2.1.1 partial derivatives of first order · x . alone. the derivative of . z. with respect to . x...

33
74 Engineering Mathematics 2.1.1 Partial Derivatives of First Order Consider a function z = f (x, y) of two independent variables x and y. By keeping y as a constant and varying x only, z becomes a function of x alone. The derivative of z with respect to x (y is kept constant) is called the partial derivative of z with respect to x and is denoted by z x f x f D f / or / or or x x . Thus, δ δ = + - δ z x fx xy fxy x lim ( , ) (, ) x 0 Similarly, the derivative of z with respect to y (when x is kept constant) is called the partial derivative of z with respect to y and is denoted by z y f y f Df / or / or or y y . Thus, δ δ = + - δ z y fxy y fxy y lim (, ) ( , ) y 0 z/x and z/y are called the first order partial derivatives of z. In general, if z is a function of more than two independent variables, then the partial derivative of z with respect to any one of the variables, keeping all other variables constant, is the partial derivative of z with respect to that variable. 2.1.2 Partial Derivatives of Higher Order The first order partial derivatives z/x and z/y being the functions of x and y can be further differentiated partially with respect to x and y to get the second order partial derivatives. The second order partial derivatives are = x z x z x f or xx 2 2 , = y z y z y f or yy 2 2 , = y z x z y x f or xy 2 , = ∂∂ x z y z x y f or yx 2 The derivatives f xy and f yx are called mixed derivatives. In general, 2 z/yx = 2 z/xy or f xy = f yx if f xy and f yx are continuous, i.e., the order of differentiation is immaterial if the partial derivatives involved are continuous. In general, the first order partial derivatives z/x and z/y can be differentiated successively to the partial derivatives of higher order. Note: (i) If z = u + v, where u = f (x, y), v = f (x, y), then z is a function of x and y. = + z x u x v x , = + z y u y v y (ii) If z = uv, where u = f (x, y), v = f (x, y), then z x = = + uv x u v x v u x ( ) , = = + z y uv y u v y v u y ( ) .

Upload: others

Post on 12-Nov-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

74 Engineering Mathematics

2.1.1 Partial Derivatives of First Order

Consider a function z = f (x, y) of two independent variables x and y. By keeping y as a constant and varying x only, z becomes a function of x alone. The derivative of z with respect to x (y is kept constant) is called the partial derivative of z with respect to x and is denoted by ∂ ∂ ∂ ∂z x f x f D f/ or / or orx x . Thus,

δ

δ∂∂

= + −δ →

zx

f x x y f x yx

lim ( , ) ( , )x 0

Similarly, the derivative of z with respect to y (when x is kept constant) is called the partial derivative of

z with respect to y and is denoted by ∂ ∂ ∂ ∂z y f y f D f/ or / or ory y . Thus,

δδ

∂∂

= + −δ →

zy

f x y y f x yy

lim ( , ) ( , )y 0

z/x and z/y are called the first order partial derivatives of z.

In general, if z is a function of more than two independent variables, then the partial derivative of z with respect to any one of the variables, keeping all other variables constant, is the partial derivative of z with respect to that variable.

2.1.2 Partial Derivatives of Higher Order

The first order partial derivatives z/x and z/y being the functions of x and y can be further differentiated partially with respect to x and y to get the second order partial derivatives. The second order partial derivatives are

∂∂

∂∂

=

∂∂x

zx

zx

for xx

2

2, ∂∂

∂∂

=

∂∂y

zy

zy

for yy

2

2, ∂∂

∂∂

=

∂∂ ∂y

zx

zy x

for xy

2, ∂∂

∂∂

=

∂∂ ∂x

zy

zx y

for yx

2

The derivatives fxy and fyx are called mixed derivatives. In general, 2z/yx = 2z/xy or fxy = fyx if fxy and fyx are continuous, i.e., the order of differentiation is immaterial if the partial derivatives involved are continuous.

In general, the first order partial derivatives z/x and z/y can be differentiated successively to the

partial derivatives of higher order.

Note: (i) If z = u + v, where u = f (x, y), v = f (x, y), then z is a function of x and y.

∂∂

= ∂∂

+ ∂∂

zx

ux

vx

, ∂∂

= ∂∂

+ ∂∂

zy

uy

vy

(ii) If z = uv, where u = f (x, y), v = f (x, y), then ∂∂zx

= ∂∂

= ∂∂

+ ∂∂

uvx

u vxv ux

( ) , ∂∂

= ∂∂

= ∂∂

+ ∂∂

zy

uvy

u vyv uy

( ) .

Page 2: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 75

(iii) If z = u / v, where u = f (x, y), v = f (x, y), then ∂∂zx

= ∂∂

=

∂∂

− ∂∂u v

x

v uxu vx

v( / )

2, ∂∂

= ∂∂

=

∂∂

− ∂∂z

yu vy

v uyu vy

v( / )

2.

(iv) If z = f (u), where u = f (x, y), then ∂∂

= ⋅ ∂∂

zx

dzdu

ux

, ∂∂

= ⋅ ∂∂

zy

dzdu

uy

.

Example 2.1 Find all the partial derivatives of ax2 + 2hxy + by.

Solution: Let f (x, y) = ax2 + 2hxy + by2

Then ∂∂

= + ∂∂

= +fx

ax hy fy

hx by2 2 , 2 2

∂∂

= ∂∂

∂∂

=

∂∂

+ =fx x

fx x

ax hy a(2 2 ) 22

2

∂∂ ∂

= ∂∂

∂∂

=

∂∂

+ =fy x y

fx y

ax hy h(2 2 ) 22

∂∂ ∂

= ∂∂

∂∂

=

∂∂

+ =fx y x

fy x

hx by h(2 2 ) 22

and ∂∂

= ∂∂

∂∂

=

∂∂

+ =fy y

fy y

hx by b(2 2 ) 22

2

All the partial derivatives of order higher than two vanish. It may be observed that

∂∂ ∂

= ∂∂ ∂

fx y

fy x

2 2

Example 2.2 If z = f (x + ct) + j(x – ct), prove that ∂∂

= ∂∂

zt

c zx

2

22

2

2.

Solution: We have ϕ ϕ∂∂

= ′ + ⋅ ∂∂

+ + ′ − ∂∂

− = ′ + + ′ −zx

f x ctxx ct x ct

xx ct f x ct x ct( ) ( ) ( ) ( ) ( ) ( )

and ϕ∂∂

= ′′ + + ′′ −zx

f x ct x ct( ) ( )2

2 (1)

Again ϕ ϕ∂∂

= ′ + ∂∂

+ + ′ − ∂∂

− = ′ + − ′ −zt

f x cttx ct x ct

tx ct cf x ct c x ct( ) ( ) ( ) ( ) ( ) ( )

and ϕ ϕ∂∂

= ′′ + + ′′ − = ′′ + + ′′ − zt

c f x ct c x ct c f x ct x ct( ) ( ) ( ) ( )2

22 2 2 (2)

From (1) and (2), we get ∂∂

= ∂∂

zt

c zx

2

22

2

2

Page 3: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

76 Engineering Mathematics

Example 2.3 If v = (x2 + y2 + z2)–1/2, prove that ∂∂

+ ∂∂

+ ∂∂

=vx

vy

vz

02

2

2

2

2

2.

Solution: We have ∂∂

= − + + −vx

x y z12

( )2 2 2 3/2 = − + + −x x x y z2 ( )2 2 2 3/2

and ∂∂

= − ⋅ + + + −

+ + ⋅− −v

xx y z x x y z x[1 ( ) 3

2( ) 2 ]

2

22 2 2 3/2 2 2 2 5/2

= − + + + + − = + + − −− −x y z x y z x x y z x y z( ) ( 3 ) ( ) (2 )2 2 2 5/2 2 2 2 2 2 2 2 5/2 2 2 2

Similarly, ∂∂

= + + − + −−vy

x y z x y z( ) ( 2 )2

22 2 2 5/2 2 2 2 and

∂∂

= + + − − +−vz

x y z x y z( ) ( 2 )2

22 2 2 5/2 2 2 2

Hence, ∂∂

+ ∂∂

+ ∂∂

= + + ⋅ =−vx

vy

vz

x y z( ) (0) 02

2

2

2

2

22 2 2 5/2

Note: The given equation is known as the Laplace equation, and the function which satisfies this equation is called the harmonic function.

Example 2.4 If θ =−

t enrt4

2

, find the value of n which will make θ θ∂

∂∂∂

=

∂∂r r

rr t

12

2 .

Solution: Let θ =−

t enrt4

2

θ∂∂

= ⋅ ⋅ −

= −

− − −

rt e r

trt e2

412

nrt n

rt4 1 4

2 2

\ θ∂∂

= − ⋅ − −r

rr t e1

2n

rt2 3 1 4

2

θ∂

∂∂∂

= − + −

= − −

− − − − −

rr

rt r e r e r

tt r e r

t12

3 24

12

32

nrt

rt n

rt2 1 2 4 3 4 1 2 4

22 2 2

\ θ∂

∂∂∂

= −

− −

r rr

rt e r

t1 1

2 23n

rt

22 1 4

22

Also, θ∂∂

= + ⋅

= +

− − − − −

tnt e t e r

tt e n r

t4 4n

rt n

rt n

rt1 4 4

2

21 4

22 2 2

Since θ θ∂

∂∂∂

=

∂∂r r

rt t

12

2 [Given]

or −

= +

− − − −t e r

tt e n r

t12 2

34

nrt n

rt1 4

21 4

22 2

Page 4: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 77

or − = +rt

n rt4

32 4

2 2

or = −n 32

Example 2.5 If u = (1 – 2xy + y2)–1/2, prove that ∂∂

− ∂∂

+ ∂∂

∂∂

=

xx u

x yy u

y(1 ) 02 2 .

Solution: u = (1 – 2xy + y2)–1/2 = V–1/2, where V = 1 – 2xy + y2

∂∂

= − ⋅ ∂∂

= − − =− − −ux

V Vx

V y yV12

12

( 2 )3/2 3/2 3/2

∂∂

= ⋅ ∂∂

= ⋅ −

⋅ ∂

∂= − − =− − − −u

xyxV y V V

xyV y y V( ) 3

232

( 2 ) 32

23/2 5/2 5/2 2 5/2

\ ∂∂

− ∂∂

= − ⋅ ∂

∂+ ∂∂

⋅ ∂∂

−x

x ux

x ux

ux x

x(1 ) (1 ) (1 )2 22

22

= − ⋅ + − = − −− − − −x y V yV x yV yV x x(1 ) 3 ( 2 ) [3 (1 ) 2 ]2 2 5/2 3/2 3/2 1 2 (1)

Similarly, ∂∂

= − ∂∂

= − − + = ⋅ −− − −uy

V Vy

V x y V x y12

12

( 2 2 ) ( )3/2 3/2 3/2

∂∂

= ⋅ ∂∂

− + − ⋅ ∂∂

− −uy

Vyx y x y

yV( ) ( ) ( )

2

23/2 3/2

= ⋅ − + − ⋅ −

⋅∂∂

− −V x y V Vy

( 1) ( ) 32

3/2 5/2

= − − − ⋅ − + = − + −− − − −V x y V x y V x y V32

( ) ( 2 2 ) 3( )3/2 5/2 3/2 2 5/2

\ ∂∂

∂∂

= ⋅ ∂

∂+ ∂∂

⋅ ∂∂y

y uy

y uy

uy y

y( )2 22

22

= − + − + − ⋅− − −y V x y V V x y y[ 3( ) ] ( ) 22 3/2 2 5/2 3/2

= − + − + −− −yV y y x y V x y[ 3 ( ) 2( )]3/2 2 1

= − + −− −yV y x y V x y[3 ( ) (2 3 )]3/2 2 1 (2)

Adding (1) and (2), we have

∂∂

− ∂∂

+ ∂∂

∂∂

= − − + − + −− − −

xx u

x yy u

yyV yV x x y x y V x y(1 ) [3 (1 ) 2 3 ( ) 2 3 ]2 2 3/2 1 2 2 1

= − + − + −− −yV yV x x xy y y[3 (1 2 ) 3 ]3/2 1 2 2 2

= − + −− −yV yV xy y y[3 (1 2 ) 3 ]3/2 1 2

Page 5: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

78 Engineering Mathematics

= −−yV y y(3 3 )3/2 = − +V xy y( 1 2 )2

= 0

Example 2.6 If +

++

++

=xa u

yb u

zc u

12

2

2

2

2

2 , prove that ∂∂

+ ∂

+ ∂

= ∂

∂+ ∂

∂+ ∂

ux

uy

uz

x uxy uyz uz

22 2 2

Solution: We have x2(a2 + u)–1 + y2(b2 + u)–1 + z2(c2 + u)–1 = 1 (1)Differentiating (1) partially w.r.t. x, we get

+ − + ∂∂

− + ∂∂

− + ∂∂

=− − − −x a u x a u uxy b u u

xz c u u

x2 ( ) ( ) ( ) ( ) 02 1 2 2 2 2 2 2 2 2 2

or +

=+

++

++

∂∂

xa u

xa u

yb u

zc u

ux

2( ) ( ) ( )2

2

2 2

2

2 2

2

2 2

or ∂∂

=+

ux

xa u v

2( )2 , where =

++

++

+v x

a uy

b uz

c u( ) ( ) ( )

2

2 2

2

2 2

2

2 2

Similarly, differentiating (1) partially w.r.t. y, we get

+

=+

++

++

∂∂

yb u

xa u

yb u

zc u

uy

2( ) ( ) ( )2

2

2 2

2

2 2

2

2 2 or ∂∂

=+

uy

yb u v

2( )2

Similarly, differentiating (1) partially w.r.t. z, we get

+

=+

++

++

∂∂

zc u

xa u

yb u

zc u

uz

2( ) ( ) ( ) ( )2

2

2 2

2

2 2

2

2 2 or ∂∂

=+

uz

zc u v

2( )2

\ ∂∂

+ ∂

+ ∂

=

++

++

+

=u

xuy

uz v

xa u

yb u

zc u v

4( ) ( ) ( )

42 2 2

2

2

2 2

2

2 2

2

2 2 (2)

Also, ∂∂

+ ∂∂

+ ∂∂

=

++

++

+

x uxy uyz uz

xa u v

yb u v

zc u v

2 2 2( )

2( )

2( )

2

2

2

2

2

2

= +

++

++

=v

xa u

yb u

zc u v

4( ) ( ) ( )

42

2

2

2

2

2 [by (1)] (3)

From Eqs. (2) and (3), we get

∂∂

+ ∂

+ ∂

= ∂

∂+ ∂

∂+ ∂

ux

uy

uz

x uxy uyz uz

22 2 2

Page 6: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 79

Example 2.7 If u = log(x3 + y3 + z3 – 3xyz), show that

(i) ∂∂

+ ∂∂

+ ∂∂

= −

+ +x y zu

x y z9

( )

2

2

(ii) ∂∂

+ ∂∂

+ ∂∂

+ ∂∂ ∂

+ ∂∂ ∂

+ ∂∂ ∂

= −+ +

ux

uy

uz

uy z

uz x

ux y x y z

2 2 2 9( )

2

2

2

2

2

2

2 2 2

2

Solution: (i) u = log(x3 + y3 + z3 – 3xyz)

∂∂

= −+ + −

∂∂

= −+ + −

ux

x yzx y z xyz

uy

y zxx y z xyz

3 33

; 3 33

2

3 3 3

2

3 3 3

∂∂

= −+ + −

uz

z xyx y z xyz

3 33

2

3 3 3

Adding, ∂∂

+ ∂∂

+ ∂∂

= + + − − −+ + −

=+ +

ux

uy

uz

x y z xy yz zxx y z xyz x y z

3( )3

32 2 2

3 3 3

+ + − = + + + + − − − x y z xyz x y z x y z xy yz zx[ 3 ( )( )]3 3 3 2 2 2

Now, ∂∂

+ ∂∂

+ ∂∂

= ∂

∂+ ∂∂

+ ∂∂

∂∂

+ ∂∂

+ ∂∂

x y zu

x y z x y zu

2

= ∂∂

+ ∂∂

+ ∂∂

∂∂

+ ∂∂

+ ∂∂

=

∂∂

+ ∂∂

+ ∂∂

+ +

x y zux

uy

uz x y z x y z

3

= −+ +

−+ +

−+ +

= −+ +x y z x y z x y z x y z

3( )

3( )

3( )

9( )2 2 2 2 (1)

(ii) ∂∂

+ ∂∂

+ ∂∂

= ∂

∂+ ∂∂

+ ∂∂

∂∂

+ ∂∂

+ ∂∂

= ∂

∂+ ∂∂

+ ∂∂

∂∂

+ ∂∂

+ ∂∂

x y zu

x y z x y zu

x y zux

uy

uz

2

= ∂∂

∂∂

+ ∂∂

+ ∂∂

+

∂∂

∂∂

+ ∂∂

+ ∂∂

+

∂∂

∂∂

+ ∂∂

+ ∂∂

xux

uy

uz y

ux

uy

uz z

ux

uy

uz

= ∂∂

+ ∂∂ ∂

+ ∂∂ ∂

+ ∂∂ ∂

+ ∂∂

+ ∂∂ ∂

+ ∂∂ ∂

+ ∂∂ ∂

+ ∂∂

ux

ux y

ux z

uy x

uy

uy z

uz x

uz y

uz

2

2

2 2 2 2

2

2 2 2 2

2

= ∂∂

+ ∂∂

+ ∂∂

+ ∂∂ ∂

+ ∂∂ ∂

+ ∂∂ ∂

ux

uy

uz

uy x

uy z

uz x

2 2 22

2

2

2

2

2

2 2 2

∂∂ ∂

= ∂∂ ∂

∂∂ ∂

= ∂∂ ∂

∂∂ ∂

= ∂∂ ∂

uy x

ux y

uz y

uy z

ux z

uz x

, ,2 2 2 2 2 2

\ ∂∂

+ ∂∂

+ ∂∂

+ ∂∂ ∂

+ ∂∂ ∂

+ ∂∂ ∂

= ∂∂

+ ∂∂

+ ∂∂

= −

+ +ux

uy

uz

uy z

uz x

ux y x y z

ux y z

2 2 2 9( )

2

2

2

2

2

2

2 2 2 2

2 [From (1)]

Page 7: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

80 Engineering Mathematics

2.2 HOMOGENEOUS FUNCTIONS AND EULER’S THEOREM

An expression of the form + + + +− −a x a x y a x y a yn n n

nn

0 11

22 2 in which each term is of nth degree is called

a homogeneous function of degree n in the variables x and y. It can be expressed as

+

+

+⋅ ⋅ ⋅+

x a a yx

a yx

a yx

nn

n

0 1 2

2

or

+

+

+⋅ ⋅ ⋅+

− −

y a xy

a xy

a xy

ann n n

n0 1

1

2

2

Hence, any function f (x, y) which can be expressed in the form φ φ

x y

xy x

yorn n is called a homogeneous

function of degree n in x and y. For example,

φ= ++

= ++

=

f x y x y

x yx y xx y x

x yx

( , ) (1 / )(1 / )

1/2

which means f (x, y) is a homogeneous function of degree 1/2 in x and y. Also,

φ= ++

= ++

=

f x y x y

x yy x yy x y

y xy

( , ) ( / 1)( / 1)

1/2

In general, a function f (x, y, t, …) is a homogeneous function of degree n in variables x, y, t, … if

φ= ⋅⋅ ⋅

f x y t x y

xtx

( , , , ) , ,n or φ ⋅⋅ ⋅

y x

yty

, ,n or φ ⋅⋅ ⋅

t x

tyt

, ,n , etc.

2.2.1 Euler’s Theorem on Homogeneous Functions

Theorem 2.1 If z is a homogeneous function of degree n in x and y, then ∂∂

+ ∂∂

=x zxy zynz.

Proof: Since z is a homogeneous function of degree n in x and y,

=

z x f yx

n

or ⇒ ∂∂

=

+ ′

⋅ ⋅ −

=

− ′

− − −z

xnx f y

xx f y

xyx

nx f yx

yx f yx

1n n n n12

1 2

or ∂∂

=

− ′

−x z

xnx f y

xyx f y

xn n 1 (2.9)

Also, ∂∂

= ′

= ′

−z

yx f y

x xx f y

x1n n 1 or

∂∂

= ′

−y z

yx yf y

xn 1 (2.10)

Adding (2.9) and (2.10), we get ∂∂

+ ∂∂

=

=x z

xy zynx f y

xnzn .

Note: In general, if z is a homogeneous function of degree n in x, y, t,..., then ∂∂

+ ∂∂

+ ∂∂

+⋅⋅ ⋅ =x zxy zyt zt

nz .

Page 8: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 81

Deduction of Euler’s Theorem

Theorem 2.2 If z is a homogeneous function of degree n in x and y, then

∂∂

+ ∂∂ ∂

+ ∂∂

= −x zx

xy zx y

y zy

n n z2 ( 1)22

2

22

2

2

Proof: Since z is a homogeneous function of degree n in x and y, thus by Euler’s theorem, we have

∂∂

+ ∂∂

=x zxy zynz (2.11)

Differentiating (2.11) partially w.r.t. x, we get ∂∂

+ ∂∂

+ ∂∂ ∂

= ∂∂

zxx zx

y zx y

n zx

2

2

2 (2.12)

Differentiating (2.11) partially w.r.t. y, we get ∂∂

+ ∂∂ ∂

+ ∂∂

= ∂∂

zyx zy x

y zy

n zy

2 2

2

But ∂∂ ∂z

y x

2 = ∂

∂ ∂z

x y

2

Hence, ∂∂

+ ∂∂ ∂

+ ∂∂

= ∂∂

zyx zx y

y zy

n zy

2 2

2 (2.13)

Multiplying (2.12) by x, (2.13) by y, and then adding, we get

∂∂

+ ∂∂ ∂

+ ∂∂

+ ∂∂

+ ∂∂

= ∂∂

+ ∂∂

x z

xxy z

x yy z

yx zxy zyn x z

xy zy

222

2

22

2

2

or ∂∂

+ ∂∂ ∂

+ ∂∂

+ =x zx

xy zx y

y zy

nz n nz2 ( )22

2

22

2

2 [From (2.11)]

or ∂∂

+ ∂∂ ∂

+ ∂∂

= −x zx

xy zx y

y zy

n n z2 ( 1)22

2

22

2

2

Example 2.8 If = +−

−u x yx y

tan 13 3

, prove that ∂∂

+ ∂∂

=x uxy uy

usin 2 .

Solution: Here u is not a homogeneous function but = +−

=+

−=

u x y

x y

x y x

x y xx f y

xtan

1 ( / )

[1 ( / )]

3 3 3 32 is a

homogeneous function of degree 2 in x and y.

Therefore, by Euler’s theorem, we have

∂∂

+ ∂∂

=xx

u yy

u u(tan ) (tan ) 2 tan

or ∂∂

+ ∂∂

=x u uxy u u

yusec sec 2 tan2 2

or ∂∂

+ ∂∂

= ⋅ = =x uxy uy

uu

u u u u2sincos

cos 2sin cos sin 22

Page 9: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

82 Engineering Mathematics

Example 2.9 If = ++

−u x yx y

cos 1 , show that ∂∂

+ ∂∂

+ =x uxy uy

u12

cot 0 .

Solution: Here, = ++

−u x yx y

cos 1 is not a homogeneous function but = ++

u x yx y

cos is homogeneous

in x and y of degree 1/2.Therefore, by Euler’s theorem, we have

∂∂

+ ∂∂

=xx

u yy

u ucos cos 12

cos

or − ∂∂

− ∂∂

=x u uxy u u

yusin sin 1

2cos

or ∂∂

+ ∂∂

+ =x uxy uy

u12

cot 0 . Hence the result.

Example 2.10 If = ++

−u x yx y

sin 1 , prove that

∂∂

+ ∂∂

=x uxy uy

u12

tan

and ∂∂

+ ∂∂ ∂

+ ∂∂

= −x ux

xy ux y

y uy

u uu

2 sin cos 24cos

22

2

22

2

2 3

Solution: Here u is not a homogeneous function but = = ++

z u x yx y

sin is a homogeneous function of

degree 1/2 in x and y. Therefore,

∂∂

+ ∂∂

=x zxy zy

z12

or ∂∂

+ ∂∂

=x u uxy u u

yucos cos 1

2sin

Thus, ∂∂

+ ∂∂

=x uxy uy

u12

tan (1)

Differentiating (1) partially w.r.t. x, we get

∂∂

+ ∂∂

+ ∂∂ ∂

= ∂∂

x ux

uxy ux y

u ux

12

sec2

2

22

or ∂∂

+ ∂∂ ∂

= −

∂∂

x ux

y ux y

u ux

12

sec 12

2

22 (2)

Again differentiating (1) partially w.r.t. y, we get

∂∂ ∂

+ ∂∂

+ ∂∂

= ∂∂

x uy x

y uy

uy

u uy

12

sec2 2

22

Page 10: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 83

or ∂∂ ∂

+ ∂∂

= −

∂∂

x ux y

y uy

u uy

12

sec 12 2

22 (3)

Multiplying (2) by x and (3) by y and adding, we obtain

∂∂

+ ∂∂ ∂

+ ∂∂

= −

∂∂

+ ∂∂

x u

xxy u

x yy u

yu x u

xy uy

2 12

sec 122

2

22

2

22

or ∂∂

+ ∂∂ ∂

+ ∂∂

= −

x u

xxy u

x yy u

yu u2 1

2sec 1 1

2tan2

2

2

22

2

22 [by (1)]

= −uu

uu

14

sincos

12

sincos3

= − −u uu

sin (2cos 1)4cos

2

3

Hence, ∂∂

+ ∂∂ ∂

+ ∂∂

= −x ux

xy ux y

y uy

u uu

2 sin cos 24cos

22

2

22

2

2 3

2.3 TOTAL DERIVATIVE AND PARTIAL DIFFERENTIATION OF IMPLICIT FUNCTIONSIf φ ψ= = =z f x y x t y t( , ), where ( ), ( ) , then z is called a composite function of the single variable t. We can substitute the values of x and y in f(x, y) and express z as a function of t alone. We can then obtain dz/dt, which is called the total derivative. However, the substitution of φ ψ= =x t y t( ), ( ) is not always convenient. Then the use of partial derivatives helps in finding the total derivative. This method is given in the next section. Similarly, if φ ψ= = =z f x y x u v y u v( , ), where ( , ), ( , ) , then z is called a composite function of the two

variables u and v and we can find ∂∂

∂∂

zu

zv

and .

2.3.1 Chain Rule for Partial Differentiation

Theorem 2.3 If φ ψ= = =z f ( x y ) where x ( t ) y ( t ), , , i.e., z is a composite function of t, then

= ∂∂

⋅ + ∂∂

⋅dzdt

zxdxdt

zydydt (2.14)

Proof: We have φ ψ= = =z f x y x t y t( , ), where ( ), ( ) (2.15)

Let an increment to t be δt and the corresponding increments to x, y and z be δx , δ y and δz , respectively. Then δ δ δ+ = + +z z f x x y y( , ) (2.16)

Page 11: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

84 Engineering Mathematics

Subtracting (2.15) from (2.16), we get δ δ δ= + + −z f x x y y f x y( , ) ( , )

δ δ δ δ= + + − + + + −f x x y y f x y y f x y y f x y{ ( , ) ( , )} { ( , ) ( , )}

Hence, δδ

δ δ δδ

δδ

δδ

δδ

= + + − + ⋅ + + − ⋅zt

f x x y y f x y yx

xt

f x y y f x yy

yt

{ ( , ) ( , )} { ( , ) ( , )}

Taking limit as δ →t 0 , δx and δ →y also 0 , we have

δδ

δ δ δδ

δδ

δδ

δδ

= + + − +

+ + −

δ δ

δδ δ δ→ →

→→ → →

zt

f x x y y f x y yx

xt

f x y y f x yy

yt

lim lim ( , ) ( , ) lim lim ( , ) ( , ) limt x

yt y t0 0

00 0 0

or dzdt

δ= ∂ +∂

⋅ + ∂

∂⋅

δ →

f x y yx

dxdt

f x yy

dydt

lim ( , ) ( , )y 0

[Assuming ∂ ∂f x y x( , ) / as a continuous function of y]

= ∂∂

⋅ + ∂∂

⋅f x yx

dxdt

f x yy

dydt

( , ) ( , ) = ∂∂

⋅ + ∂∂

⋅zxdxdt

zydydt

which is known as the chain rule.

Note:

(i) Taking t = x, (2.14) becomes = ∂∂

+ ∂∂

⋅dzdx

zx

zydydx

(2.17)

(ii) If z = f (x, y, s,...), where x, y, s, … are all functions of a variable t, then

= ∂∂

⋅ + ∂∂

⋅ + ∂∂

⋅ + ⋅ ⋅ ⋅dzdt

zxdxdt

zydydt

zsdsdt

(iii) If =z f x y( , ) and x, y are functions of u and v, then

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

zu

zx

xu

zy

yu

zv

zx

xv

zy

yv

,

2.3.2 Differentiation of Implicit Functions

If =f x y( , ) constant, c (say) is an implicit relation between x and y, i.e., y is an implicit function of x, then

=dfdx

0 or ∂∂

+ ∂∂

⋅ =fx

fydydx

0 [Using (2.17)]

This implies that = − ∂ ∂∂ ∂

= −dydx

f xf y

ff

//

x

y

∂∂

fy

0 (2.18)

which is the first differential coefficient of an implicit function.

We can also express d ydx

2

2 in terms of partial derivatives. Let

∂∂

= ∂∂

= ∂∂

= ∂∂

= ∂∂ ∂

=fx

p fy

q fx

r fy

t fx y

s, , , ,2

2

2

2

2

.

Page 12: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 85

= −dydx

pq

[From (2.18)]

On differentiating again w.r.t. x, we obtain

= − −d ydx

q dp dx p dq dxq

( ) ( )2

2 2. (2.19)

But by chain rule, = ∂∂

⋅ + ∂∂

⋅ = + −

=

−dpdx

px

pydydx

r s pq

qr psq

1

and = ∂∂

⋅ + ∂∂

⋅ = + −

=

−dqdx

qx

qydydx

s t pq

qs ptq

1

Substituting the values of dp dx and dq dx in (2.19), we get

= − −

= − − +d y

dx qq qr ps

qp qs pt

q qq r pqs p t1 1 ( 2 )

2

2 2 32 2

\ = − − +d ydx

q r pqs p tq

22

2

2 2

3

which is the second differential coefficient of an implicit function.

Example 2.11 If =+ +

+ + ++ +

u x y z

x y zxy yz zxx y z

log3 3 3

3 3 3 2 2 2 , then find ∂∂

+ ∂∂

+ ∂∂

x uxy uyz uz

.

Solution: Let =+ +

v x y zx y z

3 3 3

3 3 3 and = + ++ +

w xy yz zx

x y zlog

2 2 2 . (1)

so that u = v + w

Since =+

v x y x z xy x z x

( / ) ( / )1 ( / ) ( / )

63 3

3 3, v is a homogeneous function of degree 6 in x, y, z.

Hence, by Euler’s theorem, we have

∂∂

+ ∂∂

+ ∂∂

=x vxy vyz vz

v6 (2)

Since =+ ⋅ +

+

+

w

yx

yxzxzx

yx

zx

log

12 2 , therefore w is a homogeneous function of degree zero in x, y, z.

Hence, by Euler’s theorem, we have

∂∂

+ ∂∂

+ ∂∂

=x wxy wyz wz

0 (3)

Page 13: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

86 Engineering Mathematics

Adding (2) and (3), we obtain

∂∂

+ ∂∂

+

∂∂

+ ∂∂

+

∂∂

+ ∂∂

=x v

xwx

y vy

wy

z vz

wz

v6

or ∂∂

+ ∂∂

+ ∂∂

=+ +

x uxy uyz uz

x y zx y z

63 3 3

3 3 3

Example 2.12 If z is a function of x and y, where = + −x e eu v and = −−y e eu v , show that

∂∂

− ∂∂

= ∂∂

− ∂∂

zu

zv

x zxy zy

Solution: Here z is a composite function of u and v. Therefore,

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

⋅ + ∂∂

− −zu

zx

xu

zy

yu

zxe z

ye( )u u

and ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

− + ∂∂

−−zv

zx

xv

zy

yv

zx

e zy

e( ) ( )v v

Subtracting, ∂∂

− ∂∂

= + ∂∂

− − ∂∂

= ∂∂

− ∂∂

− −zu

zv

e e zx

e e zyx zxy zy

( ) ( )u v u v

Example 2.13 (i) If + = + +y x x y( )x y x y( ) , find dydx

.

(ii) If = +z x y2 2 and + + =x y axy a3 53 3 3 , find the value of dzdx

when x = y = a.

Solution: (i) Let = + − + +f x y y x x y( , ) ( )x y x y( )

Now, ∂∂

= + ⋅ − + + +− +fx

y y y x x y x ylog ( ) [1 log( )]x y x y1

and ∂∂

= + − + + +− +fy

x y x x x y x ylog ( ) [1 log( )]x y x y1

Hence, ( )( )

= − ∂ ∂∂ ∂

= −+ − + + +

+ − + + +

− +

− +dydx

f xf y

y y y x x y x y

x y x x x y x y//

log ( ) 1 log( )

log ( ) 1 log( )

x y x y

x y x y

1

1

(ii) Since = +z x y2 2 , thus by the concept of total derivative, we have

= ∂∂

+ ∂∂

dz zxdx z

ydy

= ∂∂

⋅ + ∂∂

dzdx

zx

zydydx

1

= + ⋅ + + ⋅ ⋅ =+

+

− −x y x x y y dy

dx x yx y dy

dx12

( ) 2 1 12

( ) 2 12 2 1/2 2 2 1/2

2 2 (1)

Page 14: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 87

From the relation + + =x y axy a3 53 3 3 , we have

=− ∂∂

+ + −

∂∂

+ + −= − +

+= −dy

dxxx y axy a

yx y axy a

x ayy ax

( 3 5 )

( 3 5 )

(3 3 )3 3

13 3 3

3 3 3

2

2 at (a, a)

Putting = −dydx

1 in Eq. (1), we get

=

++ −

=dzdx x y

x y1 { ( 1)} 0a a a a( , ) 2 2

( , )

Example 2.14 If θ θ= = =w f x y x r y r( , ), cos , sin , show that

θ

∂∂

+ ∂

= ∂

+ ∂

wr r

w fx

fy

12

2

2 2 2

Solution: The given equation defines w as a composite function of r and q.

θ θ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

⋅ + ∂∂

⋅wr

wx

xr

wy

yr

wx

wy

cos sin

or θ θ∂∂

= ∂∂

+ ∂∂

wr

fx

fy

cos sin =w f x y[ ( , )] (1)

Also, θ θ θ

θ θ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

− + ∂∂

w wx

x wy

y wx

r wyr( sin ) ( cos )

or θ

θ θ∂∂

= −∂∂

+ ∂∂r

w fx

fy

1 sin cos (2)

Squaring and adding (1) and (2), we get

θ

∂∂

+ ∂

= ∂

+ ∂

wr r

w fx

fy

12

2

2 2 2

Example 2.15 If = − −

u u y x

xyz xxz

, , show that ∂∂

+ ∂∂

+ ∂∂

=x uxy u

yz u

z02 2 2 .

Solution: Let = − = −v y xxy x y

1 1 and = − = −w z xxz x z

1 1 (1)

so that =u u v w( , ) . Therefore,

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

+

∂∂

ux

uv

vx

uw

wx

uv x

uw x

1 12 2 [using (1)]

Page 15: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

88 Engineering Mathematics

or ∂∂

= −∂∂

− ∂∂

x ux

uv

uw

2 (2)

Also, ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

+

∂∂

uy

uv

vy

uw

wy

uv y

uw

1 (0)2

[using (1)]

or ∂∂

= ∂∂

y uy

uv

2 (3)

Similarly, ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

+ ∂∂

uz

uv

vz

uw

wz

uv

uw z

(0) 12

[using (1)]

or ∂∂

= ∂∂

z uz

uw

2 (4)

Adding (2), (3) and (4), we have

∂∂

+ ∂∂

+ ∂∂

=x uxy u

yz u

z02 2 2

Example 2.16 If u x y f yx

( )= −

find x

ux

xy ux y

yuy

222

2

22

2

2∂∂

+ ∂∂ ∂

+ ∂∂

Solution: Given : ux

x y fyx

yx

f yx

( ) '2

∂∂

= −

+

yx

x y fyx

f yx

( )2

'= −

+

ux

yx

x y fyx

yx

yx

fyx

yx

x y fyx

fyx

( ) 2 ( )yx

2

2 2''

2 2'

3' '

2∂∂

= −

+

+

+

x

ux

yx

x y fyx

y fyx

yx

x y fyx

y f( ) 2 ( )yx2

2

2

2'' ' ' '∂

∂= −

+

x

ux

yx

x y fyx

y fyx

yx

x y fyx

( ) 2 2 ( )22

2 2'' ' '∂

∂=

+

∂∂

= −

+

−u

yx y f

yx x

f yx

( ) 1 ( 1)'

= −

xx y f

yx

f yx

1 ( ) '

∂∂

=

+

− −

uy x

x y fyx x x

fyx

fyx x

1 ( ) 1 1 ( 1) 12

2'' ' '

=

xx y f

yx x

fyx

1 ( ) 22

'' '

Page 16: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 89

∂∂

=

y

uy

yx

x y fyx

yxfyx

( )22

2

2

2

2''

2'

∂∂ ∂

=

+

+

u

x y xx y f

yx

yx x

fyx x

x y fyx

fyx

1 ( ) 1 1 ( )yx

2''

2'

2' '

2

= −

+

+

y

xx y f

yx x

fyx x

x y fyx

fyx

( ) 1 1 ( )yx

3' '

2' '

2

∂∂ ∂

=−

+

+

xy u

x yyx

x y fyx

y fyx

y x yx

fyx

yxf2

2( ) 2 2 ( ) 2 y

x

2 2

3' ' '

2'

∂∂

+ ∂∂ ∂

+ ∂∂

=xux

xy ux y

yuy

2 022

2

22

2

2

Example 2.17 If W=f(y z, z x, x y) show that ∂∂

+ ∂∂

+ ∂∂

=Wx

Wy

Wz

0

Solution: Let u = y z, v = z x, w = x y, W = f (u, v, w)

∂∂

= ∂∂

∂∂

+ ∂∂

∂∂

+ ∂∂

∂∂

= ∂∂

+ ∂∂

− + ∂∂

= −∂∂

+ ∂∂

Wx

fuux

fvvx

fwwx

fu

fv

fw

fv

fw

(0) ( 1) (1)

∂∂

= ∂∂

∂∂

+ ∂∂

∂∂

+ ∂∂

∂∂

= ∂∂

+ ∂∂

+ ∂∂

− = ∂∂

− ∂∂

Wy

fuuy

fvvy

fwwy

fu

fv

fw

fu

fw

(1) (0) ( 1)

∂∂

= ∂∂

∂∂

∂∂

∂∂

+ ∂∂

∂∂

= ∂∂

− + ∂∂

+ ∂∂

= −∂∂

+ ∂∂

Wz

fuuzfvvz

fwwz

fu

fv

fw

fu

fv

( 1) (1) (0)

Adding we get ∂∂

+ ∂∂

+ ∂∂

=Wx

Wy

Wz

0

2.4 CHANGE OF VARIABLESLet =z f x y( , ) (2.20) where φ ψ= =x u v y u v( , ) and ( , ) (2.21) More often, it is required to change expressions containing z, x, y, ∂ ∂z x/ , ∂ ∂z y/ , etc., to expressions containing z, u, v, ∂ ∂z u/ , z v/∂ ∂ , etc. Then we can obtain the necessary formulae for the change of variables. The variables x, y, z will be functions of u alone when v is treated as a constant. Thus, by chain rule, we have

zu

zx

xu

zy

yu

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

(2.22)

where the ordinary derivatives are being changed to the partial derivatives since x, y are functions of two

variables u and v. Similarly, treating u as a constant, we obtain zv

zx

xv

zy

yv

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

(2.23)

Page 17: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

90 Engineering Mathematics

Solving (2.22) and (2.23) for zx∂∂

and zy∂∂

, we get the values in terms of zu∂∂

, zv∂∂

, z, u, v.

Note: (i) If instead of Eq. (2.21), we are given that u x y v x y( , ) and ( , )φ ψ= = , then (2.22) and (2.23) become

zx

zu

ux

zv

vx

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

and zy

zu

uy

zv

vy

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

(ii) By repeatedly applying formulae (2.22) and (2.23) or the formulas in Note (i), we can obtain the higher derivatives of z.

Example 2.18 If u F x y y z z x( , , )= − − − , prove that ux

uy

uz

0∂∂

+ ∂∂

+ ∂∂

=

Solution: Put x y r y z s, ,− = − = and z x t− = , so that u f r s t( , , )= . Therefore,

ux

ur

rx

us

sx

ut

tx

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

ur

xs

ut

ur

ut

(1) (0) ( 1)= ∂∂

⋅ + ∂∂

⋅ + ∂∂

⋅ − = ∂∂

− ∂∂

(1)

Similarly, uy

ur

ry

us

sy

ut

ty

ur

us

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= − ∂∂

+ ∂∂

(2)

and uz

ur

rz

us

sz

ut

tz

us

ut

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= − ∂∂

+ ∂∂

(3)

Adding (1), (2) and (3), we get ux

uy

uz

0∂∂

+ ∂∂

+ ∂∂

=

Example 2.19 If z f x y( , )= and x r cosθ= , y r sinθ= show that

zx

zy

zr r

z12 2 2

2

2

θ∂∂

+ ∂

= ∂

+ ∂

Solution: Here, zr

zx

xr

zy

yr

zx

zy

cos sinθ θ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

+ ∂∂

(1)

and z zx

x zy

y zx

r zyr( sin ) ( cos )

θ θ θθ θ∂

∂= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

− + ∂∂

rz z

xzy

1 sin cosθ

θ θ∂∂

= − ∂∂

+ ∂∂

(2)

Page 18: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 91

Squaring and adding (1) and (2), we get

zr r

z zx

zy

zxzy

1 cos sin 2sin cos2

2

2 22

22

θθ θ θ θ∂

+ ∂

= ∂

+ ∂

+ ∂

∂∂∂

zx

zy

zxzy

sin cos 2sin cos2

22

2θ θ θ θ+ ∂∂

+ ∂

− ∂

∂∂∂

zx

zy

2 2

= ∂∂

+ ∂

Example 2.20 Transform the equation ux

uy

02

2

2

2∂∂

+ ∂∂

= into polar coordinates.

Solution: The relation which connects Cartesian coordinates (x, y) with polar coordinates (r, q) are x r cosθ= ,

y r sinθ= so that r x y2 2 2= + and yx

tanθ = . Thus,

r x y yx

and tan2 2 1θ= + =

\ rx

x

x y

rr

cos cos2 2

θ θ∂∂

=+

= = , ry

y

x y

rr

sin sin2 2

θ θ∂∂

=+

= =

and x y

x

yx

yx y

rr r

1

1

sin sin2

2

2 2 2 2θ θ θ∂∂

=+

⋅ −

= −

+= − = − ;

y yx

xx

x yrr r

1

1

1 cos cos2

2

2 2 2θ θ θ∂∂

=+

⋅ =+

= =

Here, u is a composite function of x and y.

ux

ur

rx

ux

ur r

ucos sinθ

θ θ θθ

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

− ⋅ ∂∂

xu

r ru( ) cos sinθ θ

θ∂∂

= ∂∂

− ⋅ ∂∂

or x r r

cos sinθ θθ

∂∂

≡ ∂∂

− ⋅ ∂∂

(1)

Also, uy

ur

ry

uy

ur r

usin cosθ

θ θ θθ

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

= ∂∂

+ ⋅ ∂∂

or yu

r ru( ) sin cosθ θ

θ∂∂

= ∂∂

+ ⋅ ∂∂

or

y r rsin cosθ θ

θ∂∂

≡ ∂∂

+ ⋅ ∂∂

(2)

Page 19: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

92 Engineering Mathematics

Now, we will make use of the equivalence of Cartesian and polar operators as given by (1) and (2).

ux x

ux r r

ur r

ucos sin . cos sin2

2θ θ

θθ θ

θ∂∂

= ∂∂

∂∂

=

∂∂

− ∂∂

∂∂

− ⋅ ∂∂

r

ur r

ur

ur r

ucos cos sin sin cos sinθ θ θθ

θθ

θ θθ

= ∂∂

∂∂

− ∂∂

− ⋅ ∂

∂∂∂

− ⋅ ∂∂

ur

ur r

ur

cos cos sin 1 sin2

2 2

2θ θ θ

θθ

θ= ∂

∂− ∂

∂−

− ⋅ ∂

∂ ∂

r

ur

ur r

ur

usin sin cos cos sin2 2

2θ θ θ

θθ

θθ

θ− − ∂

∂+ ∂

∂ ∂− ∂

∂− ⋅ ∂

ur r

ur

ur r

ur r

ucos 2cos sin sin 2cos sin sin22

2 2

2 2 2

2

2

2θ θ θ

θθ θ θ

θθ

θ= ∂

∂+ ⋅ ∂

∂+ ⋅ ∂

∂− ⋅ ∂

∂ ∂+ ⋅ ∂

∂ (3)

uy y

uy r r

ur r

usin cos sin cos2

2θ θ

θθ θ

θ∂∂

= ∂∂

∂∂

=

∂∂

+ ⋅ ∂∂

∂∂

+ ⋅ ∂∂

r

ur r

ur

ur r

usin sin cos cos sin cosθ θ θθ

θθ

θ θθ

= ∂∂

∂∂

+ ⋅ ∂∂

+ ⋅ ∂

∂∂∂

+ ⋅ ∂∂

=ur r

ur

ur u r

ur

ur u r

ur

usin sin cos cos cos cos sin sin cos2

2 2

2 2 2

2θ θ θ

θθ θ θ θ θ

θθ

θ∂∂

− ⋅ ∂∂

+ ⋅ ∂∂ ⋅∂

+ ∂

∂+ ∂

∂ ⋅∂− ⋅ ∂

∂+ ⋅ ∂

ur r

ur

ur r

ur r

usin 2cos sin cos 2cos sin cos22

2 2

2 2 2

2

2

2θ θ θ

θθ θ θ

θθ

θ= ∂

∂− ⋅ ∂

∂+ ⋅ ∂

∂+ ⋅ ∂

∂ ∂+ ⋅ ∂

∂ (4)

Adding (3) and (4), we get

ux

uy

ur r

ur r

u1 12

2

2

2

2

2 2

2

2θ∂∂

+ ∂∂

= ∂∂

+ ∂∂

+ ⋅ ∂∂

Therefore, ux

uy

02

2

2

2∂∂

+ ∂∂

= transforms into ur r

ur r

u1 1 02

2 2

2

2θ∂∂

+ ⋅ ∂∂

+ ⋅ ∂∂

= .

Example 2.21 If x y e2 cosφ+ = θ and x y ie2 sinφ− = θ , show that u u xy u

x y4

2

2

2

2

2

θ φ∂∂

+ ∂∂

= ∂∂ ∂

.

Solution: We have x e i e e(cos sin ) iφ φ= + = ⋅θ θ φ

and y e i e e(cos sin ) iφ φ= − = ⋅θ θ φ−

Page 20: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 93

Here, u is a composite function of q and φ. Therefore,

u u

xx u

yy

θ θ θ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

uxe e u

ye e x u

xy uy

( ) ( )i i= ∂∂

⋅ + ∂∂

⋅ = ∂∂

+ ∂∂

θ φ θ φ−

or xuyyθ

∂∂

= ∂∂

+ ∂∂

(1)

Also, u ux

x uy

yφ φ φ∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

uxie e u

ye ie ix u

xiy uy

( ) ( )i i= ∂∂

⋅ ⋅ + ∂∂

⋅ ⋅− = ∂∂

− ∂∂

θ φ θ φ−

or ixxiyyφ

∂∂

= ∂∂

− ∂∂

(2)

Using the operator (1), we have

u u xxyyx uxy uy

2

2θ θ θ∂∂

= ∂∂

∂∂

=

∂∂

+ ∂∂

∂∂

+ ∂∂

xxx ux

xxy uy

yyx ux

yyy uy

= ∂∂

∂∂

+

∂∂

∂∂

+

∂∂

∂∂

+

∂∂

∂∂

x x ux

ux

xy ux y

yx uy x

y y uy

uy

2

2

2 2 2

2= ∂

∂+ ∂∂

+

∂∂ ∂

+ ∂∂ ∂

+ ∂∂

+ ∂∂

x ux

xy ux y

y uy

x uxy uy

222

2

22

2

2= ∂

∂+ ∂

∂ ∂+ ∂

∂+ ∂

∂+ ∂

∂ (3)

Similarly, using operator (2), we get

u u ix

xiyyix uxiy uy

2

2φ φ φ∂∂

= ∂∂

∂∂

=

∂∂

− ∂∂

∂∂

− ∂∂

x ux

xy ux y

y uy

x uxy uy

222

2

22

2

2= − ∂

∂+ ∂

∂ ∂− ∂

∂− ∂

∂− ∂

∂ (4)

Adding (3) and (4), we get

u u xy u

x y4

2

2

2

2

2

θ φ∂∂

+ ∂∂

= ∂∂ ∂

Page 21: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

94 Engineering Mathematics

2.5 JACOBIANS

Let u and v be functions of two independent variables x and y. Then the determinant u x u yv x v y

/ // /

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

is called

the Jacobian of u and v with respect to x and y. It is denoted by u vx y

J u vx y

( , )( , )

or ,,

∂∂

.

Also, the Jacobian of u, v and w with respect to x, y and z is

u v wx y z

J u v wx y z

u x u y u zv x v y v zw x w y w z

( , , )( , , )

or , ,, ,

/ / // / // / /

∂∂

=

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

Similarly, we can define the Jacobian of more than three variables. The term ‘Jacobian’ was named after German mathematician Carl Gustav Jacob Jacobi (1804–1851) who made significant contribution to mechanics, partial differential equations, astronomy, elliptic functions and the calculus of variations.

2.5.1 Chain Rule for Jacobians

If u, v are functions of x, y and x, y are functions of r, s, then

u vx y

( , )( , )∂∂

. x yr s

( , )( , )

∂∂

= u vr s

( , )( , )∂∂

Let us prove this result.

u vx y

( , )( , )∂∂

. x yr s

( , )( , )

∂∂

= u x u yv x v y

/ // /

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

x r x sy r y s

/ // /

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

= u x u yv x v y

/ // /

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

x r y rx s y s

/ // /

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

(Interchanging rows and columns)

ux

xr

uy

yr

ux

xs

uy

ys

vx

xr

vy

yr

vx

xs

vy

ys

=

∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

Since u f x y( , )= , v g x y( , )= , where x r s( , )φ= , y r s( , )ψ= , thus by chain rule, we have

ur

ux

xr

uy

yr

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

, us

ux

xs

uy

ys

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

vr

vx

xr

vy

yr

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

, vs

vx

xs

vy

ys

∂∂

= ∂∂

⋅ ∂∂

+ ∂∂

⋅ ∂∂

Hence, u vx y

( , )( , )∂∂

. x yr s

( , )( , )

∂∂

= u r u sv r v s

/ // /

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

= u vr s

( , )( , )∂∂

Page 22: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 95

In general, x x xu u u

u u uv v v

x x xv v v

( , ,..., )( , ,..., )

( , ,..., )( , ,..., )

( , ,..., )( , ,..., )

n

n

n

n

n

n

1 2

1 2

1 2

1 2

1 2

1 2

∂∂

⋅∂∂

=∂∂

Corollary: If J =u vx y

( , )( , )∂∂

and Jx yu v

( , )( , )

′ = ∂∂

, then JJ 1′ = .

Proof: If we replace r, s by u, v in the previous result, then we get the required result. In general,

u u ux x x

x x xu u u

( , ,..., )( , ,..., )

( , ,..., )( , ,..., )

1n

n

n

n

1 2

1 2

1 2

1 2

∂∂

⋅∂∂

=

Example 2.22 If x r cosθ= , y r sinθ= , evaluate x yr

( , )( , )θ

∂∂

and rx y

( , )( , )

θ∂∂

.

Solution: Since x r cosθ= , y r sinθ= , we have

xr

cosθ∂∂

= , yr

sinθ∂∂

= and x r sinθ

θ∂∂

= − , y r cosθ

θ∂∂

=

x yr

xr

x

yr

yrr

( , )( , )

cos sinsin cosθ

θ

θ

θ θθ θ

∂∂

=

∂∂

∂∂

∂∂

∂∂

= −

r rcos sin2 2θ θ= + r r(cos sin )2 2θ θ= + =

Now, r x y2 2 2= + and yx

tan 1θ = −

rx

xr

∂∂

= , ry

yr

∂∂

= and x

yx y

yr2 2 2

θ∂∂

= −+

= − , y

xx y

xr2 2 2

θ∂∂

=+

=

rx y

rx

ry

x y

xr

yr

yr

xr

( , )( , )

2 2

θθ θ

∂∂

=

∂∂

∂∂

∂∂

∂∂

=−

xr

yr

x yr

rr r

12

3

2

3

2 2

3

2

3= + = + = =

Note: x yr

rx y

rr

( , )( , )

( , )( , )

1 1θ

θ∂∂

× ∂∂

= ⋅ =

Example 2.23 If x r sin cosθ φ= , y r sin sinθ φ= and z r cosθ= , show that x y zr

r( , , )( , , )

sin2

θ φθ∂

∂= .

Solution: We have x y zr

x r x xy r y yz r z z

r rr rr

( , , )( , , )

sin cos cos cos sin sinsin sin cos sin sin cos

cos sin 0θ φ

θ φθ φθ φ

θ φ θ φ θ φθ φ θ φ θ φ

θ θ

∂∂

=∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

=−

Page 23: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

96 Engineering Mathematics

Taking out common factors (r from the second column and r sin q from the third column), we get

x y zr

, ,, ,θ φ

∂( )∂( )

r sinsin cos cos cos sinsin sin cos sin cos

cos sin 0

2 θθ φ θ φ φθ φ θ φ φ

θ θ=

Expanding by third row, we get

x y zr

, ,, ,θ φ

∂( )∂( )

r sin coscos cos sincos sin cos

sinsin cos sinsin sin cos

2 θ θθ φ φθ φ φ

θθ φ φθ φ φ

=−

+−

= r2 sinq [cosq (cosq cos2f + cosq sin2f) + sinq (sinq cos2f + sinq sin2f)] r rsin (cos sin ) sin2 2 2 2θ θ θ θ= + =

Note: Here x y z( , , ) and θ φr( , , ) are the Cartesian and spherical polar coordinates of a point, respectively.

Example 2.24 If = = =yx xx

yx xx

yx xx

, ,12 3

12

3 1

23

1 2

3, show that the Jacobian of y y y, ,1 2 3 with respect to

x x x, ,1 2 3 is 4.

Solution: The Jacobian of y1, y2, y3 w.r.t. x1, x2, x3 is given by

∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

=

y y yx x x

yx

yx

yx

yx

yx

yx

yx

yx

yx

x xx

xx

xx

xx

x xx

xx

xx

xx

x xx

( , , )( , , )

1 2 3

1 2 3

1

1

1

2

1

3

2

1

2

2

2

3

3

1

3

2

3

3

2 3

12

3

1

2

1

3

2

3 1

22

1

1

2

3

1

3

1 2

32

Taking out common x x x1 , 1 and 1

12

22

32 from first, second and third row, respectively, we get

y y yx x x

( , , )( , , )

1 2 3

1 2 3

∂∂

=

−x x x

x x x x x x

x x x x x x

x x x x x x

1

12

22

32

2 3 3 1 1 2

2 3 3 1 1 2

2 3 3 1 1 2

Taking out common x x x x x x, and2 3 3 1 1 2 from the first, second and third column, respectively, we get

y y yx x x

( , , )( , , )

1 2 3

1 2 3

∂∂ =

−−

x x xx x x

1 1 11 1 11 1 1

12

22

33

12

22

33

= − − − − − + + = + + =1(1 1) 1( 1 1) 1(1 1) 0 2 2 4

Example 2.25 If = −u x y2 2, =v xy2 and θ=x r cos , θ=y r sin , find θ

∂∂u vr

( , )( , )

.

Solution: We have θ θ

∂∂

= ∂∂

× ∂∂

u vr

u vx y

x yr

( , )( , )

( , )( , )

( , )( , )

Page 24: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 97

Since = − =u x y v xy, 22 2 , we have

∂∂

=

∂∂

∂∂

∂∂

∂∂

=−

= +u vx y

ux

uy

vx

vy

x yy x

x y( , )( , )

2 22 2

4( )2 2 (1)

Since θ θ= =x r y rcos , sin , we have

θθ

θ

θ θθ θ

∂∂

=

∂∂

∂∂

∂∂

∂∂

= − =x yr

xr

x

yr

yrr

r( , )( , )

cos sinsin cos

(2)

Hence, θ θ

θ θ∂∂

= ∂∂

⋅ ∂∂

= + ⋅ = + ⋅ =u vr

u vx y

x yr

x y r r r r r( , )( , )

( , )( , )

( , )( , )

4( ) 4( cos sin ) 42 2 2 2 2 2 3 [using (1) and (2)]

2.5.2 Jacobians of Implicit Functions

If u1 and u2 are implicit functions of the variables x1 and x2 connected by the relations =f u u x x( , , , ) 01 1 2 1 2

and =f u u x x( , , , ) 02 1 2 1 2 , then ∂∂

= −∂ ∂∂ ∂

u ux x

f f x xf f u u

( , )( , )

( 1)( , ) / ( , )( , ) / ( , )

1 2

1 2

2 1 2 1 2

1 2 1 2

. In general,

∂∂

= −∂ ∂∂ ∂

u u ux x x

f f f x x xf f f u u u

( , ,..., )( , ,..., )

( 1)( , ,..., ) / ( , ,..., )( , ,..., ) / ( , ,..., )

n

n

n n n

n n

1 2

1 2

1 2 1 2

1 2 1 2

Note: This result bears resemblance to the result ∂∂

= −∂ ∂∂ ∂

yx

f xf y

//

, where x and y are connected by the

relation =f x y( , ) 0 .

Example 2.26 If =u xyz, = + +v x y z2 2 2 and = + +w x y z , find ∂∂x y zu v w

( , , )( , , )

.

Solution: Let us first calculate the value of J.

= ∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

J u v wx y z

ux

uy

uz

vx

vy

vz

wx

wy

wz

( , , )( , , )

= =− −− −

yz zx xyx y z

yz z x y y x zx y x z x2 2 2

1 1 1

( ) ( )2 2( ) 2( )1 0 0

= − − − − − = − − −z x y z x y y x x z x y x z y z2 ( )( ) 2 ( )( ) 2( )( )( )

Since ′ =JJ 1 , we have

∂∂

= ′ = =− − −

x y zu v w

JJ x y y z x z

( , , )( , , )

1 12( )( )( )

Page 25: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

98 Engineering Mathematics

Example 2.27 If =−

=−

=−

u xy z

v yz x

w zx y

, , , show that ∂∂

=u v wx y z

( , , )( , , )

0 .

Solution: We have =−

=−

=−

u xy z

v yz x

w zx y

, , . Therefore,

= − −u x y zlog log log( ) (1)

= − −v y z xlog log log( ) (2)

= − −w z x ylog log log( ) (3)

Differentiating (1) partially w.r.t. x, we get

⋅ ∂∂

=u

ux x

1 1 or

∂∂

=ux

ux

Differentiating (1) partially w.r.t. y, we get

⋅ ∂∂

= −−u

uy y z

1 1 or ∂∂

= −−

uy

uy z

Differentiating (1) partially w.r.t. z, we get

⋅ ∂∂

= −−

−u

uz y z

1 1 ( 1) or ∂∂

=−

uz

uy z

Similarly, from (2) and (3), we have

∂∂

=−

∂∂

= ∂∂

= −−

∂∂

= −−

∂∂

=−

∂∂

=vx

vz x

vy

vy

vz

vz x

wx

wx y

wy

wx y

wz

wz

, , , , ,

\ ∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

u v wx y z

ux

uy

uz

vx

vy

vz

wx

wy

wz

( , , )( , , )

=

−− −

−−−

−− −

ux

uy z

uy z

vz x

vy

vz x

wx y

wx y

wz

Page 26: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 99

Taking out common u, v, w from R1, R2, R3 respectively, we get

u v wx y z

( , , )( , , )∂∂

=

−− −

−−−

−− −

uvw

x y z y z

z x y z x

x y x y z

1 1 1

1 1 1

1 1 1

Multiplying R1, R2, R3 by y – z, z – x, x – y, respectively, we get

u v wx y z

( , , )( , , )∂∂

=− − −

− −

− −

− −

uvwy z z x x y

y zx

z xy

x yz

( )( )( )

1 1

1 1

1 1

Multiplying C1, C2, C3 by x, y, z, respectively, we get

u v wx y z

( , , )( , , )∂∂

=− − −

− −− −

− −

uvwxyz y z z x x y

y z y zx z x zx y x y( )( )( )

Operating C1 C1 + C2 + C3, we get

u v wx y z

( , , )( , , )∂∂ =

− − −

−− −

−=

y z z x x y

y zz x zy x y

1( ) ( ) ( )

000

02 2 2

2.5.3 Functional Relationship

Let u u u, ,1 2 3 be the functions of x x x, ,1 2 3, respectively. Then the functional relationship of the form

=f u u u( , , ) 01 2 3 exists if

=J

u u ux x x

, ,, ,

01 2 3

1 2 3 and conversely, if the functional relationship of the form

=f u u u( , , ) 01 2 3 exists, then

=J

u u ux x x

, ,, ,

01 2 3

1 2 3.

Example 2.28 Show that the functions = + +u x y z , = + + −v x y z xyz33 3 3 and

= + + − − −w x y z xy yz zx2 2 2 are functionally dependent and find the relation between

them.

Solution: The functions u, v, w are functionally dependent if ∂∂

=u v wx y z

( , , )( , , )

0 . Therefore,

Page 27: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

100 Engineering Mathematics

∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

= − − −− − − − − −

u v wx y z

ux

uy

uz

vx

vy

vz

wx

wy

wz

x yz y xz z xyx y z y z x z x y

( , , )( , , )

1 1 13( ) 3( ) 3( )2 2 2

2 2 2

= − − + − − + −− − − −x yz y x z y x z x y z xx y z y x z x

31 0 0

( ) ( )2 3( ) 3( )

2 2 2 2 2

Expanding along R1, we get

u v wx y z

( , , )( , , )∂∂

=− + + − + +

− −= − − + + =

y x x y z z x x y zy x z x

y x z x x y z9( )( ) ( )( )

9( )( )( ) 1 11 1

0

Therefore, u, v, w are functionally dependent.

Now, = + + − = + + + + − − − =v x y z xyz x y z x y z xy yz zx uw3 ( )( )3 3 3 2 2 2 .Hence, =v uw is the desired relation.

Example 2.29 If = = =u yzxv zx

yw xy

z, , show that ∂

∂=u v w

x y z( , , )( , , )

4

Solution:

∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

u v wx y z

ux

uy

uz

vx

vy

vz

wx

wy

wz

( , , )( , , )

=

=

−−

yzx

zx

yx

zy

zxy

xy

yz

xz

xyz

x y z

yz xz xyzy zx xyyz xz xy

1 1 1

2

2

2

2 2 2

= − −

− −

+ +

= + + =yz

xx yzy z

xyz

zx

xyyz

xz

yxxyxy

0 2 2 42

2

2 2

2

Page 28: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 101

Example 2.30 Prove u = x + y + z; v = xy + yz + zx; w = x2 + y2 + z2 are functionally independent. Find the relationship between them.

Solution:

∂∂

=

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

∂∂

u v wx y z

ux

uy

uz

vx

vy

vz

wx

wy

wz

( , , )( , , )

= + + +y z z x x yx y z

1 1 1

2 2 2

= + − + − + − + + + − + z z x y x y z y z x x y y y z x z x1 2 ( ) 2 ( ) 1 2 ( ) 2 ( ) 1 2 ( ) 2 ( )

= + − − − − + + + + − − =z xz xy y yz z x xy y yz xz x2 2 2 2 2 2 2 2 2 2 2 2 02 2 2 2 2 2

u,v and w are functionally dependent.The relation between them is given is (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) u2 = w + 2v

2.6 TAYLOR’S SERIES FOR FUNCTIONS OF TWO VARIABLES

Theorem 2.4 If f (x, y) possesses finite and continuous partial derivatives of all orders, then

+ + = + ∂∂

+ ∂∂

+

∂∂

+ ∂∂ ∂

+ ∂∂

+⋅ ⋅ ⋅f x h y k f x y h f

xk fy

h fx

hk fx y

k fy

( , ) ( , ) 12!

222

2

22

2

2

Proof: We know that Taylor’s theorem for a function f (x) of single variable x is

+ = + ′ + ′′ + ⋅ ⋅ ⋅f x h f x hf x h f x( ) ( ) ( )2!

( )2

Now, expanding + +f x h y k( , ) as a single variable x by keeping y as constant, we have

+ + = + + ∂∂

+ + ∂∂

+ +⋅⋅ ⋅f x h y k f x y k hxf x y k h

xf x y k( , ) ( , ) ( , )

2!( , )

2 2

2 (2.24)

and expanding + +f x h y k( , ) as a single variable y by keeping x as constant, we get

+ = + ∂∂

+ ∂∂

+⋅⋅ ⋅f x y k f x y kyf x y k

yf x y( , ) ( , ) ( , )

2!( , )

2 2

2 (2.25)

Page 29: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

102 Engineering Mathematics

Using (2.25), (2.24) can be written as+ +f x h y k( , )

+ + = + ∂∂

+ ∂∂

+⋅⋅ ⋅

+ ∂

∂+ ∂

∂+ ∂

∂+⋅⋅ ⋅

f x h y k f x y kyf x y k

yf x y h

xf x y k

yf x y k

yf x y( , ) ( , ) ( , )

2!( , ) ( , ) ( , )

2!( , )

2 2

2

2 2

2

+ ∂∂

+ ∂∂

+ ∂∂

+⋅⋅ ⋅

hx

f x y kyf x y k

yf x y

2!( , ) ( , )

2!( , )

2 2

2

2 2

2+ ...

Hence, + + = + ∂∂

+ ∂∂

+

∂∂

+ ∂∂ ∂

+ ∂∂

+⋅ ⋅ ⋅f x h y k f x y h f

xk fy

h fx

hk fx y

k fy

( , ) ( , ) 12!

222

2

22

2

2 (2.26)

Symbolically, this result can be written as

+ + = + ∂∂

+ ∂∂

+ ∂

∂+ ∂

+⋅ ⋅ ⋅+ ∂

∂+ ∂

+⋅ ⋅ ⋅f x h y k f x y h

xkyf h

xky

fnhxky

f( , ) ( , ) 12!

1!

n2

Corollary: (i) Putting x = a and y = b, (2.26) becomes

+ + = + + + + + +⋅⋅ ⋅f a h b k f a b hf a b kf a b h f a b hkf a b k f a b( , ) ( , ) [ ( , ) ( , )] 12!

[ ( , ) 2 ( , ) ( , )]x y xx xy yy2 2

Putting a + h = x and b + k = y so that h = x – a, k = y – b, we get

= + − + −f x y f a b x a f a b y b f a b( , ) ( , ) [( ) ( , ) ( ) ( , )]x y

+ − + − − + − +⋅⋅ ⋅x a f a b x a y b f a b y a f a b12!

[( ) ( , ) 2( )( ) ( , ) ( ) ( , )]xx xy yy2 2 (2.27)

which is a Taylor’s expansion of f (x, y) in powers of (x – a) and (y – b). This is used for the expansion of f (x, y) in the neighbourhood of (a, b). (ii) Putting a = 0, b = 0 in (2.27), we get

= + +f x y f xf yf( , ) (0,0) [ (0,0) (0,0)]x y + + + +⋅⋅ ⋅x f xyf y f12!

[ (0,0) 2 (0,0) (0,0)]xx xy yy2 2 (2.28)

This is a Maclaurin’s expansion of f (x, y). This is used for the expansion of f (x, y) in the neighbourhood of origin (0, 0).

Example 2.31 Expand e ysinx in powers of x and y as far as terms of the third degree.

Solution: Let =f x y e y( , ) sinx or =f (0,0) 0

=f x y e y( , ) sinxx or =f (0,0) 0x ; =f x y e y( , ) cosy

x or =f (0,0) 1y

=f x y e y( , ) sinxxx or =f (0,0) 0xx ; =f x y e y( , ) cosxy

x or =f (0,0) 1xy

= −f x y e y( , ) sinyyx or =f (0,0) 0yy ; =f x y e y( , ) sinxxx

x or =f (0,0) 0xxx

=f x y e y( , ) cosxxyx or =f (0,0) 1xxy ; = −f x y e y( , ) sinxyy

x or =f (0,0) 0xyy

Page 30: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 103

= −f x y e y( , ) cosyyyx or = −f (0,0) 1yyy

Maclaurin’s expansion of f x y( , ) is given by

f x y( , ) = + + + + +f x f y f x f xy f y f(0,0) [ (0,0) (0,0)] 12!

[ (0,0) 2 (0,0) (0,0)]x y xx xy yy2 2

+ + + + +⋅⋅ ⋅x f x y f xy f y f13!

[ (0,0) 3 (0,0) 3 (0,0) (0,0)]xxx xxy xyy yyy3 2 2 3

= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + − +⋅⋅ ⋅x y x xy y x x y xy y0 ( 0 1) 12!

( 0 2 1 0) 13!

[ 0 3 1 3 0 ( 1)]2 2 3 2 2 3

= + + − +⋅⋅ ⋅y xy x y y12

16

2 3

Example 2.32 Expand + −x y y3 22 in powers of (x – 1) and ( y + 2) using Taylor’s theorem.

Solution: Let = + − ⇒ − = −f x y x y y f( , ) 3 2 (1, 2) 102 . Therefore,

= − = − = + − =f x y xy f f x y x f( , ) 2 or (1, 2) 4; ( , ) 3 or (1, 2) 4;x x y y2

=f x y y( , ) 2 orxx − = − = − = = − =f f x y x f f x y f(1, 2) 4; ( , ) 2 or (1, 2) 2; ( , ) 0 or (1, 2) 0xx xy xy yy yy

− =f (1, 2) 0;xxx − = − = − =f f f(1, 2) 2; (1, 2) 0; (1, 2) 0xxy xyy yyy .

All partial derivatives of higher order vanish.Taylor’s expansion of f x y( , ) in powers of −x a( ) and ( y – b) is given by

= + − + − + −f x y f a b x a f a b y b f a b x a f a b( , ) ( , ) [( ) ( , ) ( ) ( , )] 12!

[( ) ( , )x y xx2

+ − − + − + −x a y b f a b y b f a b x a f a b2( )( ) ( , ) ( ) ( , )] 13!

[( ) ( , )xy yy xxx2 3

+ − − + − −x a y b f a b x a y b f a b3( ) ( ) ( , ) 3( )( ) ( , )xxy xyy2 2 + − +⋅⋅ ⋅y b f a b( ) ( , )]yyy

3 (1)

+ − = − + − − + + + − − + − + + +x y y x y x x y y3 2 10 [( 1)( 4) ( 2)4] 12

[( 1) ( 4) 2( 1)( 2)(2) ( 2) (0)]2 2 2

+ − + − + + − + + +x x y x y y16

[( 1) (0) 3( 1) ( 2)(2) 3( 1)( 2) (0) ( 2) (0)]3 2 2 3

= − − − + + − − + − + + − +x y x x y x y10 4( 1) 4( 2) 2( 1) 2( 1)( 2) ( 1) ( 2)2 2

Example 2.33 Expand +e ylog(1 )x in powers of x and y upto the terms of third degree.

Solution: Here, = +f x y e y( , ) log(1 )x or =f (0,0) 0 ; = +f x y e y( , ) log(1 )xx or =f (0,0) 0x

=+

f x y ey

( , ) 11y

x or =f (0,0) 1y ; = +f x y e y( , ) log(1 )xxx or =f (0,0) 0xx ;

Page 31: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

104 Engineering Mathematics

=+

f x y ey

( , ) 11xy

x or =f (0,0) 1xy ; = − + −f x y e y( , ) (1 )yyx 2 or = −f (0,0) 1yy ;

= +f x y e y( , ) log(1 )xxxx or =f (0,0) 0xxx ; =

+f x y e

y( , ) 1

1xxyx or =f (0,0) 1xxy

= − + −f x y e y( , ) (1 )xyyx 2 or = −f (0,0) 1xyy ; = + −f x y e y( , ) 2 (1 )yyy

x 3 or =f (0,0) 2yyy

Maclaurin’s expansion of f (x, y) is given by

= + + + + +f x y f xf yf x f xy f y f( , ) (0,0) { (0,0) (0,0)} 12!

{ (0,0) 2 (0,0) (0,0)}x y xx xy yy2 2

+ + + + +⋅⋅ ⋅x f x y f xy f y f13!

{ (0,0) 3 (0,0) 3 (0,0) (0,0)}xxx xxy xyy yyy3 2 2 3

\ + = + + + + + −e y x y x xy ylog(1 ) 0 (0) (1) 12!

{ (0) 2 (1) ( 1)}x 2 2

+ + + − + +⋅⋅ ⋅x x y xy y13!

{ (0) 3 (1) 3 ( 1) (2)}3 2 2 3

= + − + − + +⋅⋅ ⋅y xy y x y xy y12

12

( ) 13

2 2 2 3

Example 2.34 Find the expansion of cos xcos y in powers of x, y up to fourth-order terms.

Solution: Let =f x y x y( , ) cos cos or = = = − =f f x y x y f(0,0) cos0cos0 1; ( , ) sin cos or (0,0) 0x x

= − =f x y x y f( , ) cos sin or (0,0) 0y y ; = − = −f x y fcos cos or (0,0) 1xx xx

= =f x y x y f( , ) sin sin or (0,0) 0xy xy ; = − = −f x y x y f( , ) cos cos or (0,0) 1yy yy

= =f x y x y f( , ) sin cos or (0,0) 0xxx xxx ; = =f x y x y f( , ) cos sin or (0,0) 0xxy xxy

= =f x y x y f( , ) sin cos or (0,0) 0xyy xyy ; = =f x y x y f( , ) cos sin or (0,0) 0yyy yyy

= =f x y x y f( , ) cos cos or (0,0) 1xxxx xxxx ; = − =f x y x y f( , ) sin sin or (0,0) 0xxxy xxxy

= =f x y x y f( , ) cos cos or (0,0) 1xxyy xxyy ; = − =f x y x y f( , ) sin sin or (0,0) 0xyyy xyyy

= =f x y x y f( , ) cos cos or (0,0) 1yyyy yyyy

Maclaurin’s expansion of f x y( , ) is given by

f x y( , ) = + + + + +f xf y f x f xy f y f(0,0) [ (0,0) (0,0)] 12!

[ (0,0) 2 (0,0) (0,0)]x y xx xy yy2 2

+ + + +x f x y f xy f y f13!

[ (0,0) 3 (0,0) 3 (0,0) (0,0)]xxx xxy xyy yyy3 2 2 3

+ + + + +x f x y f x y f xy f y f14!

[ (0,0) 4 (0,0) 6 (0,0) 4 (0,0) (0,0)]xxxx xxxy xxyy xyyy yyyy4 3 2 2 3 4 + …

Page 32: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

Functions of Several Variables 105

\ = + ⋅ + ⋅ + − + ⋅ + − + ⋅ + ⋅ + ⋅ +x y x y x xy y x x y xy ycos cos 1 ( 0 0) 12!

[ ( 1) 2 0 ( 1)] 13!

( 0 3 0 3 0 )2 2 3 2 2 3

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅x x y x y xy y14!

[ 1 4 0 6 1 4 0 1]4 3 2 2 3 4

= − − + + + +⋅⋅ ⋅x y x x y y12! 2! 4!

64!

14!

2 2 4 2 24

= − + + + + +⋅⋅ ⋅x y x x y y1 12

( ) 124

( 6 )2 2 4 2 2 4

Example 2.35 Expand x3 + y3 + xy2 in the power of x 1 & y 2 upto 3 degree terms .

Solutions:

Let f (x, y) = x3 + y3 + xy2

Let f (x, y) = x3 + y3 + xy2 f (1, 2) = 1 + 8 + 4 = 13

fx (x, y) = 3x2 + y2 fx (1, 2) = 3 + 4 = 7

fy (x, y) = 3y2 + 2xy fy (1, 2) = 12 + 4 = 16

fxx (x, y) = 6x fxx (1, 2) = 6

fxy (x, y) = 2y fxy (1, 2) = 4

fyy (x, y) = 6y + 2x fyy (1, 2) = 6 + 4 = 10

fxxx (x, y) = 6 fxxx (x, y) = 6

fxxy (x, y) = 0 fxxy (x, y) = 0

fxyy (x, y) = 2 fxyy (x, y) = 2

fyyy (x, y) = 6 fyyy (x, y) = 6

( ) ( )

= + − + − + − + − − + −

+

− + + − − + −

f x y x y x x y y

x x y y

( , ) 13 ( 1)7 ( 2)16 12!

6( 1) 8( 1)( 2) 14( 2)

13!

6( 1) 0 6 1 2 6( 2)

2 2

3 3

= + − + − + − + − − + −

+ − + − − + −

f x y x y x x y y x x y y( , ) 13 7 7 16 32 3( 1) 4( 1)( 2) 7( 1) ( 1) ( 1)( 2) ( 2)2 2 3 3

Example 2.36 Expand the function sinxy in power of x 1 and π−y2

upto second degree terms.

Solutions: Let f (x, y) = sin xy π

=f 1,

20

x

π

=f 1,

20

x 1

=f x y y xy( , ) cos( )x π

=f 1,

20

x

Page 33: 2.1.1 Partial Derivatives of First Order · x . alone. The derivative of . z. with respect to . x (y . is kept constant) is called the partial derivative of . z. with respect to

106 Engineering Mathematics

=f x y x xy( , ) cos( )y

π

=f 1,

20

y

= −f x y y xy( , ) sin( )xx

2

π π

= −f 1,

2 4xx

2

= −f x y x xy( , ) sin( )yy

2

π

= −f 1,

21

yy

= − +f x y xy xy xy( , ) sin( ) cos( )xy

π π

=f 1,

2 2xx

( )π π π π= + − + −

+ − −

+ − −

xy x y x y ysin 1 ( 1)02

0 12!

( 1)2 2 2

( 1)2

π π π π= + −− − − −

− −

x x y y1 12 4

( 1) ( 1)2 2

22

2

Example 2.37 Expand e ycosx about π

0,

2upto the third term using Taylor’s series.

Solutions: Let f (x, y) = e ycosx

π

π

π

π

π

π

π

π

=

=

= −

= −

=

=

= −

=

=

=

= −

= −

= −

= −

=

=

= + + − + − +

f f

f f

f f

f f

f f

f f

f f

f f

x y e y

x y e y

x y e y

x y e y

x y e y

x y e y

x y e y

x y e y

e y xx y x x y

( , ) cos 0,2

0

( , ) sin 0,2

1

( , ) cos 0,2

0

( , ) cos 0,2

0

( , ) cos 0,2

0

( , ) sin 0,2

1

( , ) sin 0,2

0

( , ) sin 0,2

1

cos 11!

12!

( ) 13!

( 3 ) ...

x

x

x

y

x

y

xx

x

xx

yy

x

yy

xxx

x

xxx

xxy

x

xxy

xyy

x

xyy

yyy

x

yyy

x 2 2 3 2

π

π

π

π

π

π

π

π

=

=

= −

= −

=

=

= −

=

=

=

= −

= −

= −

= −

=

=

= + + − + − +

f f

f f

f f

f f

f f

f f

f f

f f

x y e y

x y e y

x y e y

x y e y

x y e y

x y e y

x y e y

x y e y

e y xx y x x y

( , ) cos 0,2

0

( , ) sin 0,2

1

( , ) cos 0,2

0

( , ) cos 0,2

0

( , ) cos 0,2

0

( , ) sin 0,2

1

( , ) sin 0,2

0

( , ) sin 0,2

1

cos 11!

12!

( ) 13!

( 3 ) ...

x

x

x

y

x

y

xx

x

xx

yy

x

yy

xxx

x

xxx

xxy

x

xxy

xyy

x

xyy

yyy

x

yyy

x 2 2 3 2