2017 ltd17 pajot athena x-ifu · the$athena x*ray$integral$field$unit françois$pajot...

14
The Athena Xray Integral Field Unit François Pajot Ins9tut de Recherche en Astrophysique et Planétologie on behalf of Didier Barret, Thien Lam Trong, JanWillem den Herder, Luigi Piro, Massimo Cappi and the XIFU team

Upload: ngokhanh

Post on 15-Dec-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

The  Athena  X-­‐ray  Integral  Field  Unit  François  Pajot  

Ins9tut  de  Recherche  en  Astrophysique  et  Planétologie  

on  behalf  of  Didier  Barret,  Thien  Lam  Trong,  Jan-­‐Willem  den  Herder,  Luigi  Piro,  Massimo  Cappi  and  the  X-­‐IFU  team

17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017 François  Pajot

Athena  in  a  nutshell

-­‐ Advanced  Telescope  for  High  Energy  Astrophysics,  for  the  study  of  the  hot  and  energe9c  universe  

-­‐ Second  Large  (L)  mission  of  the  ESA  Cosmic  Vision  2015-­‐2035  

-­‐ Launch  year:  end  of  2028  -­‐ with  the  newly  developed  Ariane  6  (64)  

-­‐ A  7  ton  spacecra]  to  be  placed  in  a  L2  (L1)  orbit  -­‐ Unprecedented  collec9ng  area  in  X-­‐rays:    -­‐ 2  m2

 goal  at  1  keV  and  0.17  m2  at  7  keV  

-­‐ 5’’  angular  resolu9on  -­‐ Two  focal  plane  instruments  with  a  movable  mirror  assembly  

-­‐ The  Wide  Field  Imager  (WFI)  op9mized  for  surveys  

-­‐ The  X-­‐ray  Integral  Field  Unit  (X-­‐IFU)  op9mized  for  spa9ally  resolved  spectroscopy

2

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

The  X-­‐ray  Integral  Field  Unit

3

Parameters Requirements

Energy  range 0.2  —  12  keV

Energy  resolu9on  1:  E  <  7  keV 2.5  eV

Energy  resolu9on:  E  >  7  keV E/ΔE  =  2800

Field  of  View 5ʹ′  (equivalent  diameter)

Effec9ve  area  @  0.3  keV >  1500  cm2

Effec9ve  area  @  1.0  keV >  15000  cm2

Effec9ve  area  @  7.0  keV >  1600  cm2

Gain  calibra9on  error  (peak,  7  keV) 0.4  eVCount  rate  capability  nominally  bright  point  sources  2 1  mCrab  (>  80%  high-­‐resolu9on  events)

Count  rate  capability  brightest  point  sources 1  Crab  (>  30%  throughput)

Time  resolu9on 10  µs

Non  X-­‐ray  background  (2  —  10  keV) <  5    10-­‐3  counts/s/cm2/keV  (80%  of  the  9me)1  goal  1.5  eV,  2  goal  10  mCrab  (>  80%  high-­‐resoluOon  events)  events

-­‐ Consor9um   led  by  CNES/IRAP-­‐F,  with   SRON-­‐NL,   INAF-­‐IT   and  other   European  partners,  NASA  and  JAXA.

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

Spectroscopic  capabili9es  

-­‐ 8.8  keV  absorp9on  line  in  NGC1313  X-­‐1  seen  by  XMM-­‐Newton  and  NuSTAR  

-­‐ Rela9vis9c  oumlow  Fe  XXV  (6.67  keV,  0.25  c)  or  Fe  XXVI  Kα  (6.97  keV,  0.2  c)  

-­‐ Degeneracy  in  photoionisa9on  modeling  (FeXXV,  log  ξ  ∼  3.3,  0.25  c)  or  (Fe  XXVI,  log  ξ  ∼  4.5,  0.2  c)  

-­‐ Turbulent  velocity  unconstrained  

4

Walton  et  al.  (ApJ,  2016)

X-IFUEPIC PNSXSNuSTAR

x 15

x 10x 100

Effec

tive

are

a (c

m2)

101

102

103

104

Energy (keV)1 10

Athena X-IFUHitomi SXSGratings

Figu

re o

f m

erit

(m k

eV-1

/2)

0

5

10

15

20

25

Energy (keV)1 10

Effec9ve  area  comparison  between  X-­‐IFU  and  other  facili9es Figure  of  merit  for  spectroscopy  measurements

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

X-­‐IFU  simula9ons:  spectroscopy  on  clusters

-­‐ Reconstructed   bulk   mo9on   velocity   field   of   the  hot  intra-­‐cluster  gas  for  a  50  ks  X-­‐IFU  observa9on  of   the   central   parts   of   a   Perseus   like   cluster  considered  at  a  redshi]  of  0.1

5

Athena X-IFUXMM-Newton EPIC PNHitomi SXS

O

Fe LMg

Fe LFe L SiS

ArCa

Fe-K

Coun

ts/s

/keV

10−4

10−3

10−2

10−1

1

Energy (keV)0.2 0.5 1 2 5

Barret+ SPIE 2016

-­‐ Simulated  X-­‐IFU   spectrum  of  a   z  =  1  galaxy  group  with  kT   =  3  keV  and  LX  =  1  x  10

44  erg/s   for  50  ks.  Emission   lines   from   elements   which   are   key   to  understand  chemical  evolu9on  can  be  clearly  seen.

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

X-­‐IFU  design

6

thermal filtersfilter wheelMXS

microcalorimeter array

focal plane assembly

cryo anti coincidence

dewar

readout electronics

door

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

X-­‐IFU  key  design  driving  items  (1)  

-­‐ Detectors  -­‐ Alloca9on  2.1  eV  -­‐>  X-­‐IFU  energy  resolu9on  budget  

-­‐ Detector  speed  /event  record  -­‐>  X-­‐IFU  count  rate  capability  

-­‐ 3840  microcalorimeter  array  with  Mo/Au  TES  from  NASA-­‐Goddard  (SRON  backup)  under  AC  bias  

-­‐ Intrinsic  energy  resolu9on    

-­‐ Opera9on  of  TES  under  AC  bias  

-­‐ Extreme  sensi9vity  to  EMI/EMC,  magne9c  field,  microphonics  

(Goodwin  Pappas+  O-­‐23,  GoWardi+  O-­‐24,  Wakeham+  O-­‐27,  Sakai+  PA-­‐40,  Khosropanah+  PA-­‐41,  Nagayoshi+  PA-­‐47,  Miniussi+  PA-­‐50,  Ridder+  PC-­‐22)

7

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

X-­‐IFU  key  design  driving  items  (2)  

-­‐ Readout  chain  -­‐ Alloca9on  1.2  eV  -­‐>  X-­‐IFU  energy  resolu9on  budget  

-­‐ Frequency  domain  mul9plexing  1-­‐5  MHz  range  with  40  pixels  for  each  96  chains  

-­‐ Cryogenic  two  stage  SQUID  amplifica9on  and  low  noise  amplifier  at  ambiant  temperature  

-­‐ Base  Band  Feedback  implementa9on  to  linearize  SQUID  opera9on  

-­‐ Event  processor  based  on  op9mal  filtering  and  pulse  templates  

-­‐ Digital  to  Analog  Converter  

-­‐ Crosstalk  

-­‐ Gain/thermal  stability  and  monitoring  with  Modulated  X-­‐ray  Source  -­‐>  X-­‐IFU  energy  scale  

(Prêle+  O-­‐59,  Akamatsu+  O-­‐60,  Bruijn+  O-­‐75,  den  Hartog  +PB-­‐3,  van  der  Kuur+  PB-­‐13,DeNigris+  PC-­‐14,  Cucched+  PE-­‐49)

8

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

X-­‐IFU  key  design  driving  items  (3)  

-­‐ Cryogenic  chain  and  aperture  cylinder  -­‐ Alloca9on  0.6  eV  -­‐>  X-­‐IFU  energy  resolu9on  budget  

-­‐ Rejec9on  of  IR-­‐visible-­‐UV  photons  and  EMI    

-­‐ 50  mK  base  temperature  with  0.9µK  rms  thermal  stability  

-­‐ Thermal  filters  including  mesh  insuring  EMI  immunity  

-­‐ Impact  of  Cosmic  Ray  on  thermal  stability  of  the  detector  

-­‐ Preserving  the  X-­‐ray  Quantum  Efficiency  

(Yamasaki+  PD-­‐17,  SciorOno+  O-­‐82,  Barbera+  PE-­‐62)  

-­‐ Cryogenic  an9-­‐coincidence  detector  -­‐ Rejec9ng  non  X-­‐ray  events  (cosmic  rays,  …)  to  5  10-­‐3  counts/s/cm2/keV  -­‐>  low  brightness  capability  

-­‐ Ac9ve  4  TES  pixels  Cryo  AC  below  the  X-­‐ray  detector  array  

-­‐ Secondary  electrons/back  scaxering  on  array  

(Biasod+  PE-­‐47,  D’Andrea+  PE-­‐52,  D’Andrea+  PE-­‐53)

9

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

High  count  rate  and  defocussing

-­‐Mirror  defocus  capability  up  to  35  mm  is  now  in  the  baseline  

-­‐ Spreading  of  the  PSF  over  an  increasingly  larger  number  of  pixels    

-­‐ Allows  enhanced  throughput  on  point  sources(at  the  cost  of  a  loss  of  imaging  capabili9es  of  these  point  sources)

10

Courtesy  of  D.  Willingale

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

Count  rate  capability

11

(See Peille+ PE-45)

High resolution / 25 mmHigh resolution / 35 mm10 eV resolution / 25 mm10 eV resolution / 35 mm

High res goal (10 mCrab)

Old 30 eV throughput requirement (1 Crab)

Broa

dban

d th

roug

hput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Source flux [mCrab]1 10 100 1000

-­‐ Exceeds  goal  requirement  at  10  mCrab  (high  resolu9on)  and  1  Crab  (10  eV  resolu9on)  

-­‐ Even  higher  count  rate  in  the  5-­‐8  keV  band  with  use  of  a  beryllium  filter

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

Cryochain  and  dewar

12

Outer vessel(300K)

Outer Cold Shield(OCS -100K)

Inner Cold Shield(ICS -30K)

Aperture cylinder(allocated volume)

Pulse tubes and JTs flange

4K shield

2K structure

-­‐ Present  baseline,  a  simplified  cryochain  is  being  studied

François  Pajot17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017

X-­‐IFU  design  status  

-­‐ Current  status:  a  ~800  kg  instrument    

-­‐ Op9miza9on  in  progress  (mass,  power  consump9on,  margins)  

-­‐ Progressing  well  towards  TRL  5  in  key  technologies  -­‐ Phase  A  un9l  end  of  2018  (might  evolve)  

-­‐ Phase  B1  up  to  mission  adop9on  in  June  2020

13

Science Instrument Module

15 m

17th  International  Workshop  on  Low  Temperature  Detectors  Kurume,  Fukuoka,  Japan,  July  16th-­‐21st  2017 François  Pajot

Conclusion

-­‐ Thanks  to  challenging  and  innova9ve  technologies  in  microcalorimeters  operated  at  low  temperature,  X-­‐IFU  will  provide  breakthrough  capabili9es  in  high  resolu9on  X-­‐ray  spectroscopy  for  the  study  of  the  hot  and  energe9c  Universe.

14François  Pajot

Conclusion