230 4-6 variation of parameters - 國立臺灣大學djj.ee.ntu.edu.tw/de_write4.pdf230 4-6 variation...

68
233 4-6 Variation of Parameters The method can solve the particular solution for any linear DE ( ) ( 1) 1 1 0 () n n n n a x y x a x y x a x y x a x y g x (1) May not have constant coefficients (2) g(x) may not be of the special forms 4-6-1 方法的限制

Upload: others

Post on 25-Oct-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

  • 233

    4-6 Variation of Parameters

    The method can solve the particular solution for any linear DE

    ( ) ( 1)1 1 0( )n nn na x y x a x y x a x y x a x y g x

    (1) May not have constant coefficients (2) g(x) may not be of the special forms

    4-6-1 方法的限制

  • 2344-6-2 Case of the 2nd order linear DE

    2 1 0( ) ( )a x y x a x y x a x y g x

    Suppose that the solution of the associated homogeneous equation is

    1 1 2 2( ) ( )c y x c y x

    Then the particular solution is assumed as:

    1 0( ) ( ) 0na x y x a x y x a x y associated homogeneous equation:

    1 1 2 2( ) ( ) ( ) ( )py u x y x u x y x

    (方法的基本精神)

  • 2351 1 2 2( ) ( ) ( ) ( )py u x y x u x y x

    1 1 1 1 2 2 2 2py u y u y u y u y

    1 1 1 1 1 1 2 2 2 2 2 22 2py u y u y u y u y u y u y

    ( ) ( )y x P x y x Q x y f x 代入

    012 2 2

    ( )( ) ( ), ,( ) ( ) ( )

    a xa x g xP x Q x f xa x a x a x

    1 2 1 1

    1 1 2 2 2 2 1 1

    1 1 1 2 2

    2 2

    2

    2 2p p p y Py Qy y Py Qyy P x y Q x y u u y u

    u y y u u y P y u y u

    zero zero

    代入原式後,總是可以簡化

  • 236 ,p p py P x y Q x y f x

    1 1 2 2 1 1 2 2 1 1 2 2d y u y u P y u y u y u y u f xdx

    簡化

    1 1 2 2py u y u y

    進一步簡化:

    假設 1 1 2 2 0y u y u

    1 1 2 2y u y u f x 聯立方程式

    1 1 2 2

    1 1 2 2

    0y u y uy u y u f x

    1 1 1 1 2 2 2 2 1 1 2 22 2p p py P x y Q x y y u u y y u u y P y u y u

    代入

  • 237

    1 1 2 2

    1 1 2 2

    0y u y uy u y u f x

    211

    y f xWuW W

    122

    y f xWuW W

    1 1u u x dx

    2 2u u x dx

    where

    | |: determinant

    1 2

    1 2

    y yW

    y y

    2

    12

    0( )

    yW

    f x y

    1

    21

    0( )

    yW

    y f x

    1 1 2 2py x u x y x u x y x

    可以和 1st order case (page 62) 相比較

  • 238Determinant:

    a bad bc

    c d

    a b cd e f aei bfg cdh afh bdi cegg h i

    Matrix Inverse

    If 1 12 2

    x ya bx yc d

    then

    11 1

    2 2

    x ya bx yc d

    1

    2

    1 yd bab bc yc a

    1 2

    1 2

    1 dy byab bc cy ay

    11

    2

    a bc dxy by d

    21

    2

    a bc dxa yb y

  • 2394-6-3 Process for the 2nd Order CaseStep 2-1 變成 standard form

    ( ) ( )y x P x y x Q x y f x

    Step 2-2 1 21 2

    y yW

    y y

    2

    12

    0( )

    yW

    f x y

    1

    21

    0( )

    yW

    y f x

    11

    WuW

    22WuW

    Step 2-3

    Step 2-4 1 1u u x dx 2 2u u x dx

    1 1 2 2py x u x y x u x y x Step 2-5

  • 240

    Example 1 (text page 162)24 4 ( 1) xy y y x e

    4 4 0 :y y y Step 1: solution of 2 2

    1 2x x

    cy c e c xe

    Step 2-2:

    2 24

    2 2 22 2

    x xx

    x x x

    e xeW e

    e xe e

    1 1 22 2

    1 22 , ,x x

    p y e yy u y xu ey

    24

    1 2 2 2

    0( 1)

    ( 1) 2

    xx

    x x x

    xeW x xe

    x e xe e

    2

    42 2 2

    0( 1)

    2 ( 1)

    xx

    x x

    eW x e

    e x e

    211

    Wu x xW

    22 1Wu xW

    Step 2-3:

    4-6-4 Examples

  • 241Step 2-4: 2 3 21 1 11 1( ) 3 2u u dx x x dx x x c

    2

    2 2 21( 1) 2u u dx x dx x x c

    3 2 2 32 2 221 1 1 1 1( ) ( ) ( )3 2 2 6 2p

    x x xy e xex x x x x ex

    3 222 21 2

    1 1( )6 2x x xy c e c xe ex x Step 3:

    Step 2-5:

  • 242Example 2 (text page 163) 4 36 csc3y y x

    ( ) csc3 / 4f x x

    4 36 0 :y y Step 1: solution of 1 2cos3 sin3cy c x c x

    Step 2-1: standard form: 9 csc3 / 4y y x

    cos3 sin33

    3sin3 3cos3x x

    Wx x

    2

    cos3 0cos31

    1 4 sin3sin3 csc34

    xxW xx x

    1

    0 sin31/ 41 csc3 3cos34

    xW

    x x

    11

    112

    WuW

    22cos31

    12 sin3W xu xW

    1 cos312 sin 3

    xdxx

    1 12xu

    21 ln sin336u x

    注意 算法

    Step 2-2:

    Step 2-3:

    Step 2-4:

    (未完待續)

  • 243

    Note: 課本 Interval (0, /6) 應該改為(0, /3)

    Step 2-5: 1cos3 sin3 ln sin312 36pxy x x x

    Step 3: 1 2 1cos3 sin3 cos3 sin3 ln sin312 36c pxy y y c x c x x x x

  • 244Example 3 (text page 164)

    ( ) 1/f x x

    Note: 沒有 analytic 的解

    所以直接表示成 (複習 page 48)

    xe dxx

    0

    tx

    x

    e dtt

    1/y y x

    1 2x x

    cy c e c e

    2x x

    x x

    e eW

    e e

  • 2454-6-5 Case of the Higher Order Linear DE

    ( ) ( 1)1 1 0( )n nn na x y x a x y x a x y x a x y g x

    Solution of the associated homogeneous equation:

    1 1 2 2 3 3( ) ( ) ( ) ( )c n ny c y x c y x c y x c y x

    The particular solution is assumed as:

    1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )p n ny u x y x u x y x u x y x u x y x

    ( ) kkWu xW

    ( ) ( )k ku x u x dx

  • 246

    ( ) kkWu xW

    1 2 3

    1 2 3

    1 2 3

    ( 1) ( 1) ( 1) ( 1)1 2 3

    n

    n

    n

    n n n nn

    y y y yy y y y

    W y y y y

    y y y y

    1 2 1 1

    1 2 1 1

    ( 2) ( 2) ( 2) ( 2) ( 2)1 2 1 1( 1) ( 1) ( 1) ( 1) ( 1)1 2 1 1

    00

    0( )

    k k n

    k k n

    kn n n n n

    k k nn n n n n

    k k n

    y y y y yy y y y y

    Wy y y y yy y y f x y y

    / nf x g x a x

  • 24700

    0( )f x

    Wk: replace the kth column of W by

    For example, when n = 3,

    2 3

    1 2 3

    2 3

    00( )

    y yW y y

    f x y y

    1 3

    2 1 3

    1 3

    00( )

    y yW y y

    y f x y

    1 2

    3 1 2

    1 2

    00( )

    y yW y y

    y y f x

    n

    g xf x

    a x

  • 2484-6-6 Process of the Higher Order Case

    Step 2-1 變成 standard form

    Step 2-2 Calculate W, W1, W2, …., Wn (see page 247)

    11

    WuW

    22WuW

    Step 2-3 ………

    Step 2-4 ……. 1 1u u x dx 2 2u u x dx

    1 1 2 2p n ny x u x y x u x y x u x y x Step 2-5

    ( ) ( 1)1 1 0( )n nnn n n n

    a x a x a x g xy x y x y x y

    a x a x a x a x

    nn

    WuW

    n nu u x dx

  • 249Exercise 26 4 sec2y y x

    Complementary function: 1 2 3cos 2 sin 2cy c c x c x

    1 cos2 sin 20 2sin 2 2cos2 80 4cos2 4sin 2

    x xW x x

    x x

    1

    0 cos2 sin 20 2sin 2 2cos2 2sec2

    sec2 4cos 2 4sin 2

    x xW x x x

    x x x

    2

    1 0 sin 20 0 2cos 2 20 sec2 4sin 2

    xW x

    x x

    3

    1 cos2 00 2sin 2 0 2 tan 20 4cos 2 sec2

    xW x x

    x x

  • 2501

    1sec2

    4W xuW

    221

    4WuW

    33tan 2

    4W xuW

    11 ln sec2 tan 28

    u x x 2 4xu 3

    1 ln cos 28

    u x

    1 2 3cos2 sin 2

    1 1ln sec2 tan 2 cos 2 ln cos 2 sin 28 4 8

    y x c c x c xxx x x x x

    for -/4 < x < /4

    Note: -/4 , /4 are singular points

  • 251

    (1)養成先解 associated homogeneous equation 的習慣

    (2) 記熟幾個重要公式

    (3) 這裡 | | 指的是 determinant

    (4) 算出 u1(x) 和 u2(x) 後別忘了作積分

    (5) f(x) = g(x)/an(x) (和 1st order 的情形一樣,使用 standard form)

    (6) 計算 u1'(x) 和 u2'(x) 的積分時,+ c 可忽略

    因為我們的目的是算particular solution ypyp 是任何一個能滿足原式的解

    (7) 這方法解的範圍,不包含 an(x) = 0 的地方

    4-6-7 本節需注意的地方

    特別要小心

  • 252

    4-7 Cauchy-Euler Equation

    ( ) 1 ( 1)1 1 0( )n n n nn na x y x a x y x a xy x a y g x

    not constant coefficients

    but the coefficients of y(k)(x) have the form of

    ak is some constant

    kka x

    associated homogeneous equation

    particular solution

    ( ) 1 ( 1)11 0( ) 0

    n n n nn na x y x a x y x

    a xy x a y

    k

    4-7-1 解法限制條件

  • 253

    Guess the solution as y(x) = xm , then

    Associated homogeneous equation of the Cauchy-Euler equation

    ( ) 1 ( 1)1 1 0( ) 0n n n nn na x y x a x y x a xy x a y

    1 11

    2 22

    11

    0

    ( 1)( 2) 1

    ( 1)( 2) 2

    ( 1)( 2) 3

    0

    n m nn

    n m nn

    n m nn

    m

    m

    a x m m m m n x

    a x m m m m n x

    a x m m m m n x

    a xmx

    a x

    4-7-2 解法

  • 254

    1

    2

    1

    0

    ( 1)( 2) 1( 1)( 2) 2( 1)( 2) 3

    0

    n

    n

    n

    a m m m m na m m m m na m m m m n

    a ma

    auxiliary function

    比較: 和 constant coefficient 時有何不同?

    kkk

    dxdx

    規則:把 變成!

    ( )!m

    m k

  • 2554-7-3 For the 2nd Order Case

    22 1 0( ) 0a x y x a xy x a y

    auxiliary function: 2 1 01 0a m m a m a 22 1 2 0 0a m a a m a

    22 1 1 2 2 01

    2

    42

    a a a a a am

    a

    2

    2 1 1 2 2 02

    2

    42

    a a a a a am

    a

    roots

    [Case 1]: m1 m2 and m1, m2 are real

    two independent solution of the homogeneous part:1 2 and m mx x

    1 21 2

    m mcy c x c x

  • 256[Case 2]: m1 = m2

    Use the method of reduction of order1

    1my x

    1

    21

    1

    ( )

    2 1 2 21

    P x dxa dx

    a xm

    mey x y x dxy

    ex dxx x

    01 22 2

    ( ) 0,aay x y x ya x a x

    12

    aP xa x

    Note 1: 原式

    Note 2: 此時 2 11 222

    a am ma

  • 257

    1 11

    2 22

    1 1 1

    1 1 1

    1 1 21

    1 2 12 12

    2

    ln

    2 2 2

    1 n1 l

    a a adx xa x a am m mm m m

    a a aaaa mm a m

    xe ex dx x dx x dxx x x

    x x x

    y x

    dx xx xx dx

    If y2(x) is a solution of a homogeneous DE

    then c y2(x) is also a solution of the homogeneous DE

    If we constrain that x > 0, then 12 lnmy x x

    1 11 2 ln

    m mcy c x c x x

  • 258[Case 3]: m1 m2 and m1, m2 are the form of

    1m j 2m j

    two independent solution of the homogeneous part:

    and j jx x

    1 2j j

    cy C x C x

    ( ) ln ln ln

    cos( ln

    ( )

    ) sin( ln )

    j j j x x j xlnx e e e

    x x j x

    x e

    cos( ln ) sin( ln )jx x x j x 同理 1 2 1 2[( )cos ln ( )sin ln ]cy x C C x j C C x

    1 2[ cos ln sin ln ]cy x c x c x

  • 259Example 1 (text page 167)

    2 2 ( ) 4 0x y x xy x y

    Example 2 (text page 168) 24 8 ( ) 0x y x xy x y

  • 260

    Example 3 (text page 169)

    24 17 0x y x y 1 1y 11 2y

  • 2614-7-4 For the Higher Order Case

    auxiliary function

    roots

    solution of the nth order associated homogeneous equation

    Step 1-1

    n independent solutions Step 1-2

    Step 1-3

    Process:

  • 262

    (1) 若 auxiliary function 在 m0 的地方只有一個根

    是 associated homogeneous equation 的其中一個解0mx

    (2) 若 auxiliary function 在 m0 的地方有 k 個重根

    皆為 associated homogeneous equation 的解

    0 0 0 02 1ln (ln ) (ln, , , ),m m m m kx x x x x x x

  • 263

    (3) 若 auxiliary function 在 + j和 − j的地方各有一個根(未出現重根)

    是 associated homogeneous equation 的其中二個解

    ,cos ln sin lnx x x x

    (4) 若 auxiliary function 在 + j和 − j的地方皆有 k 個重根

    是 associated homogeneous equation 的其中2k 個解

    2

    1

    2

    1

    , , , ,cos ln cos ln ln cos ln (ln )

    cos ln (ln )

    sin ln sin ln ln sin ln (ln )

    sin ln (ln

    , , , ,

    )

    k

    k

    x x x x x x x x

    x x x

    x x x x x x x x

    x x x

  • 264Example 4 (text page 169)

    3 25 7 ( ) 8 0x y x x y x xy x y

    22 4 0m m

    1 2 5 1 7 8 0m m m m m m auxiliary function

    3 2 23 2 5 5 7 8 0m m m m m m 3 22 4 8 0m m m

  • 2654-7-5 Nonhomogeneous Case

    To solve the nonhomogeneous Cauchy-Euler equation:

    Method 1: (See Example 5)

    (1) Find the complementary function (general solutions of the associated homogeneous equation) from the rules on pages 255-258, 262-263.

    (2) Use the method in Sec.4-6 (Variation of Parameters) to find the particular solution.

    (3) Solution = complementary function + particular solution

    Method 2: See Example 6,很重要

    Set x = et, t = ln x

  • 266Example 5 (text page 169, illustration for method 1)

    2 43 ( ) 3 2 xx y x xy x y x e

    auxiliary function 1 3 3 0m m m

    31 2cy c x c x

    2 4 3 0m m

    2 3m 1 1m

    Step 1 solution of the associated homogeneous equation

    Step 2-2 Particular solution 3

    32

    21 3x x

    W xx

    35

    1 22

    02

    2 3xxxW

    xe

    xex

    211

    xWu x eW

    23

    2

    02

    1 2x

    xx ex

    W x e

    22

    xWu eW

    Step 2-3

  • 267

    2 2xu u dx e

    21 1 2 2

    x x xu u dx x e xe e Step 2-4

    21 1 2 2 2 2

    x xpy u y u y x e xe

    Step 3 3 21 2 2 2

    x xy c x c x x e xe

    Step 2-5

  • 268

    1dy dt dy dydx dx dt x dt

    2

    2

    2 2

    2 2 2 2

    1 1

    1 1 1 1

    d y d dy dt d dy d dydx dx dx dx dt dx x dt x dt

    d y d dy d y dyx dt x dt x dt x dt dt

    Example 6 (text page 170, illustration for method 2)

    2 ( ) lnx y x xy x y x

    Set x = et, t = ln x

    (chain rule)

    Therefore, the original equation is changed into

    2

    2 2 ( ) ( )d dy t y t y t tdtdt

  • 269

    2

    2 2 ( ) ( )d dy t y t y t tdtdt

    1 2( ) 2t ty t c e c te t

    1 2( ) ln ln 2y x c x c x x x (別忘了 t = ln x 要代回來)

    Note 2: 簡化計算的小技巧: 使用Cauchy-Euler equation 的 auxiliary function

    1 1k

    kt t tk

    d yx D k D D ydx

    Note 1: 以此類推

    means tdDdt

  • 270

    (1) 本節公式記憶的方法:把 Section 4-3 的 ex 改成 x,x 改成 ln(x)把 auxiliary function 的 mn 改成

    (2) 如何解 particular solution? Variation of Parameters 的方法

    (3) 解的範圍將不包括 x = 0 的地方 (Why?)

    4-7-6 本節要注意的地方

    ( 1)( 2) 1m m m m n

  • 271還有很多 linear DE 沒有辦法解,怎麼辦

    (1) numerical approach (Section 4-9-3)

    (2) using special function (Chap. 6)

    (3) Laplace transform and Fourier transform (Chaps. 7, 11, 14)

    (4) 查表 (table lookup)

  • 272

    (1) 即使用了 Section 4-7 的方法,大部分的 DE還是沒有辦法解

    (2) 所幸,自然界真的有不少的例子是 linear DE

    甚至是 constant coefficient linear DE

  • 273

    Chapter 5 Modeling with Higher OrderDifferential Equations

    自然界,有不少的系統可以用 linear DE 來表示

    其中有不少的系統可以進一步簡化成 linear DE with constant coefficients

    Chapter 4 的應用題

  • 274

    5-1 Linear Models: Initial Value Problem

    位置:x, 速度: 加速度d xdt2

    2d xdt

    F ma2

    2d xF mdt

    F v ma

    v: 速度, v: 磨擦力

    2

    2dx d xF mdt dt

  • 275

    彈力 F

    Figure 5.1.1 Spring/mass system

    5-1-1 ~ 5-1-3 Spring / Mass Systems

  • 2762

    2d xm Fdt

    2

    2d xm kxdt

    2

    2 0d xm kxdt

    Solution: 1 2cos sinx t c t c t km

    Figure 5.1.4

  • 277

    彈力 F摩擦力

    dxdt

    Figure 5.1.5

  • 278

    2

    2d x dxm kxdtdt

    2

    2d x dxm Fdtdt

    2

    2 0d x dxm kxdtdt

    解有成三種情形

    (1)

    (2)

    (3)

    2 4 0mk 2 4 0mk 2 4 0mk

    1 21 2

    n t n tx c e c e 2

    1 24, 2

    mkn n m

    1 2nt ntx c e c te / 2n m

    1 2cos sinatx e c bt c bt

    / 2a m 24 / 2b mk m

  • 279需要注意的概念

    (1) 名詞一

    ( ) ( 1)1 1 0n nn na t y t a t y t a t y t a t y t g t

    g t 被稱作 input 或 deriving function 或 forcing function y t 被稱作 output 或 response

  • 280(2) 名詞二

    對一個 2nd order linear DE with constant coefficients 2 1 0 0a y x a y x a y x

    auxiliary function 22 1 0 0a m a m a

    當 時,稱作 overdamped21 2 04 0a a a

    當 時,稱作 critical damped21 2 04 0a a a

    當 時,稱作 underdamped21 2 04 0a a a

    當 , a1 = 0 時,稱作 undamped2 04 0a a

  • 281(3) 當中

    a1 的值將影藉衰減速度

    當 a2 , a1 , a0 的值皆為正, a1/ a2 的值越大,衰減的進度越快

    2 1 0a y x a y x a y x g x

    1 2cos sinxcy e c x c x 21 2 04 0a a a When1 2/ 2 ,a a

    When 21 2 04 0a a a 1 21 2m x m x

    cy c e c e 2

    1 1 2 01

    2

    42

    a a a am

    a

    2

    1 1 2 02

    2

    42

    a a a am

    a

  • 282

    2

    2q dq d qR L E tC dt dt

    5-1-4 RLC circuit

    inductance 的電壓 diLdt

    capacitor 的電壓 qC

    resistor 的電壓 Ri

    q diRi L E tC dt using dqi

    dt

    一定可以解

  • 283

    2

    2q dq d qR L E tC dt dt

    2 1/ 0Lm Rm C auxiliary function

    roots: 2

    14 /

    2R R L Cm

    L

    2

    24 /

    2R R L Cm

    L

    Case 1: R2 4L/C > 0

    (m1 m2, m1, m2 are real)

    (overdamped)

    1 21 2m t m tcq t c e c e

    註:由於 R, L, C 的值都是正的, 必定可以滿足

    所以 m1, m2 都是負的

    2 4 /R L C R

    0cq t when t

    Complementary function:

  • 284Particular solution (1) E(t) 有的時候可用"guess” 的方法來解

    (2) E(t) 用 variation of parameters 的方法一定解得出來(但較耗時)

    1 2

    1 2

    1 2

    ( )2 1

    1 2

    m t m tm m t

    m t m t

    e eW m m e

    m e m e

    2

    212

    ??0 m t

    m t

    eW

    m e

    1

    121

    ?0?

    m t

    m t

    eW

    m e

    2

    1 2

    11 ( )

    2 1

    ( ) /( )

    m t

    m m tW e E t LuW m m e

    1

    12 1

    ( )( )

    m tE t e dtu

    L m m

    1

    1 2

    22 ( )

    2 1

    ( ) /( )

    m t

    m m tW e E t LuW m m e

    2

    22 1

    ( )( )

    m te E t dtu

    L m m

  • 285

    1 21 2

    2 1 2 1

    ( ) ( )( ) ( )

    m t m tm t m t

    p

    e E t e dt e E t e dtq t

    L m m L m m

    1 1 2 2

    1 21 2

    2 1 2 1

    ( ) ( )( ) ( )

    m t m t m t m tm t m t e E t e dt e E t e dtq t c e c e

    L m m L m m

    Specially, when E(t) = E0 where E0 is some constant

    1 21 2

    0 0 0

    2 1 2 1 2 1 1 2

    0

    10

    2

    1 1( ) ( ) ( )

    m t m tm m t

    p

    tE e e dt E e e dt EL m m L m m L m m m m

    E

    q t

    E CLm m

    (m1m2 = 1/LC)

    1 21 2 0m t m tq t c e c e E C

  • 286Case 2: R2 4L/C = 0

    (m1 = m2 = R/2L)

    / 2 / 21 2Rt L Rt Lcq t c e c t e

    (critically damped)

    0cq t when t

    Particular solution

    / 2

    / 2 / 2( ) ( )Rt L

    Rt L Rt Lp

    eq t t E t e dt E t te dtL

    When E(t) = E0 ,

    0pq t E C

    / 2

    / 2 / 2 / 2 / 21 2 ( ) ( )

    Rt LRt L R t L Rt L Rt Leq t c e c t e t E t e dt E t te dt

    L

  • 287Case 3: R2 4L/C < 0

    1m j

    24 /,2 2

    R L C RL L

    2m j

    (underdamped)

    1 2cos sintcq t e c t c t

    Particular solution

    0cq t

    sin ( ) cos cos ( ) sint

    t tp

    eq t t E t e tdt t E t e tdtL

    1 2cos sin

    sin ( ) cos cos ( ) sin

    t

    tt t

    q t e c t c t

    e t E t e tdt t E t e tdtL

    General solution

    when t

  • 288When E(t) = E0 where E0 is some constant

    1 2 0cos sintq t e c t c t E C

    When R = 0 , then = 0

    1 21cos sin sin ( )cos cos ( )sinq t c t c t t E t tdt t E t tdt

    L

    When R = 0 , E(t) = E0 1 2 0cos sinq t c t c t E C

    1 2( ) cos sindi t q t d t d tdt 1 2d c 2 1d c

  • 289

    以 DE 的觀點來解釋 RLC 電路的問題

    (1) R2 < 4L/C 產生弦波(2) R 越小,弦波衰減得越慢

  • 290

    2

    2d q dq qL R E tdt dt C

    E(t) = 1, L = 0.25, C = 0.01

    2 21 2 04 100a a a R

    例子

  • 291

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    R = 100

    R = 25

    R = 10

  • 292

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0.015

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0.015

    0.02

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

    0.005

    0.01

    0.015

    0.02

    R = 5

    R = 1.5

    R = 0.2

  • 2935-1-5 Express the Solutions by Other Forms

    (1) Express the Solution by the Form of Amplitude and Phase

    2 1 0 0a y x a y x a y x

    當 時,solution 為21 2 04 0a a a 1 2cos sinxy e c x c x

    sinxy Ae x

    Solution 可改寫成1 2/ 2 ,a a

    22 0 1 24 / 2a a a a

    2 21 2A c c

    1 11 2sin / cos /c A c A

  • 294

    sinxy Ae x

    :xAe damped amplitude

    :2

    damped frequency

    : phase angle

  • 295

    (2) Express the Solution by Hyperbolic Functions

    2 1 0 0a y x a y x a y x 當 a1 = 0

    且 a2 > 0, a0 < 0 (或 a0 > 0, a2 < 0)

    1 11 2

    m x m xy c e c e

    3 1 4 1cosh sinhy c m x c m x

    1 11cosh 2m x m xe em x

    1 11sinh 2m x m xe em x

    3 1 2c c c

    4 1 2c c c

    01

    2

    am a

  • 2965-1-6 本節要注意的地方

    (1) 將力學現象寫成 DE 時,要注意正負號 (根據力的方向)

    (2) 注意 page 280 的四個專有名詞

    (3) 注意 linear DE with constant coefficients 的解,有其他的寫法

    (see pages 293 and 295)

  • 297

    (A) Linear DE Complementary Function 3 大解法

    (3) Cauchy-Euler Equation (Section 4-7)

    ( ) 1 ( 1)1 1 0( ) 0n n n nn na x y x a x y x a xy x a y

    1 1 0! ! ! 0( )! ( 1)! ( 1)!n n

    m m ma a a x am n m n m

    適用情形:

    附錄八(續):Reviews for Higher Order DE(接續 page 230)

  • 298(B) Linear DE Particular solution 3 大解法

    (3) Variation of parameters (Section 4-6) 1 1 2 2p n ny u y u y u y

    ( ) kkWu xW

    1 2 3

    1 2 3

    1 2 3

    ( 1) ( 1) ( 1) ( 1)1 2 3

    n

    n

    n

    n n n nn

    y y y yy y y yy y y y

    y y

    W

    y y

    Wk : replace the kth column of W by00

    0( )f x

    n

    g xf x

    a x

    適用情形:

  • 299(4) For Cauchy-Euler Equation (Section 4-7)

    可採用二種方法

    (1) 先用

    1 1 0! ! ! 0( )! ( 1)! ( 1)!n n

    m m ma a a x am n m n m

    再用 Variation of parameters 解 particular solution

    解 complementary function

    (2) Use the method on pages 268, 269

    Set x = et, t = ln x

  • 300Exercises for practicing

    Section 4-6 4, 5, 8, 13, 14, 17, 18, 21, 28, 29, 34

    Section 4-7 11, 17, 18, 20, 21, 24, 32, 34, 36, 37, 40, 42

    Review 4 27, 28, 29, 30, 32, 42

    Section 5-1 1, 11, 29, 43, 44, 49, 52, 56, 60

    Review 5 12, 21, 22