2111 2005 water amd wastewater treatemt hydraulics

41
2111 2005 Water amd wastewater treatemt Hydraulics

Upload: blake-booker

Post on 12-Jan-2016

228 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 2111 2005 Water amd wastewater treatemt Hydraulics

21112005

Water amd wastewater treatemt Hydraulics

Page 2: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Hydraulics

Objective

- Analysis of pipe flow system

- Head losses in pipes

- Flow measurements

- Small diameter gravity and vaccum sewers

- Introduction to tutorial questions

Page 3: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Pipe flow analysis

1 2

The Bernoulli’s Equation

E1 = E2 ± ΔE

P1/ ρg + v21 /2g + Z1 = P2/ ρg + v2

2 /2g + Z2 ± ΔE

Page 4: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Bernoulli’s equation

BE is used in analysis of pipe flow

It states that total energy remains constant along a stream line (That is total head is constant)

It uses certain assumptions

– Flow is steady

– Fluid is incompressible

– Valid at two points along a single streamline

The hydraulic grade and the energy line are graphical presentations of the Bernoulli’s equation (BE)

Page 5: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Energy and hydrulic grade line

1 2

V

v21 /2g

P1/ ρg

Z1 Z2

P2/ ρg

v22/2g

H1 H2

E2E1

Reference level

Energy grade line

Hydraulic grade line

Page 6: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Energies, Head

2Z2

P2/ ρg

v22/2g

H2

E2

Reference level

EGL

HGL

Energy Head (total)

Piezometric head

Pressure head

Elevation head (potential)

Page 7: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Energies, Heads

2Z2

P2/ ρg

H2

Reference level

HGL

Piezometric head

Pressure head

Elevation head (potential)

Velocity head neglected except well above 1 m/s (example: pumping stations)

Page 8: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Hydraulic gradientSlope of the hydraulic grade line

Page 9: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Hydraulic gradientSlope of the hydraulic grade line

Page 10: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Hydraulic lossesFriction, minor

ΔE results from a friction between the water and the pipe wall, and /or a turbulence developed by obstructions of the flow

ΔE = hf + hm = Rf Qn (f) + Rm Qn (m)

hf,m = Friction, Minor loss (respectively)Rf,m = Pipe resistanceQ = Flownf, m = exponents

Page 11: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Friction Losses

Darcy- Weisbach

– λ = Friction factor (-)

– L = Pipe length (m)

– D = Pipe diameter (m)

– Q = Pipe flow (m3 /s)

– Or propotional to the kinetic energy

25

252 1.12

8Q

D

LQ

gD

LQRh fn

ff

g

V

D

Lh f 2

2

Page 12: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Friction factor

Friction factor, λ is the most important parameter in the Darcy-weisbach equation

– Is the complex function of the Reynolds number and relative roughness

Reynolds Number

VD

Re

V = Flow velocity (m/s)D = Pipe diameter (m) = Kinematic viscosity (m2/s)

5.1

6

)5.42(

10497

T Temperature, T(0 C)

Page 13: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Flow regime

Laminar flow – Re falls under 2000

Transitional zone - Re falls between 2000 and 4000

Turbulent flow - Re above 4000

For Laminar flow

λ = 64/ Re

Page 14: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Choice for rough pipes

There are empirical formula and diagrams to determine friction factor (f) depending on the pipe roughness and Reynolds Number

– Moody diagram

– Colebrook-white equations etc.

Page 15: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

The Moody diagram

Departm

ent o

f Pla

nt a

nd E

nviro

nm

enta

l Scie

nce

s

Page 16: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Absolute rougness

Page 17: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Friction losses

Hazen –Williams

852.187.4852.1

68.10Q

DC

LQRh fn

ff

L = Pipe length (m)C = Hazen-Williams factor D = Pipe diameter (m)Q = Pipe flow (m3 /s)R = Hydrualic Radius (flow area/wetted perimeter)S = Slope of energy grade line = hf /L

54.063.085.0 SRCV Or

Page 18: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Hazen-Williams Factors

Page 19: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Friction losses

Manning

23/16

229.10Q

D

LnQRh fn

ff

or

2/13/21SR

nV

L = Pipe length (m)n = mannings factor ( m-1/3 s)D = Pipe diameter (m)Q = Pipe flow (m3 /s)R = Hydrualic Radius (flow area/wetted perimeter)S = Slope of energy grade line = hf /L

Page 20: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Manning factor

Page 21: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

The best formula ?

Darcy-weisbach – the most accurate

Hazen-williams- (straight forward and simpler (friction coefficient not function of diameter or velocity), suitable for smooth pipes not attacked by corrosion)

Mannings- straight forward, suitable for rough pipes, commonly applied for open channel flows

Page 22: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Difference between pressure flow and open channel flow

HGL

v21 /2g

EGL

Open channel flow (in large gravity sewer)

v21 /2g

EGL

HGL

Pressure flow

Page 23: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Minor losses

Given byhf = k V2 /2g K determined experimentally for various fittings

Values of K for various fittings:

Valve ( fully open ) 2Tee 0.2 – 2.0Bend 1.2

Page 24: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Flow measurements in pipes

Orifice plates

Where C = discharge coefficient

5.0

122 2

PP

CAQ

Page 25: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Flow measurements in open channel flow

Sharp crested weir

L = Length of weir, m

Cd = discharge coefficient

5.15.0)2(3

2HgLCQ d

Page 26: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Small diameter sewer collection system

• Transport sewage to treatment or disposal point

• Size and length of sewer depends upon the type of sewerage system (centralised or decentralised)

• Need sufficient velocity to transport sewage

Page 27: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Small diameter sewer network

Septic tank effluent gravity (STEG)

Septic tank effluent pump (STEP) and

pressure sewer with grinder pumps

Page 28: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Small diameter sewer network

Vacuum sewer

Page 29: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Friction losses

Hazen –Williams

852.187.4852.1

68.10Q

DC

LQRh fn

ff

L = Pipe length (m)C = Hazen-Williams factor D = Pipe diameter (m)Q = Pipe flow (m3 /s)R = Hydrualic Radius (flow area/wetted perimeter)S = Slope of energy grade line = hf /L

54.063.085.0 SRCV Or

Hazen –Williams formula based on actual flow area- so inside pipe diameter is used.

Page 30: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Design and layout of collection system

Information required

–Topography of the area

–Depth of soil

–Depth of water table

–Depth of freezing zone

–Amount (daily minimum, average and peak flow rates)

–Population growth rate

Page 31: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Excersise-Sewer collection system

Prepare a profile

Select a pipe size

Calculate the velocity

Calculate the pipe cross sectional area

and determine the actual capacity

Check for the surcharged condition

Page 32: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Friction Losses

Hazen –Williams

852.187.4852.1

68.10Q

DC

LQRh fn

ff

L = Pipe length (m)C = Hazen-Williams factor D = Pipe diameter (m)Q = Pipe flow (m3 /s)R = Hydrualic Radius (flow area/wetted perimeter)S = Slope of energy grade line = hf /L

54.063.085.0 SRCV Or

Page 33: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Pipe selection

Crites and Technobanoglous 1998)

Page 34: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Crites and Technobanoglous 1998)

Page 35: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Design of STEP sewer

Design of STEP for a small community as shown in plan view below.

The informations given are:

Page 36: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Page 37: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

54.063.085.0 SRCV

1.31English unit !!!!!!!!

R = D/4

Page 38: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

Page 39: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

852.187.4852.1

68.10Q

DC

Lh f

L

Slope should be 0.5 to 1.5 %

If too low -pipe is oversized

Design flow/CA of pipe

EGL/100 *L

Plot EGL –begin from D/S

Page 40: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

References

Water supply and Sewerage – Terence J McGheeChapter 3 (Page 24 – 61) (IHNALibrary catlog No. 628.1 MCG)

Crites, R. and G. Technobanoglous (1998). Small and decentralized wastewater management systems, McGraw-Hill.(Chapter 6)

Advanced Water Distribution Modelling and Management by Haestad and et al. (Chapter 2.3, 2.4, 2.5, 2.6)(IHNALibrary catlog No. 628.1)

Page 41: 2111 2005 Water amd wastewater treatemt Hydraulics

NO

RW

EG

IAN

UN

IVER

SIT

Y O

F LIF

E S

CIE

NC

ES

www.umb.no

THANK YOU