260044

13
WORM-GEARS  AND  WORM-GEARED AXLES1 By  C  H.  Calkins1 ABSTRACT After  a br ief  historical  review  of  the  development of worm-gears, the  author  deals  with  worms  and worm-wheels  in  detail,  pres entin g the  subjects  of  prope r  choice  of  materials,  tooth-shapes,  worm-gear efficiency,  the  stresses  imposed  on  worm -gearing and worm-gear  axles.  Usually,  he  says,  the  worm  is  made of  case-hardened  steel  of S.A.E.  No.  1020  grade;  how-  ever, when  the  worm-diameter is smaler  and  the  stresses are greater,  nickel-steels such as  S.A.E.  Nos.  2315 and  2S20  gradee  are utilized.  The  worm  should  be properly  heat-treated and carbonized to produce a glas-hard surface.  Grinding  of    the  worm-thread is necesary to remove  distortions.  Bronze  is the  only  material of    which  the  author  knows  that  will  enable  the worm-wheel to withstand  the  high  stresses  im posed  by  motor-vehicle  axles,  and  three  typical  bronze  alloys are in common  use.  The  degree of   hardne s of    the  bronze is very  important  Duralumin, forged and  heat-treated  and uaed  for  worm-gears, costs  approximately the same  as  bronze  and reduces  the weight  two-thirds;  such  worm-wheels have withstood  severe  service. As to  toth-shape, the common  pressure-angle is 30  deg. This  angle  produces an included  axial-angle of    60 deg.  and a normal  included-angle of     40  or  50  deg.,  depending upon  the  lead,  and  also  secures  proper re versibility. A properly  made  worm-gear is as  effi  cient as  any  other  form  of   gearing,  according to the  author, and  he  mentions  efficiencies of    from  97  to  99  per cent  attained  by hour-glas-shaped  worms  under  ideal loads  and  conditions.  Tooth-pressures  and rub  bing velocities  are  the  two  important  considerations  affecting stresses on worm-gears; the relative  stresses  vary with  the  lead  angle. In  conclusion, it is  stated  that if  a  worm-gear axle is unsucesful, this is due  to imperfections of     design  and  of  manufacture and not  because the  principle of    the  worm-gear  drive  is  not  practicable. 1Indiana Section  paper. Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

Upload: samanaveen

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

8/10/2019 260044

http://slidepdf.com/reader/full/260044 1/13

WORM-GEARS   AND   WORM-GEAREDAXLES1

By   C   H.   Calkins1

ABSTRACT

After   a brief   historical   review   of   the   developmentof worm-gears, the   author    deals   with   worms   andworm-wheels   in   detail,   presenting the   subjects   of  proper    choice   of   materials,   tooth-shapes,   worm-gear efficiency,   the   stresses   imposed   on   worm-gearing andworm-gear  axles.   Usually,   he   says,   the  worm   is  madeof  case-hardened   steel   of S.A.E.   No.   1020  grade;   how-   ever,

when   the   worm-diameteris smaller   and    the   stressesare   greater,   nickel-steels such  as   S.A.E.   Nos.   2315and   2S20   gradee  are   utilized.  The   worm  should  beproperly   heat-treated and  carbonized to producea glass-hard

surface.   Grinding  of    

the   worm-threadis

necessaryto remove   distortions.   Bronze   is the   only   materialof    which   the   author   knows   that   will   enable   the

worm-wheel to withstand   the   high   stresses   im   posed by   motor-vehicle  axles,   and   three   typical   bronze  alloysare in   common  use.   The   degree of   hardnessof    the bronzeis very   important  Duralumin,

forged and   heat-treated  and  uaed   for   worm-gears,costs   approximately the same  as   bronze   andreduces   the   weight   two-thirds;  such   worm-wheels havewithstood  severe   service. As

to   tooth-shape, the common   pressure-angleis 30   deg.This   angle   produces an included   axial-angleof    60deg.   and a normal   included-angleof     40   or   50   deg.,  dependingupon   the   lead,   and   also   secures   proper re versibility.A   properly   made   worm-gear is as   effi   cientas   any   other   form  of    gearing,   according to the   author,and   he   mentions   efficienciesof    from  97   to   99   per cent   attained  by hour-glass-shaped  worms   under   idealloads   and   conditions.   Tooth-pressures   and  rub   bingvelocities   are   the   two   important   considerations   affectingstresses on worm-gears; the relative   stresses  varywith   the   lead   angle. In   conclusion,it  is   stated   thatif  a   worm-gear axle is   unsuccessful, this is due  to imperfectionsof     design   and   of   manufacture and  not   becausethe   principle of    the   worm-gear   drive   is   not   practicable.1Indiana

Section paper.

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 2/13

450   THE   SOCIETY OF AUTOMOTIVE   ENGINEERS

Worm-gears   began   to   be   used in   England about   1908 by   Lanchester   for   motor-cars   and   by   Dennis   for   commercial   motor-vehicles,   and worm-gearing   was   introduced   into   this   Country   from England about   1911.Three   companies   in   the   United   States   began   the  manufacture   of   modern worm-gears   almost   simultaneously,

and machinery   was imported from   England to   aid intheir   development.   Previously,   no   worm-gears   in   thisCountry   were markedly   efficient   so   far   as   I know,   or could  be  called   uptodate.

Regarding   material   and tooth   shapes,   the   old-timeworm-gear   as   used   in   machinery   previous   to   1910   hadan   efficiency   not   better than   60   per   cent.   In   fact,   someworm-gears  at present  used   in machinery  are very  muchout of   date.   It  should   be   realized   that   more   advance in

the  theory   and practice   regarding   worm-gears   has   beenmade since   1911   than  perhaps   in   the  previous   50  years.

Until   recently,   worm-gears  with   leads   from   3   to   6   in.,such   as   are   now common on   motor-truck    axles,   wererarely  used.   The grinding  of   the tooth  of  the worm  wanunheard of  and   little  was  known   of   correct  tooth-shapes

and   angles   and   their   relation to   efficiency   and   reversi bility. Still   less   was   known   of   the   relation   of   varioussteels   and  bronzes   to   efficiency   and  durability.   Even   at present,   few brass-foundries   are able   to  produce   a  gear  bronze which  is   properly  cast   and   chilled   to   enable   it   tomeet   the  high requirements   of   the modern   worm-wheel.At each   foundry   it   is thought  easy   to meet   the requirements,   but   experience  has   taught  me   that   only   in   foundries   specializing   in   this   work   and   in   which   lengthyexperience  has  been   acquired  are the manufacturers  ableto produce desirable   results.   I   have   in   mind   not   morethan three  foundries   that  can  be  depended  upon to  make

 bronze which  is  properly chilled and has  the proper  wear ing qualities to  make  a worm-wheel   suitable   for  an   auto

mobile,   although   many   foundrymen   will   disagree withthis   statement.

In   one   instance,   we   were   testing a   much   advertisedand highly  recommended  grade  of  bronze   in   our  testingmachine.   The   speed   and   the  load  were   adequately   controlled.   This   gear   had   been   running   for   a   number   of days   on   light   or   normal   loads,   but   when   we   suddenlydoubled   the  load   and   the   speed,   the  gear   was   ruined   in30  min.   This  added speed  and   load  was not in   excess  of what   the gear might  be   subjected to   occasionally   in   amotor-truck,   but the   bronze was   not   equal   to   the   emer 

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 3/13

WORM-GEAREDAXLES   451

gency   and   we   used   no   more of   that   grade.   There   is adearth   of   reliable   literature   on   the   modern worm-gear.Its   development   has   been   so   rapid   that   the   treatises   onit   are not uptodate and   the worm-gear is etili   the victim

of widespread fallacious   reasoning   that   influences  many people.Referring   to   the   worm-gear   axle,   worm-gears   of   the

hour-glass type   were   used   in   an  automobile axle   in   1912 by  the Atlas Knight   Co.,   Springfield, Mass.   These  gearswere   not   satisfactory   but,   later,   they  were   changed   tothe  straight   type and these were   fairly   good.   I  believethe first  worm-gear passenger-car  axle   to be  made in  thisCountry was   assembled   at   Springfield,   Mass.,   in   1912.The   gears  were made by   the   Brown   &  Sharpe   Mfg.   Co.In   1913   the Atlas  Knight   Co.  was consolidated with   theIndianapolis Engine  Works,   and   for  some   time   a   wormdriven   car   was   built   in   Indianapolis. The   Jeffrey   Co.,Kenosha,   Wis.,   used   in   its  automobiles   in   1913   about   50sets   of  straight-type   worm-gears  which,   according   to   re

 ports,   were   very  satisfactory, but they  were not  adoptedas   regular  equipment  because it  was   feared that the public was  not  ready for  this  change,  rather  than  because  thegearing   did   not  perform satisfactorily.   All   these   gear'swere   mounted   underneath the   axle.   In   1909   and   1910

the   H. H.   Franklin  Mfg.  Co.,  Syracuse,   N.   Y., producedtrucks driven  by worm-gears.

Choice   of   Materials

The   worm   of   a   worm-gear   should   be made   of   casehardened steel.   S.A.E.   No.   1020   steel   commonly   is   usedfor   ordinary   work   but,   when   the diameter   is   small   andthe   stresses   great,   nickel-steels,   especially   S.A.E. Nos.2315  and 2320,  are  resorted to.   It  is  somewhat   questionable,   in many instances, whether   the nickel-steels   produce  superior   results.   The   worm,   as   it   is   designed   for 

 passenger-car   ratios,   usually is large   enough   to   withstand   the   necessary   strains   and   the   No.   1020   steel   ialess costly,   machines more   easily,   distorts   less   andstraightens   better   than the   nickel-steels.   In   any   eventthe worm   should  be  heat-treated and  carbonized properlyto   secure   a   glass-hard surface   and,   the harder   the  sur face is,   the better   it   is.

However,   some   portions of   the   worm,   such   as thethreads   on   the ends,   should   be  soft.   In worms   of   com

 plicated design,   the   hard   and   the soft   spots   very   oftenalternate   throughout   its   length,   requiring   skill   and   in

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 4/13

452   THE   SOCIETY OF AUTOMOTIVE   ENGINEERS

genuity   to   produce   such   a   condition. Worms   distortduring   the   heat-treating  process  and the  grinding  of   thethreads   is   necessary   to  restore   them  to   true  form.   Obviously,   it   is desirable   to   remove   as   little   as   possible   of the   precious   "case"   on   the  outside   of   the  threads.   For this   reason   it   is customary,   when   it   is   found   that   the

threads   of   a particular   worm   unwrap   or   that   the   leadelongates   in hardening, to   mill   or   to   hob   this threadwith  a shorter   lead   so   that   the heat-treatment  will   make

the   threads   approximately   correct,   thus   requiring theremoval  of   only  the  minimum  amount  of  stock  by  grinding.   The   teeth or   "starts"   of   a  worm  are cut   either  bymilling  or   by hobbing. Hobbing   is  more   economical   for large   production  enterprises.

Suitable   Bronze   for   Worm-Wheels

Selection   of   suitable   worm-wheel   bronze is   very   im portant.   Bronze   is   the   only   material   of   which   I   knowthat   will   withstand the   high   stresses   imposed by   automobile axles,  although cast   iron   is   all  right  and makes  afine cheap gear  where the  speeds  are   low  and  the stresses

are  light.Three   bronze   alloys   are   in   common   use   for automo

 bile   worm-gears   in   this   Country.   The   first   is   88.50   per cent   copper,   11.00   per   cent   tin,   0.25   per   cent   lead,   and0.25   per   cent   phosphorus.   This   is   the familiar   S.A.E.

 No.  65  phosphor gear-bronze.   In its chilled  condition,   ithas an   ultimate   tensile-strength   of   33,000   to   40,000 lb.

 per  sq.   in.,  an elongation of  4  to   8 per  cent  and  a  Brinellhardness of   75   to   90.   This   is perhaps   the   most   commonly   used bronze  alloy   for   worm-gearing.

The  second   is  an  aluminum-bronze  composed   of   89   per cent   copper,   10   per   cent  aluminum,   and   1   per   cent   iron.In   its   heat-treated   state,   it   has   an   ultimate   tensilestrength   of from   80,000   to   93,000 lb.   per   sq.   in.,   anelongation of   4   to   10   per  cent and a Brinell   hardness   of 170 to  200 under  a 3000-kg.   (6614-lb.)   load.   This  bronzeis not   chilled.   It   has   been   used   extensively by   one

 builder   of worm-geared   trucks   and   is   an   exceedinglystrong  bronze,   but   I  understand   that   the wearing  .qualities   are not  so  good  as those of   the  S.A. E.   No.   65   phos

 phor   gear-bronze.A   third   alloy   is   coming   into   use   rapidly   which   con

tains   88.50 per  cent   copper,   10.00   per   cent   tin,   1.00   per cent   nickel,   0.25   per   cent lead and   0.25   per   cent   phos

 phorus. This   has   an  ultimate   tensile-strength   of   better 

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 5/13

WORM-GEAREDAXLES   453

than  40,000  lb.  per  sq.  in.,  an  elongation  of around  4  per cent   when   cast   in   a three-sided  chill   and  a Brinell   hardness   of   90   to   110.

Bronzes   are   susceptible   to and   can be   greatly   im proved by   heat-treatment.   They can   also be   cast   centrifugally   under   varying pressures   which   result   in   considerable improvement. The   teeth   can   be   cast in   placeso   as to   require   but   a   small   amount of   finishing andthis,   for   large   production,   is   extremely desirable   because   it   saves   not   only   metal   and  labor   but   makes   thegear   structure   considerably   better,   since   the   chillinggets   into   the teeth   and   the   wearing-surface instead   of 

 being   largely   hobbed away,   as   is   true   of   the   ordinarysurface-chill.

In   industrial  work,  when   a  worm-wheel  has   a  hub anda   web,   the center portion  can be  made of  cast   iron, have

 projections   cast   on   the   outside   and   the   bronze   castdirectly   on   the  cast   iron, which   is  first  heated and   then

 placed   in   the   sand.   If   properly   done,   this   is   a   very

successful   and   economical   method.   The depth   and   intensity   of   the   chilling can   be   varied   by   changing thesection   of   the   chill.

The  hardness   of bronze   is   a   very   important   feature.To   secure   the   best   results,   a   certain   relative hardnessshould  exist   between   the   steel   and   the   bronze   tooth,   sothat   the surface   of   the   bronze   tooth   will   burnish   down

and increase   its   Brinell   hardness   at   the   point   of   contact   and   highest  pressure.   Gear-bronze   should,   if over loaded,  peen-out  at   the  edges  of  the   teeth  and   should  notfail   by   granular  disintegration.

Duralumin Worm-wheels

Duralumin  has   been  forged  and   heat-treated  and  made

into worm-gears   that   have   stood-up   in   a   very   satisfactory   manner under   some   very   hard   tests,   such   as   theservice   in   the   Fifth   Avenue motorcoaches in   New   York 

City.   The cost of   duralumin   worm-gears   is   approximately   the   same   as   that   of   bronze   worm-gears and   thesaving   in   weight   is   about   two-thirds.   The   tensilestrength   is   around   55,000   lb.   per   sq.   in.,   minimum.   Inthe  center   of   an   axle,   weight-saving is   of   great   impor tance.

Worms   and   wheels   are   often   finished by   lapping themtogether   or   mating   them   with suitable   masters. Thisgives and extremely   fine   finish   that   looks   very   well   and

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 6/13

454   THE   SOCIETY   OF   AUTOMOTIVE   ENGINEERS

 perhaps   improves   the   efficiency   somewhat;   however,   itis   not   done,  ordinarily.   The   contact   between   the  wormand   the  wheel   is   important.   It   should be   in   the center of   the   wheel-tooth   and   should,   at   the  beginning   of   itsservice, have   an   oval   form. Changing   the   diameter   of either the   worm   or   the   wheel will   change   the   contact

angle   and   will   shift   the   point of   contact.   In   fact,   onexact  work,  the last few thousandths  of  an   inch of wormor of   worm-wheel   diameter   are   often determined   byexperiment,   the   guide   being   the   contact   as   it   shows   upon   the  testing-machine. The  amount  of backlash   is   alsoimportant and  should be  as   small   as  possible,  bearing   inmind, however,   that   all   worm-gears   generate   heat   inoperation and   that   space   must   be   provided   for a   heavylubricant.   On   worm-gears   of passenger-car   sizes,   a

 backlash   of   from   0.005   to   0.010   in.,   measured   on   thecenter   dimension between   the   worm   and   the   wheel,   iscustomary.

Worm-Gear   Tooth-Shapes

The   common  pressure-angle   for  worm-gear  teeth   is  30

deg.,   which   provides   an   included   axial-angle of   60   deg.and   a   normal   included-angle,   depending upon   the   lead,of   around   40   to   50   deg.   This   angle,  produces   a verystrong tooth,   is  open   enough   so  that   a  substantial   wheelcan be   used   for   grinding   the   worm-threads   and gives proper   reversibility   for   ordinary   automobile-ratios,   asreversibility is   dependent   not   only upon   the   lead-angle

 but upon  the included angle   of   the  tooth as  well.   Theoretically,   the   included angle   of   the   tooth   should   varywith   the   lead   so   as   to   secure   perfect   reversibility;   in

 practice,   however,   with   modern   materials   and   finishes,a   60-deg.   axial   included-angle   answers   all   practical   requirements.

Efficiency   of   Worm-Gearing

Modern  worm-gears   are very   efficient,   but  it   is   rather futile to   give   exact   figures because   they   must always

 be qualified  by   the conditions   under   which   the tests aremade.   Tests   made   with   hour-glass   worms   and   wormgears under   ideal   loads   and   conditions   have  shown   anefficiency   as   high   as   98   or   99   per  cent.   I   am   speakingnow   simply   of   friction   between   the   worm-teeth   and   donot   include  bearing  losses  or  losses  due   to   oil-splash   andthe  like.   Other   tests   show  a  97-per   cent   efficiency.   Ingeneral,   it  can be  said   that   a   properly  made   worm-gear 

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 7/13

WORM-GEAREDAXLES   455

is as   efficient  as any  other   form  of  gearing.   One   factor entering into  this efficiency   is the  gradual   contact  of  theteeth  which   allows  them   to   be  separated  by  a   film   of   oilat   much   greater  pressures   than   is   the case   under   other conditions.

An   erroneous   idea   is   that   the   reverse   efficiency   of   aworm-gear   is  much   less   than the forward  efficiency,   but,in fact,   the  reverse   efficiency   is  almost equal   to   the for ward   efficiency   and   is   much   less   than   1   per   cent   lessefficient.

Hour-Glass   Type   of   Worm

The   hour-glass   type   of   worm   has   all   the  worm-teethin   full contact   with   the   wheel   simultaneously, which   isnot   true   of   the   straight   type   of   worm;   therefore,   thetooth-pressure  per  square   inch is   less  and, consequently,the distance between  centers  can be reduced.   The  toothshapes   allow   very   good   lubricating   conditions.   It   iscommonly   supposed   that   this   type of   worm   cannot   beground,   but  it   can be  ground  commercially  with   a   hard

emery-wheel. However, one disadvantage is that it  must be mounted  accurately and permanently in a   fore-and-aft position   and   it   is  somewhat more  expensive   to   make   because  not   only   the  wheel   but  the   worm  as   well  must   bemade with  a  hob,  the   worm-hob being  of  the same diameter   as   the  worm-wheel.

Stresses on   Worm-Gears

Worm-gear   stresses   can   be   calculated   easily.   Thestresses vary with   the   lead-angle   of the   worm;   that   is,the   values   of the  various   stresses   are  influenced   by   thelead-angle.   In   designing   worm-gears,   tooth-pressuresand  rubbing   velocities  must  be   taken into   consideration.I  will  not  quote any   specific   allowable  tooth-pressures, asthey vary   according   to the   method   of   calculation and

with the amount of tooth-area   which   may   be   assumedto   be   in contact.

Worm-Gear   Axles

The   worm-gear   axle   is normally  and inherently quietwithout   requiring   expensive   adjustment   or   expensivelyaccurate   machine-work.   This,   I   believe,   is not   true   of spiral-bevel   gears.   After   interviewing most of  the axlemanufacturers   and   automobile   builders   I   find   that,almost   without   exception,   they   report   noise   trouble   intheir  spiral-bevel-geared axles or,   if   they  have   overcomethis   to   a   greater  or  lesser   extent,   they   do   it  by   expen

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 8/13

456 THE SOCIETY OF AUTOMOTI VE ENGI NEERS

s i vel y accur a t e mach i ne - wo r k  on t he ax l e and by r ead

j u s t ment af t e r   t he  c a r s

 are on

 t he  r oad.

  I n any of i ts

f o r ms t he

 spi ra l - bevel gear   h a s

 one

 d i s advant age ove r

t he wo r m- gea r   i n t hat   t he  r i ng g ea r   i s of  heat - t r eat ed

steel .   The

 hea t - t r eat ment di s t o r t s

  the

 gear

  and i t i s

i mp r act i cab l e commer c i a l l y to g r i nd  a  s pi r a l - bevel gea r

t o b r i n g t he t e et h t o t h ei r c o r r ec t s h ape agai n . R unn i n g

t h e m  i n or l app i ng t hem cor r ect s t hem  b u t  i mpe r f e c t l y .

T hi s   i s n ot  t r ue   of t he  b r onze wo r m- gea r because   i t r e

cei ves

 no

 he at - t r e a t ment af t e r c ut t i ng

  and

 consequent l y

neve r l os es i t s pe r f ec t s hape .

T he we i g ht   of

 a

 bevel - gear axl e shoul d   no t

 be

 di f f er ent

f r om t hat   of  a wo r m- gea r axl e   of  equi val ent des i gn.  The

eng i ne- t o r que

  i s t he

 s ame

  i n

  each

  case ;

  t he r e f o r e

t he

t ot al be ar i n g- p r e s s ur e s

  ar e t he

  s ame

  and

  r e qui r e

  a

s i m l ar t ot al   f o r  equ i val ent bea r i ngs .   The b r onze cas t

i ngs cos t mo r e t han st eel

and

 t he r ef o r e

  t he

 i ni t i al

  ex-

pense  i s  per haps s omewhat   mor e but  t hi s   i s  mo r e t han

of fset

 by the

 el i m nat i on

  of any

  a dj u s t men t af t e r

 t he

i ni t i a l a s s emb l y .

H Y P O I D - G E A RS

Th e hypo i d - gea r

  i s

 s i m l ar

  to a

  spi ra l - beve l gear

  ex-

cept t hat   t he  pi ni on   i s  d r opped be l ow  t he  cent er .   I t i s

i nt e r es t i ng

  to

 note t hat

  t he

 pi ni o n wh i c h

  i s

 n o r ma l l y

dr opped about   i n . c an be d ropped  or 3  i n.  or mo r e ;

i n f a c t i t  c an

 be

 d ropped   s o  t hat   i t  r uns d i r ec t l y under

nea t h  t he  c en t e r l i ne of t he

 axl e .

  Such gear s have been

made

  a n d

 t e st ed- out i n t hat manne r .

  To go

 even f a r t her

a r i ng- gea r

  can be

  i ns t al l ed

  on

  each s i de

 of

 t he  bevel -

p i ni on t hus absol ut e l y bal anc i ng  al l p r es su r es   due to

s i de- t hr u st .

F U T U R E D E V E L O P ME N T

  OF

  WO R M- G E A R I N G

Wor m- gea r ax l es have passed the exper i ment a l s tage.

I f

 any

  des i gn

  of

  wo r m- gear axl e

 is

 unsuccessful

i t i s

because

 of

 i mper f e c t d es i g n

 or

 cons t r uc t i on

  and

 n o t b e

cause

  t he

 pr i nc i p l e

 of

 wo r m- d r i v e

  i s

 no t

  pract i cabl e .

  I

r emember t hat

i n

 1896 t he  f i r st aut omobi l e s u sed

  bal l

bea r i n gs

  and

 wi r e whee l s . Ho weve r

t he

  ba l l - bear i ngs

and  t he wi r e wheel s gave  out v e r y qui c kl y  and i t was

as sumed t hat t hey we r e i mpr ac t i cabl e

  f or

  au t omobi l e

us e ; s o a c hange   wa s  ma d e   t o  pl ai n b ear i n gs   a nd  wood en

wheel s .

  Lat e r howeve r whe n des i gne r s l ear ned how to

des i gn ba l l - bear i ngs

 and

 wi r e whee l s p r ope r l y t hese  de

v i ces bec ame ent i r e l y p r ac t i cabl e.   The poi n t   I mak e i s

that

  the

 pr i nc i pl e s i nvol ved

  i n t he use of

  bal l - bear i ngs

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 9/13

WORM-GEAREDAXLES   457

and of wire  wheels   were   not   incorrect.   The   trouble   wasthat   not enough   was known   about   the   design   or   aboutthe materials   needed   for their   construction.

THE   DISCUSSION

C.  S.   Crawford3:-Our  company made exhaustive  tests before  it   decided   to   use  worm-gearing.   We   were   inter ested  first   in  a construction which  would   lower  the   center 

of   gravity  materially.   When  we  adopted   the worm-gear drive,   we burned   all our bridges   behind   us.   It   would   be

 physically impossible   for   us   today   to   change   to   the  conventional bevel-gear   type of   drive   without   completelyremodeling   our   car.   When   a   company   takes   a   step   of that   kind   it  must   be convinced   that  more  merit   exists   inthe worm-gear   than the  public   is   led   to   believe.   On   atrip   in   the   West, we  coasted  for   17  miles  on   grades  thatvaried from   4   and   5   per   cent to   15   per   cent. Makingcomparisons   with   cars   of   well-known   makes,   we   saw   nodifference   in   the coasting qualities  of   the  different  typesof   car;   that   is,   in   those   equipped   with the   conventional

 bevel-gears   over   our   car   equipped   with   the   worm-gear.In  addition,   there  seemed to   be no   difference  of  temperature   between   the worm-gear  housing   and the   bevel-gear housing   after   those   long   coasts, which   would   naturallylead one to   believe   that   the tooth-pressures  were  not anygreater   in   the  worm-gear   than   in   the   bevel-gear.

G.  H.   Acker:-At the start  of  the present   experimentwith   worm-gearing,   the greatest  difficulty   seemed   to   bethe maintenance   of an   oil-seal. A   worm   mounted   below

the  gear must   run  in  oil,   and   the point of egress   pf  theworm-shaft from the housing is   below   the  oil-level;   so.some   difficulty   was   expected   in   maintaining   an   oil-seal

at this  point.   Discussion on  the various ways and meansof    overcoming   this   difficulty would be   interesting.English practice   on   this   point indicates   several   solutions.   One   is   to   provide   on   the  worm   a   shallow   Acmethread   in   such   a   way as   to  cause   it   to   return   the  oil   tothe housing.   It   has   been   argued   that   the reversal   ser vice   has   been  of   such   slight duration   that   this  point isnot   important.   However,   it   is customary to   seal   the oilat   thio   point   and   various   materials   are   used   for   thiswork.

3M.aA.E.-Chief   engineer.   Stutz   Motor   Car   Co.   of America, Inc.,Indianapolis.

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 10/13

458   THE   SOCIETY OF  AUTOMOTIVE   ENGINEERS

L.   R.   Buckendale4:-Various types   of   oil-seal   have been  used   around the  worm-shaft;   one  is  a   cup  made of leather,   but  the   type   used   most frequently is   a   typicalstuffing-box.   As   we   see   it, the   application   of   wormgearing   to   the   passenger-car   presents   no   engineering

 problem   that   has   not   been gone over   thoroughly under 

different   conditions.W.   G.   Wall5:-The   motor-car engineer   has   always

sought   to  eliminate   vibration   and   noise,   and   the  wormgear   eliminates   at   least   95   per   cent   of   the   noise   andvibration present   in   the spiral-bevel  gear.   Although   thespiral-bevel  gear  can  be made   so that   it  is   almost   noiseless,   the manufacturer  has   great   trouble to  produce   thiscondition.   Noise   comes   from vibration,   but   often avibration exists in  a  rear-axle from  which one can  hardlyhear   any   resulting   noise.   I   have   often   noticed   that   in

 bevel-gear  rear-axles.   The  worm-gear  not   only  does  notseem   to   have  this  vibration,   but   it  seems   to   have   a  tendency to   soften and  deaden  any  other vibration resultingfrom   the   drive-shaft   or   the   transmission.   I   think   thisis  one  of  the best  reasons  for  using the worm-gear  drive.I   understand   that   some   gears   made   of   duralumin   are

 being   used. How   does   the   friction   of duralumin   com pare with  that of  bronze?

C.   H.   Calkins:-It   is   an   aluminum   alloy.   I   know   itworks very well against  hardened  steel.

T. W.  H.  Jeacock6:-Our  foundry  supplies gear-blankefor the  automotive  field.   Mr.  Acker  said   that   tin   bronze

cannot   be   die-cast.   It   does   cast satisfactorily   and   commercially  in  permanent molds.   Within  the last  6  monthswe have made   the worm-gear  blank  for   the Stutz   car   ina   metal   mold.   This is   a   phosphor-bronze   containing   1 per  cent of  nickel  and has   the maximum physical  proper ties   of   the   bronze   alloy   together   with   the   benefits   derived from   the chilling.   Engine  and   chassis  design have

developed  and   the  load   the  axle   is   required to   carry  hasgrown from year  to year, while the  alloy out of  which  theworm-gear  blank  was made  had  not  been improved.   Untila   new   alloy  was found   we   were   limited   as   to what   wecould  do   with   the  worm-wheel,   the teeth  of which   failedunder   the great unit pressure.   We have  now worked  outa   process of   applying   a   chill   to   all   of   three   sides of   a

4M.S.A.E.-Sales   and   development   engineer,   Timken-Detroit  AxleCo.,   Detroit.

5M.S.A.E.-Consulting   engineer,   Indianapolis.6President,   Buffalo   Bronze   Die   Cast   Corporation,   Buffalo.

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 11/13

WORM- GEARED  AXLES

459

worm gear bl ank. Thi s chi l l s t he bl ank  i n i ts enti rety

and gi ves

 an

 i ncrease

 of at

 l east

 20 per

 cent

 i n the

 physi

cal properti es of the same al l oy.  The combi nati on of the

ni ckel -bronze and the three-sided-chi l l process has made

it possi bl e f or t he wor m gear bl ank to meet the requi re

ment s of the great uni t pressure successful l y.

MR .

  B UC KE NDA L E : - Wo r m- g e a r   devel opment has had

t wo phases,  t he devel opment  of the tooth-contacts and

the devel opment of the materi al .

MR .   ACKE R: - S up pl e me nt i n g  Mr . J eacock' s st atement

as to the i mprovement  i n the physi cal properti es of t he

bronze  he

  uses

after careful anal ysi s recentl y  of t he

bronze used  f or the three-si ded chi l l we  f ound about a

20

 to

 30- per cent i ncrease

 i n

 tensi l e-strength

 but a

 much

hi gher i ncrease i n ducti l i ty, about 200 per cent.

MR .

  CA L K I NS : - T h e

  fact that dur al um n  i s stronger

than most bronzes al l owed

  us to use

  smal l er secti ons.

At  one t i me  we  secured  t wo  For d t ruck-axl es and  f as

tened t hem together   i n the center w th equal brakes on

f our wheel s and put t he standard Ford al um num br onze

i n

 one and

 dur al um n

  i n the

 other.

  We

  f ound  that w th

the normal   l oads the dur al um n stood- up as wel l as the

bronze.   W t h mor e l oad, i t di d not stand up as wel l as

the bronze.   I n my  opi ni on  it i s all ri ght f or a  wor m

wheel provi ded the l oad i s not too great.

V.   H.

  S C H N E E

7

: - T h e

  physi cal properti es  of the

bronze have very l i ttle bear i ng  on the probl emi f the

combi nati on  of the gear  and the wor m materi al  i s not

such that

 the

 oi l -fil m

can be

 mai ntai ned.

  We

  have found

that there  are  certai n combi nati ons  of  metal s whi ch

assist

 i n the

 mai ntenance

  of the

 oi l -fi l m Steel

 on

 steel

does  not  consti tute  a  very good beari ng. Manganese-

bronze  i s a better materi al for physi cal properti es than

gear- bronze,  but i t i s not as good  as bronze  f or mai n

tai ni ng  an oi l -fil m

A

  ME MBE R: - S h o ul d

  the enti re dr i vi ng surf ace show

contact ?  I f not, about what percentage  of the face of

the tooth does show  the contact after the gear  i s prop

erl y seated?  Has a chassi s dynamometer- test ever been

made  of the  dri vi ng mount back  of the  axl e? Have

spi ral -bevel  and  wor m t ype gears been substi tuted, one

for   the other, and  have  the comparati ve effi ci enci es of

the

  i nal - dr i ve

 been noted i n that way?

MR . B UC K E NDA L E : - I

  know  of one  effi ci ency test of

7

 Assi stant general manager , Cl evel and Wor m  Gear

  Co.

Cl eve

l and.

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 12/13

460   THE   SOCIETY OF AUTOMOTIVE   ENGINEERS

that   nature   in  which  the car  was  equipped   with   two   interchangeable  axles,   one having   spiral-bevel   gearing   andthe other, worm-gearing.   Acceleration  tests  were   made.The   first run  was made  with   spiral-bevel   gearing;   then,another   run was made   with worm-gearing,   after   whichthe worm was  taken   off  and   the spiral-bevel  gearing   was

used   again.Mr.   Crawford:-Mr. Buckendale   probably   refers   toa   series of   tests   made   on   the   Speedway   at   Indianapolis.   We   used   for the   test   the  largest   and   heaviest   passenger-car   we   had ever   built.   We   used   what   was,   according to our   knowledge,   the   best   made   spiral-bevelgear   drive, which   had   a gear-ratio   of   5   to   1.   The   car was equipped  so  that  quick   changes   of  the  axle   could bemade.   The worm-drive   axle  had   a   ratio   of   5   to   1.   Both

of   the axles  were  new.   By  using   a  derrick,   we  changedcompletely   from   one   axle   equipment   to   the   other   every16   min.

We made acceleration   tests   from   5   to   25   m.p.h.,   from5 to  60  m.p.h.,  from 10  to  25  m.p.h.,  from  10 to   50 m.p.h.and   from   10   to   60   m.p.h.   During   the   first   part   of   the

tests,   it   was almost  impossible   to   tell   the difference   between   the   bevel-gear   and   the   worm-gear performance,on   either   acceleration   or   deceleration.   What little   dif ference   there   was   seemed   to   be   slightly in   favor   of   the

 bevel-gearing.   At   about   test   No.   50   we   had   completedabout   500   miles of   running.   In the   next   500   miles of running   all   the   figures   showed   that   the   worm-gearingwas   getting better   and   that   the   bevel-gearing   was   getting worse.   We  could  account   for   that   only   after  noticing at  the end of  the   test that  there  was a  certain  amountof   lost   motion   in   the   pinion-shaft   bearings.   In   somesubsequent   tests   we   readjusted   those   bearings,   and   itwas almost   impossible   to tell   the   difference  between   thetwo  types   of   gearing.

The  car  in  which these  axles were  used  had  the engineassembly  mounted   so   that   the   crankshaft   was   parallelwith   the   ground;   hence,   the   drive-shaft   for   the   bevelgearing   was   almost   a   straight   line,   but   the   drive-shaftfor   the   worm-gearing   was   running   at   an angle   almostto   the   capacity   of   the  universal-joints.   As   a   result   of our   many   tests,   we   have   concluded   that,   while   for   thefirst   2000   or   3000   miles   the worm-gearing   might   nothave  very   much  advantage   over   the   bevel-gearing,   after 15,000   to   20,000  miles   the   worm-gear   drive has   a   greatadvantage   over   the bevel-gear drive.

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014

8/10/2019 260044

http://slidepdf.com/reader/full/260044 13/13

WORM-GEAREDAXLES   461

Mr.  Buckendale:-In   the  use of the   gasoline-electricdrive   in   Philadelphia   we   are   now   operating   the   wormgearing  on   the   motorcoaches   there   at   an   11   to   1   ratio;the  worm  turns at   5500  r.p.m.   regularly,  and we know of 

no   definite  speed-limitation   so   far   as   the   worm   is   concerned.

A   Member:-What   is   the  power of   the   motors   whenrun   at that   speed?

Mr.  Buckendale:-Possibly   100   hp.

Mr.   Acker:-In   regard   to worm-gearing   at   highspeed,   the   company   I   represent   manufactures   a   line   of industrial  speed-reducing  units for  connection   to  motors,conveyors,  and the like.   We  make  worm-gear  units  thatwill   handle   around   200 hp. A  worm  of   that   capacity   isabout   8   in.   in diameter.   We  have   such   drives in   service

that   we   know   have   been   running   satisfactorily for  periods of  5  or  6  years,  some of  them  at  turbine  speeds.

R. R.   Teetor8:-What is   the   best   lubricant   for   lubri

cating   worm-gears?   Has   a   means of   forcing   the   oil between   the   gear-teeth   ever   been   provided;   that   is.giving the  oil a   flow  rather   than   just  allowing   it   to  sur round   the  gears?   Since   the worm  turns   at   high   speed,the  tendency   is   to   throw the   lubricant   from   the   teeth.Could   not   some   simple device  be   provided by which   thelubricant   could   be   fed   into   the   contact   surface   betweenthe worm   and   the  wheel?

Mr.  Buckendale:-A   lubricant   is   needed   that   is   unaffected   by   chemical   contact   with   gear material,   but   weare still   looking   for   that   ideal   lubricant.   I   think   littlehas   been   done   with   automatic force-feed lubrication,

except   to   see   that   the   lubricant   is   supplied   to   the   gear in a  freely   flowing  stream.

8 M. S.A.E-Chief   engineer.   indiana   Piston Ring  Con.,   Hagerstown.Ind.

Downloaded from SAE International by University of Michigan, Wednesday, October 29, 2014