2.1 molecular biology cancer

Upload: bibimedicine

Post on 10-Apr-2018

239 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/8/2019 2.1 Molecular Biology Cancer

    1/59

    Genetic Basis of Cancer: the Origins

    Circa 1860: microscopist Mueller discovers thattumor is made of cells

    1908: Ellerman and Bang demonstrate that afilterable agent induces leukemia in chicken

    1911: Rous demonstrates that a filterable agentinduces sarcomas in chicken

    1936: Bittner that mammary cancer can betransmitted through milk in a specific mouse strain

    1951: Gross discovered the first murine leukemiavirus

  • 8/8/2019 2.1 Molecular Biology Cancer

    2/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    3/59

    The SV40 oncogenic

    polyomavirus

  • 8/8/2019 2.1 Molecular Biology Cancer

    4/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    5/59

    Retrovirus vital cycle

  • 8/8/2019 2.1 Molecular Biology Cancer

    6/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    7/59

    The largest part

    of retroviral

    oncogenes aretyrosin kinase

    proteins (src, fps,

    yes, fgr, ros, abl,

    erbB, kit, sea)

    Other oncogenes

    functions as

    transcription

    factors (myc,

    myb, fos, jun,

    erbA)

  • 8/8/2019 2.1 Molecular Biology Cancer

    8/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    9/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    10/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    11/59

    HRAS was the first proto-oncogene found activated by point mutations in

    human tumor cells: about 20% of all human tumors carry a mutated RAS

    Its oncogenic function was demonstrated by the finding that the mutant RAS

    can transform NIH3T3

    Activated RAS cooperates with other oncogenes in tranforming primary

    human cells.

    Its activity is essential to maintain the transformed phenotype

    Point Mutation Activated-RAS

    Oncoprotein is Required to Maintain the

    Malignant Phenotype

  • 8/8/2019 2.1 Molecular Biology Cancer

    12/59

    Il cromosoma Ph nella

    Leucemia Mieloide Cronica:

  • 8/8/2019 2.1 Molecular Biology Cancer

    13/59

    La scoperta del cromosoma Ph nella Leucemia

    Mieloide Cronica: pi del 95% dei casi presenta

    questa aberrazione cromosomica

    Peter Nowell, Universit di Pennsylvania, Philadelphia

  • 8/8/2019 2.1 Molecular Biology Cancer

    14/59

    Il cromosoma Ph : una traslocazione

    reciproca tra il cromosoma 9 ed il 22

    Janet Rowley, Universit di Chicago

  • 8/8/2019 2.1 Molecular Biology Cancer

    15/59

    Scoperta del difetto genetico:

    la traslocazione t(9;22) causa la fusione dei

    geni BCR-ABLEli Canaani, Israel

    Carlo M. Croce, Italia-USA

    Il proto-oncogene ABL, una tirosin-chinasi,

    diviene attivata dalla fusione con BCR: la sua

    attivita` chinasica diviene costitutivamente

    attiva a livelli elevati

  • 8/8/2019 2.1 Molecular Biology Cancer

    16/59

    Translocation

    t(8;14)(q24;q32) in

    Burkitts lymphoma

  • 8/8/2019 2.1 Molecular Biology Cancer

    17/59

    MYC is activated by juxtaposition to the Ig locus

  • 8/8/2019 2.1 Molecular Biology Cancer

    18/59

    Nonrandom chromosomal aberrations

    in myeloid malignancies

  • 8/8/2019 2.1 Molecular Biology Cancer

    19/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    20/59

    Multiple translocation partners for

    MLL and TEL

  • 8/8/2019 2.1 Molecular Biology Cancer

    21/59

    Nonrandom chromosomal aberrations

    in lymphoid malignancies

  • 8/8/2019 2.1 Molecular Biology Cancer

    22/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    23/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    24/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    25/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    26/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    27/59

    DNA amplification leads to

    oncogene over-expression

  • 8/8/2019 2.1 Molecular Biology Cancer

    28/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    29/59

    Proto-oncogenes can be activated by a

    variety of mechanisms

    Point mutations, leading to aberrant biochemical function

    Fusion with other genes, leading to aberrant biochemicalfunction

    Abnormally elevated level due to promoter/enhancer activation

    or to gene amplification

  • 8/8/2019 2.1 Molecular Biology Cancer

    30/59

    Il fenotipo tumorigenico

    recessivo a livello cellulare

    FUSIONE

    Cellula

    Tumorale

    Cellula

    Non Tumorale

    Ibrido non tumorigenico

  • 8/8/2019 2.1 Molecular Biology Cancer

    31/59

    TUMOR SUPPRESSOR GENES AND CANCER

    X

    X

    X XMutation 1

    Mutation 2

    Heterozygous Loss of

    Heterozygosity

    Normal

    Other: Gene Methylation

    Expression Levels

  • 8/8/2019 2.1 Molecular Biology Cancer

    32/59

    Knudsons Two-Hits Hypothesis

  • 8/8/2019 2.1 Molecular Biology Cancer

    33/59

    Mechanisms for RB1 tumor suppressor

    gene inactivation

  • 8/8/2019 2.1 Molecular Biology Cancer

    34/59

    DNA polymorphisms and loss of

    heterozygosity in cancer

  • 8/8/2019 2.1 Molecular Biology Cancer

    35/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    36/59

    In mammalian cells, cytosines present inthe dinucleotide CpG are generally

    methylated

    CpG islands are regions 500-2000

    nucleotides long enriched in CpG

    dinucleotides that are found in about 60%of gene promoters.

    CpG islands are usually not methylated

    DNA Methylation in

    Mammalian CellsCpG methylation is the prototype of a mammalian epigenetic mark

  • 8/8/2019 2.1 Molecular Biology Cancer

    37/59

    DNA methylation of CpG island

    promoters and gene regulation

  • 8/8/2019 2.1 Molecular Biology Cancer

    38/59

    DNA methylation in development

  • 8/8/2019 2.1 Molecular Biology Cancer

    39/59

    DNA methylation at replication

    maintains a stable epigenotype

    DNA

    replication

    DNA

    Methylation

    (DNMT1)

    Inheritance of cytosine methylation:

    1. the symmetrical nature of the

    modified sequences (CpG)

    2. The preference of the

    maintenance DNMT1 for

    hemimethylated DNA

  • 8/8/2019 2.1 Molecular Biology Cancer

    40/59

    Methylation

    ofCpG Islands

    in Gene PromotersRepresses

    Gene Expression

  • 8/8/2019 2.1 Molecular Biology Cancer

    41/59

    Tumor suppressor gene inactivation

    by promoter methylation

  • 8/8/2019 2.1 Molecular Biology Cancer

    42/59

    LOH Mutation Methylation

    Homozygous

    deletion

    Mutation

    + LOH

    Methylation

    + LOH

    Mutation +

    Methylation

    Biallelic

    Methylation

    RB1 Retinoblastoma yes yes yes rare yes yes yes ?

    VHL Renal Ca yes yes yes rare yes yes yes ?

    BRCA1 Breast/Ovarian Ca yes yes yes no yes ? ? yes

    CDKN2A Melanoma yes yes yes yes yes yes yes yes

    MLH1 Colorectal Ca yes yes yes ? yes ? yes yes

    APC Colorectal Ca yes yes yes ? yes ? ? ?

    MGMT Lung ca yes no yes no no ? no yes

    DAP Lung ca yes no yes no no ? no yes

    Double Hit MechanismsMechanisms of Inactivation

    Examples of tumor suppressor genes

    inactivated by promoter methylation

  • 8/8/2019 2.1 Molecular Biology Cancer

    43/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    44/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    45/59

    Tumor suppressor genes are

    inactivated by a variety of mechanisms

    Point mutations, leading to aberrant biochemical function

    Deletion leading to loss of gene

    Aberrant DNA methylation leading to loss of transcriptional

    activity

  • 8/8/2019 2.1 Molecular Biology Cancer

    46/59

  • 8/8/2019 2.1 Molecular Biology Cancer

    47/59

    Moss (2002) Current Biology 12, R138

    microRNAs are expressed as longer precursor RNAs

  • 8/8/2019 2.1 Molecular Biology Cancer

    48/59

    RISCRepressione TraduzioneRepressione Traduzione

    Alcuni miRNAs

    Pre-miRNAPre-miRNA

    DroshaDrosha

    miRNA genemiRNA gene

    Pri-miRNAPri-miRNA

    DicerDicer

    DuplexmiRNAmiRNA

    Exportin-5Exportin-5

    Helicase

    Regione

    codificante

    RISC RISC

    3 non codificante

    Taglio mRNATaglio mRNA

    RISC

    RNA bicatenarioRNA bicatenario

    siRNAsiRNA

    siRNA e miRNA, per la loro

    struttura, biogenesi e meccanismo

    di funzionamento potrebbero

    rappresentare variazioni dellostesso processo evolutivo

    Da trascrizione elementi ripetitivi e trasposoniDa trascrizione elementi ripetitivi e trasposoni,

  • 8/8/2019 2.1 Molecular Biology Cancer

    49/59

    Quanti sono i miRNA attualmente noti ?

    Nel registro dei microRNA, ad aprile 2005 vi erano| +-- Metazoa

    | | | +-- Arthropoda| | | | | +-- Drosophila melanogaster (78)

    | | | | | +-- Drosophila pseudoobscura (73)

    | | | | | +-- Anopheles gambiae (38)

    | | | | | +-- Apis mellifera (25)

    | | | +-- Nematoda

    | | | | | +-- Caenorhabditis elegans (116)

    | | | | | +-- Caenorhabditis briggsae (79)

    | | | +-- Vertebrata

    | | | +-- Aves

    | | | | | +-- Gallus gallus (122)

    | | | +-- Mammalia

    | | | | | +-- Homo sapiens (227)

    | | | | | +-- Mus musculus (230)

    | | | | | +-- Rattus norvegicus (191)

    | | | | | +-- Canis familiaris (6)

    | | | +-- Amphibia

    | | | | | +-- Xenopus laevis (7)| | | +-- Pisces

    | | | | | +-- Danio rerio (33)

    | +-- Viridiplantae

    | | | | +-- Arabidopsis thaliana (114)

    | | | | +-- Oryza sativa (173)

    | | | | +-- Sorghum bicolor (64)

    | | | | +-- Zea mays (40)

    +-- Viruses

    | +-- Epstein Barr virus (5)

    | +-- Kaposi sarcoma-associated herpesvirus (11)

    | +-- Human cytomegalovirus (9)

    | +-- Mouse gammaherpesvirus 68 (9)

    miRNAregistry

    http://microrna.sanger.ac.uk/sequences/

    i 15 d i 16 ithi th i i l

    http://microrna.sanger.ac.uk/sequences/index.shtmlhttp://microrna.sanger.ac.uk/sequences/index.shtmlhttp://microrna.sanger.ac.uk/sequences/index.shtmlhttp://microrna.sanger.ac.uk/sequences/index.shtml
  • 8/8/2019 2.1 Molecular Biology Cancer

    50/59

    mir-15 and mir-16 are within the minimal

    region of 13q deletion in human CLL

    k

  • 8/8/2019 2.1 Molecular Biology Cancer

    51/59

    BM

    PerBlLeu

    k

    CD5+

    Kidney

    Prostate

    Liver

    Pancreas

    Skmuscle

    Testicle

    miR16

    miR15

    70bp

    20bp

    20bp

    70bp

    CLL

    13qLOH

    1

    +/+

    2

    ND

    3

    +/-

    4

    +/-

    5

    +/-

    6

    ND

    7

    +/-

    8

    NI

    9

    +/+

    10

    +/+

    11

    NI

    12

    +/-

    13

    NI

    14

    NI

    15

    +/-

    16

    +/-

    17

    +/-

    18

    NI

    miR16

    miR15

    70bp

    20bp

    20bp

    70bp

    CD5+

    Expression of

    mir-15 and mir-16in normal tissues

    and human CLLs

  • 8/8/2019 2.1 Molecular Biology Cancer

    52/59

    BCL2 is target of mir-15/16

  • 8/8/2019 2.1 Molecular Biology Cancer

    53/59

    BCL2 is target of mir-15/16

    Saggi luciferasici per la conferma di

  • 8/8/2019 2.1 Molecular Biology Cancer

    54/59

    Saggi luciferasici per la conferma di

    bersagli genici di miRNA deregolati in

    cancro

    Luciferasi

    3UTR gene bersaglio

    microRNA

    EFFETTO: RIDUZIONE ATTIVITA LUCIFERASICA

    Effetto di mir-15a / mir-16-1 su BCL2

  • 8/8/2019 2.1 Molecular Biology Cancer

    55/59

    Let-7 down-regulates human RAS

    Johnson et al. Cell 120: 635, 2005

  • 8/8/2019 2.1 Molecular Biology Cancer

    56/59

    Let-7 down-regulate human RAS

    Johnson et al. Cell 120: 635, 2005

  • 8/8/2019 2.1 Molecular Biology Cancer

    57/59

    Let-7 is down-regulated in human cancer,

    resulting in up-regulation of RAS protein

    Johnson et al. Cell 120: 635, 2005

  • 8/8/2019 2.1 Molecular Biology Cancer

    58/59

    Let-7 is down-regulated in human cancer,

    resultin in up-regulation of RAS protein

    Johnson et al. Cell 120: 635, 2005

    Main mechanism of miRNA involvement in cancer is aberrant expression

  • 8/8/2019 2.1 Molecular Biology Cancer

    59/59

    miRprom

    ote

    r

    miRgene

    miRtranscr

    ipt

    Specific effects

    Apoptosis

    Proliferation

    Invasion

    Angiogenesis

    Target mRNA

    overexpressionoverexpression

    Target mRNA

    downregulation

    Delet

    ion+Pr

    omote

    rHo

    mozy

    gous

    deletio

    n

    miR

    15/16,m

    iR-26a?

    Deleti

    on+Mu

    tation

    Translo

    cation

    miR

    Amplification(miR155)

    miR 142

    hyper

    methy

    lation

    miR1

    5/16?

    Othergene

    p