whereOCRisstudyingthepotentialforeithersourcereplacementofexistingagriculturalsupplieswithColumbiaRiversupplyand/oraquiferstorageandrecovery.

TheWestPlainsareainSpokaneCounty,whichhasdocumentedgroundwaterdeclinesandisthesubjectofagroundwaterstudybySpokaneCounty.

TheMoxeeBlackRockarea,whichiscoveredundertheIntegratedUSGSGroundwaterStudyinthegreaterYakimaBasin.

SaddleMountainBasaltaquifersinWestRichland,whicharethesubjectofongoingmonitoringbytheCityofWestRichlandasarequirementofanewwaterrighttheCityobtainedin2010.

AquifersintheCityofWhiteSalmon,whicharethesubjectofapilotASRproject. LincolnCountywhereOCRisfundingastudytoevaluatepassiverehydrationof

streams,lakes,andaquifersfromtheColumbiaRiver. WallaWallaalluvialandbasaltaquiferswhereEcologyisfundingwaterbanking

efforts,passivehydrationofthealluvialaquifertorestoreinstreamflows,andaquiferstorageandrecoveryofbasaltaquiferstosupportmunicipalsupplies.

WSUwillperformthefollowingtobeginintegratinggroundwateravailabilityintothemodelforecast:

1. UsingEcologydatabasesandwateravailabilityfocussheets,USGSandotherscientificliteraturereview,wewillcompileexistinginformationondeclininggroundwaterintoaGISframework,includingavailablegroundwaterdatasets,

1http://www.ecy.wa.gov/programs/wr/cwp/USGS_Study.html

Page 11: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

11

documentingstudy/modelingefforts(who,when,type,levelofeffort,limitations),etc.

2. Foreachareawheregroundwateravailabilityislikelytobelimitinginthefuture,wewillperformagapanalysisonthecurrentstateofexistingknowledgeandrecommendationsforfuturework(includingbudgetarycostestimates).Thiscouldincluderecommendationsonexpandedwellwaterlevelmonitoring,developmentofnewmodelsorupdatingofexistingmodels,andexploratorydrilling/pumptestingtocharacterizeuncertainstructuralfeatures(suchasthatfundedbyOCRfortheHorseHeavenHillsin2014).

3. Foreachareawheregroundwateravailabilityislikelytobelimitinginthefuture,wewillidentifylikelywaterrightsatriskofcurtailment.Thistaskwillincludedelineationofwaterrightsatrisk,sortingthembypriority,overlayingpotentialcurtailmentrulesbasedonmodelsofsustainableyieldifavailable,rankingofrightsinriskcategories(e.g.low,medium,high),andidentifyingtheeconomicimpactassociatedwiththenoactionalternative(e.g.farmsfallowedorconvertedtodryland,housesrelocated,seniorwaterrightsreallocatedto“higher”uses).

4. BasedonEcologyinput,selectgeographicareasofgroundwaterdeclineswillbeidentifiedforintegrationintotheforecastmodel.Actualintegrationmaybedonebydevelopinglocalizedcurtailmentrulesbasedonlikelyfuturepriorityenforcementordeveloping(linkagebetweenanexistinggroundwatermodelandthesurficialforecastmodel.

5. BasedonexistingandfutureconjunctiveusesolutionstodeclininggroundwaterbodiesthroughASR,passiverehydration,sourcesubstitutionorotherprojects,wewillforecastpotentialimpactstosurfacesources.

Beginningtointegrategroundwateravailabilityandeffectonsurfacewatersupplyintothemodelwillbetterpredictfuturewaterdemandandthereliabilityofexistingwaterrights.Beyondimprovingtheaccuracyoffuturewaterneeds,thisintegrationwillgiveEcologytoolstoengageonkeypolicyissues,suchas:

Wherearethemostatriskareasofgroundwaterdeclinesbasedonexistingwaterrightsthatusethem?

o Arepermitexemptwellscontinuingtobedevelopedinthesebodiesandasthemostjuniorprioritywaterrightsarethesedomesticsuppliesatriskofcurtailment?

o Arehighvaluecropsatriskoflossandwhatimpactdoesthathaveonthelocaleconomy?

o Whatpublicwatersystemsareatriskandwhatistheirlevelofengagementonaquiferreliability?

o Whatseniorwaterrightsexistthatarelikelytocallforcurtailmentorbepartofawaterbanksupplysolution?

o Whatdemand‐sidesolutions(e.g.conservation,xeriscaping,closurestonewexemptwells)andwhatsupply‐sidesolutions(e.g.ASR,sourcesubstitution,publicwatersystemservice)existineacharea?

Page 12: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

12

o WhereshouldOCRandEcologyprioritizeinvestmentsinwatersupplydevelopment?

Whatisthecurrentstateofthesciencenowandwhatisneededtofullyunderstandthescopeoftheproblem?

o Whatstaffandcapitalexpendituresarecommittednowtostudyandsolvetheseproblems?

o Howmuchisneededinthefuture?o Whatarethelikelysourcesoffundstoheadoffeconomicimpacts?o Whenarethosefundsneeded?o Howdoesthatlevelofinvestmentcomparetoallowingmarketforcesto

dictateoutcomes(e.g.thedo‐nothingalternative)?

4. WaterbankingoptionsforWashingtonStateandDepartmentofEcology

Althoughthetrustwaterprogramwasauthorizedin1991,waterbankshaveonlysignificantlyexpandedinthelast10yearsinresponsetoEcologyactionstoclosebasins(e.g.UpperKittitas),asinstreamflowshavebeenadopted(e.g.Dungeness,Wenatchee),inresponsetolocalcollaborationtosolvewatersupplyproblems(e.g.WallaWalla),andthroughnewlegislativefocuses(e.g.OfficeofColumbiaRiver(OCR),CabinOwners).WhileEcologyhasastatutoryroleinsettingupwaterbanks,day‐to‐dayadministrationofthebanksrangefromfullEcologyinvolvement(e.g.CabinOwnersinYakimaBasin)to3rdpartyadministration(e.g.WashingtonWaterTrustintheDungeness).

Becauseofstafflimitations,futurewaterbanksuccessislikelydependentontheabilityofEcologytostepbackfromday‐to‐dayadministrationandfocusonsettingupbankarchitecture,negotiationofsoundtrustwateragreementsthatsettheframeworkforbankoperations,andestablishingcriteriaforbankadministration.Thisvoidwillbereplacedbyotherentitiesthatcanreliablyfillthisfunctioninawaythatmeetsthepublictruststandard.Thesecouldincludenon‐profitNGO’ssuchasWashingtonWaterTrustorTroutUnlimited,localgovernmentsuchascountiesorconservancyboards,oracertificationprogramforprivatecompaniesorindividuals.

WewillprovideasummaryofexistingWashingtonStatebanks,howtheywerecreated,andhowtheyareoperated.Foreachbank,wewillquantifytheEcology“footprint”todeterminetheinvestmentincreationandadministrationtheStatehasmade,alongwitha20‐yearforecastedStateexpendituremovingforward.Wewillalsocharacterizeeachbank’ssuccess,includingdecisionsissued,waterbanked,watertransacted,costofwater,andotherfactors.BuildingonandupdatingworkdonebyWestWaterResearchin2004,wewillcontrastWashingtonStatestructureswithasurveyofwaterbankingnationally,includingasurveyofeconomicliteratureonwatermarketandwaterbankdesigns.OnegoalofthisstudyistoforecastEcologyresourcesrequiredtomeetcurrentbankingneeds,andfutureresourcesneededtomaintainandexpandthem.Othergoalsofthischaracterizationaretoidentifyhowbankdesignandoperationaffectssuccessinwatertransactionsandhowtoreducetransactionbarriersandcosts(statutory,fiscal,educational)toimproveoperation,andtoexaminethepotentialforimprovingandexpandingtheportfolioofwatercontractoptions.

Page 13: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

13

WewillalsocoordinatewithEcologytodeterminewherenewbanksareneeded,andproviderecommendationsonstructureandoperations.Forexample,EcologyhasdevelopedwateravailabilityfocussheetsthatdocumentwherewatershortagesexistintheState.Theseareashavetheinitialimpetusforwaterbankcreationinordertoavoidadverseeconomicimpactsassociatedwithlackofpreparationinthefaceofpotentialwaterclosures.Wewillidentifywhereamore“regional”approach(e.g.multi‐basinperOCR,orcounty‐ledorWRIA‐ledfocus)orasitespecificapproach(e.g.BlackRockareaofMoxeeBasin)towaterbankingislikelytobemoresuccessful.

Withtheresultsofthistask,Ecologywillbeableto:

1. DocumentthehiddencostofwaterbankingonexistingstaffandtheopportunitycostitrepresentsintermsofotherEcologywork.

2. ForecastfutureEcologyresourceimpactsjusttokeepexistingbanksoperating.3. Identifypermitprocessingtimesforeachbank,andwhetherthosetimesarebank‐

structure‐limited,water‐supply‐limited,Ecology‐staff‐limited,orlimitedduetootherfactors.

4. Contrastpublicvs.privatebankingmodelsandhowexistingbanksareworking(e.g.permitsissued,watermadeavailable,atwhatprice).

5. Identifyandprioritizeopportunitiesforfuturebankcreation,theresourcegapsneededtoestablishbanks(e.g.whowilloperate,whatsuppliesexisttoseedbanks),andthelikelyfutureEcologyeconomicimpactassociatedwithbankingexpansion.

6. Usingasurveyofexistingbanksbothlocallyandnationally,identifyopportunitiestoexpandbankingasatoolwhilelimitingorrecoveringEcologystaffimpact,andpreservingtheintegrityofwaterrightpermittingthroughclearlydefinedbusinessrulesadministeredby3rdparties.

5. EvaluatingHowtheCostofWaterisInfluencingEcology’sBacklog

WhenEcology’sanditspredecessoragenciesmissionwastoauthorizewaterrightstosupportdevelopmentofthewest,waterwasessentiallyfree.Applicationcostswerelow(e.g.$2),andstafftoevaluatethe4‐parttesttoissueawaterrightwascompletelysubsidizedbytheState.Whilestatutoryprocessingfeesaresimilarlylowtoday(e.g.generally$50formostapplication),reimbursementcostsforwatersupplydevelopmentandpriorityprocessingadministrativecostsareapproachingthe“truemarketcost”ofwater.Asaresult,inthepast10yearswheretheadministrativeandtransactionalfeeshaveapproachedtruemarketcost,moreapplicantshavedeclinedwaterwhenmadeavailableanddeclinedprocessingwhenopportunitiesarise.ThisnegativeresponsetoEcology’seffortstoapplytruemarketcostsareadverselyaffectingtheagency’sabilitytoreduceit’sbacklogofwaterrightsinthefaceofLegislativepressuretomeetannualpermitprocessingtargets.

The2016WaterSupplyandDemandForecastshouldbegintotakeintoaccountthetruecostofprocessinganddevelopingwatersuppliesasitforecastsfuturewaterdemandforWashingtonState,particularlygiven2010legislativeamendmentsauthorizingOCRtorecoverthecostofdevelopingwatersupplies.Generalobservationoftherelationshipbetweenwaterdemandandpricingsuggeststhatfuturedemandwhenapplyingmarket

Page 14: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

14

basedpricingmaybeconsiderablylessthanpreviouslyestimatedbasedonthelongstandingpracticeofsubsidizingtheadministrativeandtransactionalcostofwater.Previousforecastsin2006and2011havepresumedthatwhenwaterismadeavailabletoapplicants,theywouldacceptprocessingoftheirapplicationandimplementtheirproject.Actualbehaviorbyapplicantstellsadifferentstory.WSUwillevaluateEcologycasestudiestoassesstheeffectofwaterpricingondemand,anditsassociatedimpactonEcologybacklog.Thefollowingcasestudieswillbeexamined,includingelementssuchaswaterprice,administrativeprocessingcost,geography,purposeofuse,ageofapplications,andotherfactors:

LakeRooseveltIncrementalReleasesProject2:Ecology’sOfficeofColumbiaRiver(OCR)developed25,000acre‐feetofnewsupplyformunicipal,domestic,andindustrialuses(e.g.M&Ipurposes).ApplicantswouldbeprocessedbyOCRstaffforthestatutoryfilingfee,whichformostapplicantshadbeenpaiddecadesagoatacostof$2or$10perapplication.ApplicantswerelimitedtospecificM&IpurposesandtowaterusersgenerallywithinonemileoftheColumbiaRiveraboveBonnevilleDam.ApplicantswererequiredtoenterintoOCRwaterservicecontractstoreimburseOCRforBureauofReclamationoperationandmaintenancecostsatarateofapproximately$35/acre‐foot/yearplusinflationaryadjustments.Whenapplicantswereofferedtobeprocessed,OCRfoundthatapproximatelyone‐halfofapplicantsdeclined.Wewillcompiletheresultsofthiseffort,surveydecliningpartiesontheirdecision,andcontrastthecostofwaterforthiscasestudyagainstothersimilarinstancesofwaterpricingaffectingapplicantprocessing.

SullivanLakeWaterSupplyProject3:LiketheLakeRooseveltProject,OCRdevelopedapproximately9,400acre‐feetfornewapplicantsinsixcountiesinNEWashington.One‐halfofthissupply(4,700acre‐feet)isavailableonlyformunicipal,domestic,andindustrialuses,andanother4,700acre‐feetforotherpurposesincludingirrigation.Whileprocessingisagain“free”byOCRstaff,applicantsarerequiredtoenterintoa25yearwaterservicecontractrepayingOCR’swatersupplydevelopmentcostsat$60/acre‐foot/year,afterwhichpaymentswillcease.OCR’sofferingofthissupplytoapplicantshassimilarlyresultedinsomeprocessingdeclines.ThiscasestudyoffersanopportunitytocontrastwiththeLakeRooseveltProject,becausedifferentpurposesofuse(andthereforereturnsoninvestment)areeligible,thegeographyisdifferent(NEWashingtononly),andpricingisdifferent(25yearterminsteadofperpetualReclamationrepayment).

WenatcheeBasinCoordinatedCost‐ReimbursementProgram4:ChelanCounty,OCR,andEcologyWaterResourcesareteamingtoprocessallpendingapplicationsinthe

2http://www.ecy.wa.gov/programs/wr/cwp/cr_lkroos‐permit.html3http://www.ecy.wa.gov/programs/wr/cwp/sullivan‐permit.html4http://www.ecy.wa.gov/programs/wr/cwp/wccr.html

Page 15: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

15

WenatcheeBasin.Applicantswouldeitherreceivefirmwaterrightsiftheyqualifyunderthe4cfsreservesetforthinWAC173‐545,theinstreamflowruleEcologyadoptedin2006,oraninterruptiblewaterright.Nowaterservicecontractisrequiredfortheuseofthewater,butprocessingoftheapplicantsthemselvesaresubjecttofeesunderRCW90.03.265.Dependingonthecomplexityoftheapplication(e.g.surfacevs.groundwatersource,purpose,typeofproject),applicationprocessingisontheorderof$5,000to$15,000perapplication.When110applicantswerecontacted,only51applicants(lessthan50percent)werewillingtoparticipateintheprogram(e.g.payforwater).Again,thiscasestudyoffersadifferentgeographicarea,adifferentfeestructure(upfrontpaymentinsteadoftermasintheLakeRooseveltandSullivanLakeProjects),abroadersuiteofpurposeofuse,opportunitiesforbothfirmandinterruptiblewaterwhichaffecttheendvalueofwaterreceivedbyapplicants.Asurveyofdecliningpartiesmayrevealgreaterinsightintomotivationfordeclines(wasittooexpensive,wastheirprojectnotready,dotheythinkthey’llgetwaterforfreesomeday,etc.).

CabinOwnerMitigationProgram5:FollowingaYakimaCountySuperiorCourtdecisiontoregulatejuniorsurfacewaterusers(mostlycabinsonForestServiceland)during2001and2005droughtyears,Ecologydevelopedamitigationprogramusing60acre‐feetofseniorwaterrightstheyretiredintothetrustwaterprogram.Unlikethecasestudiesabove,nearly100percentofthoseofferedthiswateracceptitanddemandcontinuestooutpacesupply.Processingcostsundercost‐reimbursementareontheorderof$1,500,andcost‐recoveryfortheinitialacquisitionofseniorwaterrightsareontheorderof$3,500/consumptiveacre‐footofwater.Thiscasestudyoffersamuchhigherparticipationrate(i.e.expresseddemand),whichprovidesagoodcontrastwithcasestudieswithlowerdemand.Therealthreatofcurtailmentlikelyinfluencestheparticipationrate,althoughotherfactorsmayalsobeusefultounderstand,suchasthedemographicsofthisgroupcomparedtothegeneralapplicantpool,thecostforwaterandstructureoftherepaymentterms,andotherfactors.

YakimaSub‐BasinMitigationProgram:EcologyiscurrentlyrunningaprogramtocontactapplicantsinYakimasubbasinswherewateravailabilityisknowntobeofconcern.Applicantsaregiventheopportunitytomitigatefortheirapplication,placetheirapplicationon‐holdwhiletheypursueapplications,processtheirapplicationwithoutmitigation(likelyadenial),assigntheirapplicationtoanotherparty,orwithdrawtheirapplication(canceltheirproject).Mitigationcostsarelikelyontheorderof$1,000to$3,000perconsumptiveacre‐footforprocessing,andapplicantswouldbeartheadditionalcostoffindingandpermittingtheirmitigation,asopposedtotheState‐runmitigationmodelsdescribedabove.Datafrom4subbasinsarenowavailabletocontrastwiththeState‐runmodels.

5http://www.ecy.wa.gov/programs/wr/cro/sb6861.html

Page 16: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

16

Wewillsurveyresponderstobetterunderstandtheirmotivations.DoesaState‐administeredorindividual‐ledmitigationprogramcreatebetterprocessingresults?Howdoesthecostofwateraffectprocessing?HowdoesthepotentialfortheYakimaIntegratedPlananditswatersupplydevelopmentaffectuserschoosingtoplacetheirapplication“on‐hold”?Atwhatpointare“old”applicationsmorelikelytobeuntenableandbecancelledbyapplicantsortheirsuccessors?HowlongwillEcologyallowapplicantstoseriallyrejectofferedmitigationorfailtoself‐mitigatefortheirprojects?

Byevaluatingrecentcasestudies,WSUcanbetterforecast“real”waterdemandthatEcologyandOCRshouldbetargeting.Ifchargingforwaterandrecoveringthecostforwatersupplydevelopmentisthenewnorm,thentheexistingbacklogisnotagoodindicatoroffuturedemand.Marketforcesforwaterarehighlyinfluencedbygeography,byEcologywateravailabilitydecisions(e.g.Kittitasrule‐making,cabin‐ownercurtailments),andbythestructureofwaterpricing(up‐frontlargerpaymentsasinWenatcheecoordinatedcost‐reimbursementversus“forever”termcostsasinLakeRooseveltcontracts).OCR’sstatutorygoalistoprocessnewout‐of‐streamuseswhilealsoimprovinginstreamflows.Understandingyourcustomersiskeytodefiningcostrecoveryandprocessingprogramsthatattractcustomersratherthanturnthemaway.Wewillproviderecommendationsonhowtodesignfuturecost‐recoveryprogramstobestmeetapplicantneeds.

6. ResearchRelatingtotheYakimaRiverBasinIntegratedPlan

WewillperformserviceandresearchontwodifferentfrontsrelatingtotheYakimaBasinIntegratedPlan(YBIP).

1. ReviewofBenefit‐CostAnalysesforYBIPProjectscostingover$100Million.Aslegislativelymandatedin2013Legislativebill5367‐S2.SL(section10),theStateofWashingtonWaterResearchCenter(SWWRC)willperformand/orcoordinatereviewsofbenefit‐costanalysesofYBIPprojectswithacostgreaterthan$100million.Therearetwosuchprojectsforwhichreviewswillneedtobeprovidedinthisfundingcycle:theKeechelustoKachessConveyance,andtheKachessDroughtReliefPumpingPlant.TheSWWRCwillenlistagroupoffourspecialistsinthefieldsofengineering,hydrology,biology,andeconomicsorotherappropriatefieldstoperformthereviewsasnecessary.

2. Longrunwaterneedsandthevalueofrelaxingwaterconstraints:climateandlongrunagriculturalresponseundertheYBIP.TheexistingYBIPeconomicanalysesandinfrastructuredesignplansarebasedonagoalofassuringagainstcurtailmentofproratablewaterrightsbelow70%offullentitlements,andprovideestimatesoftheextenttowhichtheYBIPprojectsprovidethatassurance,andaccountforclimateandthepotentialforclimatechangeinverylimitedways.AlegislativelymandatedstudyunderwaybytheSWWRCcanaddressthesequestionsinonlyvery

Page 17: 2016 Forecast proposal 24Apr2014€¦ · uptake and soil water evaporation in the context of a complete soil profile water balance. The current revision of the Washington Irrigation

17

limitedwaysduetofundingandtimelimitations,aslegislativelymandated.Weproposeheretoexaminelong‐runoutcomesmuchmorerigorously,byincorporatingmoresophisticatedandcompleteclimatechangescenarios,andaddressanimportantlimitationoftheagriculturalresponseanalysisthatwillbeperformedfortheongoingYBIPeconomicanalysis.AnimportantlimitationoftheanalysisoftheYBIPstudybeingreviewedaspartofthelegislativerequestisthedecisiontokeepimportantfarmleveladaptationdecisionsfixedincludingcropmix,irrigationtechnology,andcropyields.AspartofthenextforecastweproposetoextendtheYBIPanalysistoincorporatetheeffectofthese“long‐runresponses”.Thepreviousmodelingofagricultureimpactsusedwhateconomistswouldcalla“short‐run”modelinthattheonlyresponsetodroughtwasfallowingofacresintheyearasrequiredtomeetthewaterbudgetattheirrigationdistrictlevel.Ifdroughtsincreaseinfrequencyandmagnitude,asisexpectedunderachangingclimate,thenacompleteanalysiswouldalsoconsiderthatfarmerswilladjusttheircropmixtoputinmoredroughttolerantcropsandinvestinmoreefficientirrigationsystems.ModelingtoolsbeingdevelopundertheBioEarthprojectfundedbyUSDAwillbeusedtoincorporatelong‐runresponsestoprovidemorepreciseandaccurateestimatesofthemarginalvalueofreducingwaterconstraintsforirrigatedagricultureinparticular,whichistheprimarywateruserinthebasin.Wewillutilizethismoresophisticatedagriculturalresponsemodelbyapplyingittoamorerobustsetofclimatechangescenariosthancanbedoneundertheexisting(ongoing)YBIPstudy.