20180411 0400p sc0013811 nanosonic · 4/11/2018  · nanosonic, inc. 1. program overview 2....

23
NanoSonic, Inc. 2018 Crosscu,ng Research Project Review Award #: DESC0013811 Program Period: 8/1/16 7/31/18 (Report 10/31/18) Dr. Hang Ruan, Principal InvesNgator, VP of Sensors and Systems NanoSonic, Inc Adjunct Professor, Department of Mechanical Engineering, Virginia Tech TPOC Dr. Jessica Mullen NaNonal Energy Technology Laboratory April 11, 2018 1

Upload: others

Post on 30-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

2018  Crosscu,ng  Research  Project  Review

 Award  #:  DE-­‐SC0013811  

Program  Period:  8/1/16  -­‐  7/31/18  (Report  10/31/18)  Dr.  Hang  Ruan,  Principal  InvesNgator,    VP  of  Sensors  and  Systems  

NanoSonic,  Inc  Adjunct  Professor,  Department  of  Mechanical  Engineering,    

Virginia  Tech    

TPOC    Dr.  Jessica  Mullen  

NaNonal  Energy  Technology  Laboratory    

April  11,  2018  

1

Page 2: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

1.  Program Overview

2.  Technologies

3.  Technical Results

- Initial results

- Recent results

4. Summary

Outline    

2

Page 3: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Program  ObjecNve  Objec&ve:  Develop  wireless  networked  sensors  using  conformal  nanomembrane  based  chemical  field  effect  transistors  (ChemFET)  for  heavy  metal  detec&on  in  water  for  energy  

sector.      

Electrosta&c  self-­‐assembly  (ESA)  +  conformal  nanomembrane  ChemFET  +  wireless  sensor  network    

à  in  situ  environmental  monitoring    

Key  ExpectaNons:  o  Heavy  metal  selec&vity:  RCRA  8s  (arsenic,  barium,  cadmium,  chromium,  lead,    

mercury,  selenium  and  silver)  o  Heavy  metal  ion  sensi&vity:  <0.01  ppm,  with  minimal  cross-­‐sensi&vi&es  o  Sensor  element  size:  <(100  micron)2  o  Dynamic  range:  >40dB  o  Frequency  response:  DC  to  >10kHz  o  Opera&ng  temperature:  -­‐40°C  to  100°C  o  Mul&plexing  capability:  >100  individual  sensor  elements  o  Power  supply:  Ba[ery  or  integrated  energy  harves&ng  device  o  Transmission  band:  2.4  GHz,  IEEE  802.15.4  protocol;  BLE  protocol  o  Packaging  op&ons:  Patch,  Conformal,  Portable,  and  Flowable  o  Opera&on  mode:  wake-­‐up,  measurement,  data  transfer,  and  low-­‐power  

stand-­‐by  

Nano-­‐CS  Integrated  RCRA  8  Sensor  Probe  

3

Page 4: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc. 4

Opportunity  for  Wireless  Sensors  for  Heavy  Metal  DetecNon  

q  Conven&onal  chemical  concentra&on  sensing  is  typically  done  by  taking  soil  or  water  samples  on-­‐site  and  transpor&ng  them  back  to  a  laboratory  for  analysis,  or  hand-­‐carrying  a  sensor  unit  around  an  area  and  making,  recording  and  mapping  data.      

q  Mul&ple  sensor  devices  can  be  configured  in  a  small,  lightweight  and  low  cost  array  to  analyze  mul&ple  sensor  targets  simultaneously.  It  can  be  used  as  an  in-­‐situ  sensor  a[achable  for  permanent  installa&on  or  portable  inspec&on  in  a  field.    

To    allow    efficient    monitoring    of    heavy  metal  levels  for  environmental  surveillance  in  water  for  fossil  energy  sector,      a      precise,  mobile      and      highly      sensi&ve/selec&ve/re-­‐usable      measuring  instrument  is  required.    

q  Such  systems  can  be  used  to    •  detect  and  map  mul&ple  environmentally-­‐hazardous  

     chemical  concentra&ons,    •  locate  sources  of  pollu&on  from  analysis    

     of  concentra&on  gradients,  and    •  iden&fy  chemical  concentra&ons  poten&ally  harmful    

     to  people  and/or  destruc&ve  to  industry/agriculture.  

4

Page 5: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Nanomembrane  ChemFET  Sensor  ConfiguraNon  

   

q  High  Carrier  Mobility        q  High  Sensi&vity  q  High  Selec&vity      

q  Ultralightweight        q  Ultraflexibility  q  Array    Configura&on   Mask Design

-2.00E-07

-1.00E-07

0.00E+00

1.00E-07

2.00E-07

-1 -0.5 0 0.5 1

SourceDrainCurrent(A

)

SourceDrainVoltage(Volts)

SourceDrainI-VCurve

I-­‐V  characterisNcs  of  ChemFET    

5

Page 6: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

ElectrostaNc  Self-­‐Assembly  

"   Conformal,  homogeneous  molecular  layer  by  layer  process  

"   Precise  nanoscale  control  over  thickness  "   Excellent  long-­‐term  environmental  robustness    "   Environmentally-­‐friendly  process  "   MulNfuncNon  –  conductors,  polymers,  semiconductors,  

ceramics  

Self  Assembly  Process:  • polymer/polymer  • polymer/parNcle  • parNcle/parNcle  

10-­‐5  Ω•cm  

Metal  Rubber™  

6

Page 7: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

ParNal  Library  of  Demonstrated  ESA  Material  FuncNons  

Material  ProperNes   Precursors   Measured  

ProperNes   Comments  

Chemical  DetecNon   Semiconductor  nanocrystals   Chemical  Sensi&vity  and  Selec&vity  

Surface    modifica&on  on    nanocrsytals  

Electrical  ConducNvity  

Noble  metal  nanoclusters  (Ag,  Cu,  Au,  Pt)  

0.1  –  1.0  Ω•m  10-­‐4  Ω•cm  

Mechanically  flexible,  op&cally  

transparent  

RefracNve  Index  

Polymers  and  polymer  /  nanocluster  combina&ons   n  =  1.2  to  1.8   Tailored  

Transparent  stacks  

Young’s  Modulus      

Noble  metal  nanoclusters  (Ag,  Cu,  Au,  Pt),  

Carbon  nanotubes    

0.1  MPa  –  1.0  Gpa      

Mechanically  flexible    

 

Thermal  conducNvity   Polymers  and  nanoclusters   2  W/mK  

20  W/mK  feasible  based  on  current  work  

Mechanical  Robustness  

Oxide  nanoclusters  (TiO2,  ZrO2,  Al2O3,  SiO2)  

Good  Taber  abrasion  and  haze  

results  

Nanohardness  1  GPa  

7

Page 8: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Silicon Nanomembrane

•  Thin    •  Flexible  •  Can  be  strain  

engineered  •  Transparent  •  Transferable    

•  Bondable  •  Stackable  •  Conformable  •  Pa[ernable  (wires,  

ribbons,  tubes)  Nanomembrane–based  ChemFET  sensors  

•  1974:  Epitaxial  Ga1-­‐xAlxAs  (X>0.6)  sacrificial  layer  for  separa&ng  a  GaAs/Ga1-­‐xAlxAs  (x=0.3)  from  GaAs  with  HCl  etchant    

•  1987:  Yablonocitch:  spin  on  wax  to  strain  film  for  efficient  release,  enable  removal  of  high  quality  GaAs  films  as  large  as  0.8*2mm2  and  as  thin  as  80nm  

•  2004:  Rogers:  transferred  membranes  of  Si  from  silicon-­‐on-­‐insulator  (SOI)  to  fabricate  Si  flexible  thin-­‐film  electronics  

•  2012:  NanoSonic:  Si  nanomembrane  based  flexible  solar  cells  •  2015:  NanoSonic:  Nanomembraned  based  ChemFET  sensors  

 8

Page 9: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Process  Monitoring  During  FabricaNon  

!3#

!2#

!1#

0#

1#

2#

3#

!0.15# !0.1# !0.05# 0# 0.05# 0.1# 0.15#

Volta

ge((V

)(

Current((A)(

Bulk(Silicon(5(Channel(Mask(

A*er#anneal#

Pre!deposi6on#

!4#

!3#

!2#

!1#

0#

1#

2#

3#

4#

!0.03# !0.02# !0.01# 0# 0.01# 0.02# 0.03#

Volta

ge((V

)(

Current((A)(

Silicon(NM(5(Channel(Mask(

A*er#anneal#

Pre!deposi6on#

I-­‐V  characterisNcs  of  bulk  and  nanostructures  with  oxide  mask  and  channel  length  of  5  µm,  the  sensor  operates  in  the  linear  region    

Phosphorus  doping  profile  at  the  channel-­‐drain  side  for  bulk  Si  (led)  and  SOI  nanomembranes  (right)  ader  source  and  drain  doping.  Oxide  mask  shown  in  dark  red  and  buried  oxide  in  SOI  in  dark  red  

 9

Page 10: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Standard  Sensor  Packages  

Standard  Sensor  Package  Can  be  “Flowable”  (Led),  “Portable”  (Center)  and  “Agachable”  (Center  Right)  for  Sensor  

ApplicaNons    

10

Page 11: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Self-­‐Assembly  of  Gold/Thiol  FuncNonalizaNon  Layers  

a) b)

c) d)

Exposed Channel Region

Source

Drain

Hand  dipping  (a,  b)  and  Robot  (c)  Set  Up  Used  to  Self-­‐Assemble  the  Gold/Thiol  Func&onaliza&on  Layers.  (d)  Mircophotograph  of  a  Completed  Device  with  9  Bilayers  of  Gold  Nanopar&cles  in  the  100  um  by  100  

um  Channel  Region.    

11

Page 12: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

IniNal  ModificaNon  Example  #1:  Self-­‐Assembled  Au  and  Thioglycolic  Acid-­‐FuncNonalized  ChemFET  Sensor  

Tes&ng  results  of  the  self  assembled  Au  and  thioglycolic  acid  func&onalized  ChemFET  sensor  ater  exposure  to  different  concentra&ons  of  (a)  Hg,  (b)  Pb,  (c)  Cs,  (d)  Cr,  and  (e)  As  ion  solu&ons,  as  well  as  (f)  different  targets  with  the  same  concentra&on  of  10ppm.  The  response  for  the  Hg  ion  is  significantly  higher  than  for  other  ions.  

12

Page 13: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

IniNal  ModificaNon  Example  #2:  :  Sensor  ModificaNon  for  Lead  Ion  SelecNvity  

N,N,Nʹ′,Nʹ′-­‐Tetradodecyl-­‐3,6-­‐dioxaoctanedithioamide     Sodium  tetrakis(4-­‐fluorophenyl)borate  dihydrate  

13

Page 14: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

MulN-­‐Target  SelecNvity  Results  for  Self  Assembled  Au  Sensor  and  Lead  Ionophore  Sensor  

Cross  sensi&vity  results  with  Bar  Plot  (a)  and  Radar  Plot  (b)  for  self  assembled  Au  sensor  and  Lead  ionophore  sensor.  

14

! !

Page 15: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Stripping  Voltammetry  Enhanced  ChemFET  Sensor  –  Mixed  SoluNon  

TesNng  results  of  the  stripping  voltammetry  enhanced  ChemFET  sensor  with  self  assembled  Au  for  1ppm  Hg  (a),  1ppm  Pb  (b)  and  1ppm  Cu  (c)  and  mixed  soluNon  of  all  three  ions  at  1ppm  

(d)  respecNvely.    15

!3#

!2.5#

!2#

!1.5#

!1#

!0.5#

0#

0.5#

1#

1.5#

2#

!0.6# !0.4# !0.2# 0# 0.2# 0.4# 0.6#

Normalized

#Current#

Poten:al#Voltage#(V)#

1ppm#Hg#

1ppm$Hg$

!3#

!2.5#

!2#

!1.5#

!1#

!0.5#

0#

0.5#

!0.6# !0.4# !0.2# 0# 0.2# 0.4# 0.6#

Norm

alize

d#Cu

rren

t#

Poten:al#Voltage#(V)#

1ppm##Pb#

1ppm$$Pb$

!3#

!2#

!1#

0#

1#

2#

3#

!0.6# !0.4# !0.2# 0# 0.2# 0.4# 0.6#

Normalized

#Current#

Poten9al#Voltage#(V)#

1ppm#Cu#

1ppm$Cu$

!3#

!2#

!1#

0#

1#

2#

3#

!0.6# !0.4# !0.2# 0# 0.2# 0.4# 0.6#

Norm

alize

d#Cu

rren

t#

Poten9al#Voltage#(V)#

1ppm#Hg,#Cu,#and#Pb#

1ppm$Hg$

1ppm$Cu$

1ppm$$Pb$

1ppm$Hg,$Cu$and$Pb$

Cu#Peak#

Hg#Peak#

Pb#Peak#

(a)     (b)    

(c)     (d)    

Page 16: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Example  of  PotenNal  Use  -­‐  Flue  Gas  DesulfurizaNon  (FGD)  Wastewater  Treatment  

PotenNal  use  of  RCRA  8  sensor  to  monitor  the  heavy  metals    of  treated  effluent  for  real-­‐Nme  close  loop  control  

h[p://www.powermag.com/flue-­‐gas-­‐desulfuriza&on-­‐wastewater-­‐treatment-­‐primer/  

16

Page 17: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Stripping  Voltammetry  Enhanced  ChemFET  Sensor  –  Selenium  DetecNon  

TesNng  results  of  a  self  assembled  gold  nanoparNcles  and  selenium  ionophore  (in-­‐house)  funcNonalized  chemical  sensor  in  response  to  Se  soluNons.  The  selenium  concentraNon  from  the  sample  is  measured  as  0.78ppm,  which  is  in  good  agreement  with  the  concentraNon  level  of  

0.86ppm  obtained  from  a  third  party  laboratory  17

Page 18: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Wireless  Sensor  Modular  Hardware  

NanoSonic’s  Wireless  Sensor  Modular  Hardware,  “M”  Shape  Antenna  Operates  at  2.4  GHz  band  with  25  Possible  Channels    

18

Akyildiz  et  al.,  2002  

ü Sensing  Unit    ü Processing  Unit  ü Transceiver  Unit  ü Power  Unit  ü Loca&on  Finding  

System  (op&onal)  ü Power  Generator  (op&onal)  ü Mobilizer  (op&onal)  

WSN  Protocol  Stack  

Page 19: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Tablet  App  to  Read  and  Output  Data  

Low  power  tablet  App  with  code  to  read,  process  and  output  the  data  wirelessly  from  the  sensor  to  tablet.  

19

Page 20: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc. 20

Power  Management  of  Wireless  Sensor  Network  

!

Power-­‐Availability  Duty  Cycle  Allows  for  Extremely  Low  Average  Power  Consump&on  for  Wireless  Sensor  

Nodes.    20

Page 21: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

DemonstraNon  of  GPS  Receiver  to  Determine  Geographical  InformaNon  

GPS hardware     Raw GPS data taken at the NanoSonic facility    

Google maps image showing the location of the received coordinates  

21

Page 22: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Summary  of  NanoSonic’s  Integrated  Sensor  Probes  

22

NanoSonic  is  developing  a  sensor  probe  that  selec&vely  measures  the  concentra&ons  of  all  eight  RCRA  heavy  metals  in  water  with  sensi&vi&es  be[er  than  0.01  ppm.  

Data  can  be  transmi[ed  wirelessly  with  mul&-­‐hop  rou&ng,  or  subsequently  transmi[ed  via  the  web.  

Data  refresh  may  be  varied  from  seconds  to  days;  rapid  refresh  means  that  emergencies  can  be  detected.  

 

 

 

 

 

Page 23: 20180411 0400P SC0013811 NanoSonic · 4/11/2018  · NanoSonic, Inc. 1. Program Overview 2. Technologies 3. Technical Results - Initial results - Recent results 4. Summary Outline

NanoSonic, Inc.

Acknowledgments  Thank  You    

"    DOE  –  Dr.  Jessica  Mullen  and  Dr.  Briggs  White  and  

"    NanoSonic  DOE  SBIR  Team  

For  AddiNonal  InformaNon:    

Hang  Ruan  NanoSonic,  Inc.  

[email protected]    (540)  626-­‐6266  

23

Rick  Claus,  William  Harrison,  Hang  Ruan,  Echo  Kang,  Michelle  Homer,  Liz  Gladwin    Lee  Williams,  Bill  Rieger