2016-module 2-l5

16
1 1 CHEE3301   Polymer Engineering    1st Semester 2016 Module 2: Lecture 5 V iscoelasti c models   complex modulus

Upload: gy-liaw

Post on 06-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 1/16

1111

CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Module 2: Lecture 5

Viscoelastic models –  complex modulus

Page 2: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 2/16

2222

CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Models of linear viscoelasticity

• Elements:

 –  Spring, modulus E

 –  Dashpot, viscosity h   d 

dt 

  h h  

Page 3: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 3/16

3333

CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Components of viscoelastic

 behaviour

Recall:

•  polymers fall on a spectrum of behaviours from the

extremes of linear elastic behaviour to Newtonian viscosity

• the relative importance of the two behaviours will depend

on the time frame and the temperature

• time relative to molecular relaxations

To model viscoelastic behaviour we will need to combine

these elements of elastic behaviour and flow behaviour.

Page 4: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 4/16

4444

CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Maxwell (series) model

• Spring and dashpot in series –  Stress    is the same

 –  Strain is additive

• Consider stress relaxation 

 –  Model held at constant strain, so

 –  So

 –  Integrate and impose IC t=0, 0 

2, ,h  

1 2  

0d 

dt  

1 2   1d d d d 

dt dt dt E dt  

   

d E dt 

 

0 0exp exp Et t  h   where   is Relaxation time

This has right form for stress relaxation in polymers

Page 5: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 5/16

5555

CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Maxwell model (2)

• Consider creep, where stress is constant

 –  Leads to

 –  Which is Newtonian viscous flow

0d 

dt 

 

1 2   1d d d d 

dt dt dt E dt  

   

dt 

 

Not the right form for creep in polymers

Page 6: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 6/16

6666

CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Kelvin-Voigt (parallel) Model

• Spring and Dashpot in parallel

 –  Strain   is the same

 –  Stresses are additive

• Consider stress relaxation

 –  Leads to –  Which is Hookean elastic behaviour

0d 

dt 

 

 E   

d  E 

dt 

  h 

Not the right form for stress relaxation in polymers

Page 7: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 7/16

7777CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Kelvin-Voigt Model (2)

• Consider creep, constant stress, so (dividing through by h  and

rearranging):

 –  This standard differential equation has solution

0d E 

dt 

  

h h 

1 exp 1 exp Et 

t  E E 

   

where   is Retardation time

This does has right form for creep in polymers

Page 8: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 8/16

8888CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Standard Linear Viscoelastic model

• Maxwell model (series) describes stress relaxation, but doesn’t fit creep 

• Kelvin-Voigt Model (parallel) describes creep, but not stress relaxation

• Combine two:

1 1, , E    

2 2 2, , E    

2 3, ,h  

1 2  

3 2  

Page 9: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 9/16

9999CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Standard Linear Model (2)

• It can be shown (see tutorial question) that this model reduces to the

Kelvin-Voigt model for creep and to the Maxwell model for stress

relaxation

• The time scale of both creep and stress relaxation (the relaxation orretardation time) is the same

•  Note though that for most polymers we have

 –  a spectrum of relaxation times

 –  non-linear effects

Page 10: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 10/16

10101010CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Standard Linear Model (3)

• Apply an oscillating strain to the Standard Linear Model

• Viscoelastic response is

0 sin   t   

0

0 0

0

sin

sin cos cos sin

sin cos

t t 

 E t E t 

 

 

 

What would pure elastic

or pure viscous response

look like?

 

time

 

 

time

Page 11: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 11/16

11111111CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

• Response to sinusoidal strain:

 –  In phase component, E ′  ,  –  

Storage  modulus

(stored energy returned onremoval of load)

 –  Out of phase, E ″  , loss  modulus

(energy lost in a cycle)

• Define:tan  = E ″  /E ′   (damping)

Complex modulus

 E'

 E"

 E *

  

.

2

0

2

0 0

0

2

2 2

0

0

2

0

sin cos cos

sin cos cos

d W d dt  

dt 

 E t E t t dt 

 E t t E t dt 

 E 

 

 

 

   

 

 

 

Page 12: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 12/16

12121212CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

tan  

• Can measure E ′  and E ″ in DynamicMechanical Thermal Analysis (DMTA)

 –  Torsional pendulum

 –  3 pt bending

 –  Tension

 –  Etc

 –  Can also use dielectric measurements

• Constant frequency and ramp temperature

• Constant temperature and vary frequency

Page 13: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 13/16

13131313CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

Torsional pendulum:

Dynamic Mechanical

Thermal Analysis

(DMTA)

• Polymer sample set oscillating at setfrequency

• Measure decrease in amplitude as forcedoscilation ‘damped’ out 

• Can calculate G’ and G’’ from measuringthe ratio of the amplitude of the motionfrom two successive cycles

Ref: Young and Lovell p333

Page 14: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 14/16

14141414CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

   t  a  n     

Tg

b

g

1

2

 Note: molecular transitions

designated by Greek alphabet

Highest temperature relaxation –  a;

lower T transitions b, g, , etc

In semi-crystalline

 polymers a , usually

related to crystalline

region, can split intotwo, a1 and a2

Page 15: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 15/16

15151515CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

DMTA examples:

 polyethylene

• Peaks in tan  sensitive to

molecular structure and

microstructure

a  peak present in both samples - splits

in 2 for HDPE

related to crystalline regions

 b  peak

absent from HDPE –  

amorphous regions

g  peak   –  present in both

Page 16: 2016-module 2-L5

8/17/2019 2016-module 2-L5

http://slidepdf.com/reader/full/2016-module-2-l5 16/16

16161616CHEE3301 – 

 Polymer Engineering – 

 1st Semester 2016 

DMTA example:

 Nylon 6.6

• Quenched sample amorphous –  

large Tg (a peak)

• Thermal energy allows it to

crystallise after Tg –  increasein G’