239 paramjyot

25
Na 2 S-P 2 S 5 glass-ceramic electrolytes for sodium batteries at room temperature Presented by *Paramjyot Kumar Jha, O. P. Pandey, K. Singh *Research Scholar School of Physics and Materials Science Thapar University, Patiala, Punjab, INDIA ICAER 2013 Paper Id 239

Category:

Technology


7 download

DESCRIPTION

 

TRANSCRIPT

Page 1: 239 paramjyot

Na2S-P2S5 glass-ceramic electrolytes for sodium batteries at room temperature

Presented by

*Paramjyot Kumar Jha, O. P. Pandey, K. Singh

*Research ScholarSchool of Physics and Materials ScienceThapar University, Patiala, Punjab, INDIA

ICAER 2013 11/12/2013

Paper Id 239

Page 2: 239 paramjyot

Outline of presentation

☺ Introduction of Solid Electrolyte

☺ Applications of Solid Electrolyte

☺ Experimental Procedure

☺ Results and Discussion

☺ Conclusions

☺ Acknowledgment

ICAER 2013 11/12/2013

Page 3: 239 paramjyot

Any substance containing free ions that make

the substance electrically conductive is called

electrolyte.

A solid compound in which ions migrate through

vacancies or interstices within the lattice which

leads to ionic conductivity.

What is electrolyte?

What is Solid electrolyte?

ICAER 2013 11/12/2013

Page 4: 239 paramjyot

۞ Availability of large number of free ions.

۞ Requirement of low activation energy for the movement

of ions into neighbouring sites.

۞ Three dimensional networking for free movement of the

ions.

۞ The anion framework should be highly polarizable.

ICAER 2013 11/12/2013

Characteristics of Solid Electrolyte

Page 5: 239 paramjyot

ICAER 2013 11/12/2013

Applications of Solid Electrolyte

Gas Sensors

Fuel Cells

Solid State batteries

Page 6: 239 paramjyot

Advantages of solid state batteries over conventional batteries

Page 7: 239 paramjyot

Higher ionic conductivities

Isotropic properties

No grain and hence no grain boundaries

Exhibits ionic conductivity in the range of

10-1 to 10-4 S/cm at room temperature.

ICAER 2013 11/12/2013

Superionic glasses for Solid electrolytes

Page 8: 239 paramjyot

• 35Na2S-65P2S5 NP1

• 40Na2S-60P2S5 NP2

• 45Na2S-55P2S5 NP3

• 50Na2S-50P2S5 NP4

• 55Na2S-45P2S5 NP5ICAER 2013 11/12/2013

Glass Compositions xNa2S- (100-x)P2S5

Page 9: 239 paramjyot

Sample preparationby melt quenched technique

Characterization

XRD DTA/TGA DilatometerSEM

Impedance Spectroscopy

ICAER 2013 11/12/2013

Raman Spectroscopy

METHODOLOGY

at 700 $ C

Page 10: 239 paramjyot

10 20 30 40 50 60 70 80

35 % Na2S

40 % Na2S

45 % Na2S

55 % Na2S

50 % Na2S

2 (degree)

In

tensity (a.u

)

ICAER 2013 11/12/2013

X-ray diffraction of glasses

Page 11: 239 paramjyot

ICAER 2013 11/12/2013

Dilatometeric study

50 100 150 200 250

0.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

Temperature /C

dL/L

0

35 mol% Na2S

40 mol% Na2S

45 mol% Na2S

50 mol% Na2S

55 mol% Na2S

Page 12: 239 paramjyot

50 100 150 200 250 300

0.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

168 C

Temperature /C

dL/L

0

120 C

-1.0x10-5

-5.0x10-6

0.0

5.0x10-6

1.0x10-5

1.5x10-5

d(d

L/L

0)

40 mol % Na2S

50 100 150 200 250 300

0.0

4.0x10-4

8.0x10-4

1.2x10-3

1.6x10-3 45 mol% Na2S

Temperature /C

dL/L

0

-3.0x10-6

0.0

3.0x10-6

6.0x10-6

9.0x10-6

d(d

L/L

0)

185 C

50 100 150 200 250 300

0.0

4.0x10-4

8.0x10-4

1.2x10-3

1.6x10-3

50 mol % Na2S

170 C110 C

-2.0x10-5

-1.5x10-5

-1.0x10-5

-5.0x10-6

0.0

5.0x10-6

1.0x10-5

dL

/L0

Temperature /C

d(d

L/L

0)

50 100 150 200 250 300

0.0

4.0x10-4

8.0x10-4

1.2x10-3

1.6x10-3

55 mol % Na2S

-1.0x10-5

-5.0x10-6

0.0

5.0x10-6

1.0x10-5173 C

Temperature /C

dL/L

0

d(d

L/L

0)

ICAER 2013 11/12/2013

Differentiation of Dilatometeric curves for Glasses

Page 13: 239 paramjyot

250 500 750 1000 1250 1500 1750 2000

1279

1164

1011

948

684

620

528

379

300

35 mol % Na2S

40 mol % Na2S

45 mol % Na2S

50 mol % Na2S

55 mol % Na2S

60 mol % Na2S

Inte

nsity (a.u

.)

Raman shift (cm-1)

ICAER 2013 11/12/2013

Raman Spectroscopy

Page 14: 239 paramjyot

Mol %(Na2S)

35 40 45 50 55 60 Assignment

Wave numb

er (cm-1)

300 294 300 307 303 343 νas(P-S-P)

379 375 386 382 384 487 stretching vibration of

the P-S bond

528 540 … … … 539 νs(P-S-P)

620 621 … … … 878 νs(POP)

684 690 684 683 683 690 stretching vibrations

of P = S mode

… … … … … 948 SO32- ion

… … … 1011 … 1011 νs(SO42- )

1164 1162 1164 1161 1164 1151 νs(PO2)

1279 1276 1279 1266 1274 1256 νas(PO2)

ICAER 2013 11/12/2013

Table 1

Page 15: 239 paramjyot

100 200 300 400 500 600

Tm

Tg

Tc

Endo

Dow

n /E

xo u

p (

V)

Temperature C)

10 C/min 20 C/min 30 C/min 40 C/min

45 mol %

100 200 300 400 500 600 700

Endo

Dow

n /E

xo u

p (

V)

Tg

Tm

Tc1

Tc2

Temperature C)

10 C/min 20 C/min 30 C/min 40 C/min

Tc2

55 mol %

τ.Tg = constant Tg increases means relaxation dynamics in the glass.

ICAER 2013 11/12/2013

Differential Thermal Analysis (DTA)

Page 16: 239 paramjyot

1.5 1.6 1.7 1.8 1.9

9.0

9.5

10.0

10.5 Linear fit of Tc Linear fit of Tg

ln

1000/T(K-1)1.5 1.6 1.7 1.8 1.9

8.8

9.2

9.6

10.0

10.4

ln

1000/T(K-1)

Linear fit of Tc Linear fit of Tg

ln [Tc2⁄β] = Ea⁄(RTc ) + constant

Where, Tc is the peak crystallization temperature, R is the gas constant and β is heating

rate. A graph between ln [Tc2⁄β] and 1000/Tc gives straight line and from its slope (Ea/R)

activation energy of the crystallization is obtained. ICAER 2013 11/12/2013

Kissinger plot for Tg and Tc at different heating rates

Page 17: 239 paramjyot

Glass Heating rate

(⁰C/min.)

Tg (⁰C)

Tc

(⁰C)Tm

(⁰C)∆T =

Tc-Tg (⁰C)Ea

(kJ mol-1)Hr =

(Tc-Tg)/(Tm-Tc)

X = 45 10 276 344 547 68 0.33

20 278 355 552 77 370 (Tg) 0.39

30 283 362 555 79 170 (Tc) 0.40

40 286 370 559 84 0.44

X = 55 10 252 318 616 66 264 (Tg) 0.22

20 257 325 621 68 165 (Tc) 0.22

30 260 338 624 78 0.27

40 264 345 626 81 0.29

ICAER 2013 11/12/2013

Crystallization Kinetics Parameters

Page 18: 239 paramjyot

10 20 30 40 50 60 70 80

*

*

*

*

Na3PS

4* Na2S2O3Rest NaPO

3

Inte

nsi

ty (

a.u

.)

(degree)

55 % Na2S

50 % Na2S

45 % Na2S

40 % Na2S

ICAER 2013 11/12/2013

X-ray diffraction of glass-ceramics

Page 19: 239 paramjyot

40 45 50 55

2.24

2.28

2.32

2.36

Density (g/c

c)

Mol % Na2S

ICAER 2013 11/12/2013

Density Variation

Page 20: 239 paramjyot

1 2 3 4 5h (eV)

(h)2

40 % Na2S

45 % Na2S

50 % Na2S

55 % Na2S

ICAER 2013 11/12/2013

UV-Visible Spectroscopy of Glass-ceramics

Page 21: 239 paramjyot

S. No.

Glass compositio

n(Mol %)

Densityρ (g/cc)

Band gap (eV)

Bulk resista

nce(Ω) × 103

Ionic conduct

ivity (S/cm) × 10-5

Volume fractions

Na2S P2S5 NaPO3 Na2S2O3 Na3PS4

1 40 60 2.24 3.60 118.2 0.12 85 7 8

2 45 55 2.29 3.48 72.8 0.18 81 9 10

3 50 50 2.33 3.35 6.11 2.0 74 12 14

4 55 45 2.35 2.99 1.84 6.0 69 16 15

ICAER 2013 11/12/2013

Table 2

Page 22: 239 paramjyot

ICAER 2013 11/12/2013

FE-SEM micrographs of Glass-ceramics

X = 40

X = 50

X = 45

X = 55

Page 23: 239 paramjyot

• All sample shows halo pattern indicating its amorphous nature.

• Glass samples for x = 45 and x = 55 mol % Na2S shows good

stability.

• Glass-ceramics sample shows mainly three phases.

• With increase in Na2S content the most conducting phase Na3PS4 is

found to be increased.

• The ionic conductivity of present samples are found to be in the

order of 10-5 S/cm at room temperature.

• SEM micrographs reveals dense and well grown crystals. ICAER 2013 11/12/2013

Conclusions

Page 24: 239 paramjyot

ICAER 2013 11/12/2013

Acknowledgment

• I would like to thank my Supervisors Dr. Kulvir Singh (Professor &

Head) and Dr. O. P. Pandey (Senior Professor), Thapar University,

Patiala for their Guidance.

• I would like to thank Department of Science and Technology (DST),

New Delhi for the financial support.

• I would like to thank Technical Education Quality Improvement

Programme (TEQIP), Thapar University, Patiala for the travel

support.

• I would like to thank the Organizer (Dr. P. C. Ghosh ) of ICAER who

has given me an opportunity to present my work here.

Page 25: 239 paramjyot

ICAER 2013 11/12/2013

Thank you for your Kind Attention