2.7v 4-channel/8-channel 12-bit a/d converters with spi ... · 2/1/2008  · differential...

40
© 2008 Microchip Technology Inc. DS21298E-page 1 MCP3204/3208 Features 12-bit resolution ± 1 LSB max DNL ± 1 LSB max INL (MCP3204/3208-B) ± 2 LSB max INL (MCP3204/3208-C) 4 (MCP3204) or 8 (MCP3208) input channels Analog inputs programmable as single-ended or pseudo-differential pairs On-chip sample and hold SPI serial interface (modes 0,0 and 1,1) Single supply operation: 2.7V - 5.5V 100 ksps max. sampling rate at V DD = 5V 50 ksps max. sampling rate at V DD = 2.7V Low power CMOS technology: - 500 nA typical standby current, 2 μA max. - 400 μA max. active current at 5V Industrial temp range: -40°C to +85°C Available in PDIP, SOIC and TSSOP packages Applications Sensor Interface Process Control Data Acquisition Battery Operated Systems Functional Block Diagram Description The Microchip Technology Inc. MCP3204/3208 devices are successive approximation 12-bit Analog- to-Digital (A/D) Converters with on-board sample and hold circuitry. The MCP3204 is programmable to provide two pseudo-differential input pairs or four single-ended inputs. The MCP3208 is programmable to provide four pseudo-differential input pairs or eight single-ended inputs. Differential Nonlinearity (DNL) is specified at ±1 LSB, while Integral Nonlinearity (INL) is offered in ±1 LSB (MCP3204/3208-B) and ±2 LSB (MCP3204/3208-C) versions. Communication with the devices is accomplished using a simple serial interface compatible with the SPI protocol. The devices are capable of conversion rates of up to 100 ksps. The MCP3204/3208 devices operate over a broad voltage range (2.7V - 5.5V). Low current design permits operation with typical standby and active currents of only 500 nA and 320 μA, respectively. The MCP3204 is offered in 14-pin PDIP, 150 mil SOIC and TSSOP packages. The MCP3208 is offered in 16-pin PDIP and SOIC packages. Package Types Comparator Sample and Hold 12-Bit SAR DAC Control Logic CS /SHDN V REF V SS V DD CLK D OUT Shift Register CH0 Channel Mux Input CH1 CH7* * Note: Channels 5-7 available on MCP3208 Only D IN V DD CLK D OUT MCP3204 1 2 3 4 14 13 12 11 10 9 8 5 6 7 V REF D IN CH0 CH1 CH2 CH3 CS /SHDN DGND AGND NC V DD CLK D OUT MCP3208 1 2 3 4 16 15 14 13 12 11 10 9 5 6 7 8 V REF D IN CS /SHDN DGND CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 NC AGND PDIP, SOIC, TSSOP PDIP, SOIC 2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface

Upload: others

Post on 06-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • MCP3204/32082.7V 4-Channel/8-Channel 12-Bit A/D Converters

    with SPI Serial Interface

    Features• 12-bit resolution• ± 1 LSB max DNL• ± 1 LSB max INL (MCP3204/3208-B)• ± 2 LSB max INL (MCP3204/3208-C)• 4 (MCP3204) or 8 (MCP3208) input channels• Analog inputs programmable as single-ended or

    pseudo-differential pairs• On-chip sample and hold• SPI serial interface (modes 0,0 and 1,1)• Single supply operation: 2.7V - 5.5V• 100 ksps max. sampling rate at VDD = 5V• 50 ksps max. sampling rate at VDD = 2.7V• Low power CMOS technology:

    - 500 nA typical standby current, 2 µA max.- 400 µA max. active current at 5V

    • Industrial temp range: -40°C to +85°C • Available in PDIP, SOIC and TSSOP packages

    Applications• Sensor Interface• Process Control• Data Acquisition• Battery Operated Systems

    Functional Block Diagram

    DescriptionThe Microchip Technology Inc. MCP3204/3208devices are successive approximation 12-bit Analog-to-Digital (A/D) Converters with on-board sample andhold circuitry. The MCP3204 is programmable toprovide two pseudo-differential input pairs or foursingle-ended inputs. The MCP3208 is programmableto provide four pseudo-differential input pairs or eightsingle-ended inputs. Differential Nonlinearity (DNL) isspecified at ±1 LSB, while Integral Nonlinearity (INL) isoffered in ±1 LSB (MCP3204/3208-B) and ±2 LSB(MCP3204/3208-C) versions.

    Communication with the devices is accomplished usinga simple serial interface compatible with the SPIprotocol. The devices are capable of conversion ratesof up to 100 ksps. The MCP3204/3208 devices operateover a broad voltage range (2.7V - 5.5V). Low currentdesign permits operation with typical standby andactive currents of only 500 nA and 320 µA,respectively. The MCP3204 is offered in 14-pin PDIP,150 mil SOIC and TSSOP packages. The MCP3208 isoffered in 16-pin PDIP and SOIC packages.

    Package Types

    Comparator

    SampleandHold

    12-Bit SAR

    DAC

    Control Logic

    CS/SHDN

    VREFVSSVDD

    CLK DOUT

    ShiftRegister

    CH0

    ChannelMux

    InputCH1

    CH7*

    * Note: Channels 5-7 available on MCP3208 Only

    DIN

    VDD

    CLKDOUT

    MC

    P3204

    1234

    1413121110

    98

    567

    VREF

    DIN

    CH0CH1CH2CH3

    CS/SHDNDGND

    AGND

    NC

    VDD

    CLKDOUT

    MC

    P3208

    1234

    161514131211109

    5678

    VREF

    DINCS/SHDNDGND

    CH0CH1CH2CH3CH4CH5CH6CH7

    NC

    AGND

    PDIP, SOIC, TSSOP

    PDIP, SOIC

    © 2008 Microchip Technology Inc. DS21298E-page 1

  • MCP3204/3208

    1.0 ELECTRICAL CHARACTERISTICS

    Absolute Maximum Ratings†VDD...................................................................................7.0VAll inputs and outputs w.r.t. VSS ............... -0.6V to VDD +0.6VStorage temperature .....................................-65°C to +150°CAmbient temp. with power applied ................-65°C to +125°CSoldering temperature of leads (10 seconds) .............+300°CESD protection on all pins.............................................> 4 kV

    †Notice: Stresses above those listed under "MaximumRatings" may cause permanent damage to the device. This isa stress rating only and functional operation of the device atthose or any other conditions above those indicated in theoperation listings of this specification is not implied. Exposureto maximum rating conditions for extended periods may affectdevice reliability.

    ELECTRICAL SPECIFICATIONSElectrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TA = -40°C to +85°C,fSAMPLE = 100 ksps and fCLK = 20*fSAMPLE

    Parameters Sym Min Typ Max Units Conditions

    Conversion RateConversion Time tCONV — — 12 clock

    cyclesAnalog Input Sample Time tSAMPLE 1.5 clock

    cyclesThroughput Rate fSAMPLE —

    ———

    10050

    kspsksps

    VDD = VREF = 5VVDD = VREF = 2.7V

    DC AccuracyResolution 12 bitsIntegral Nonlinearity INL —

    —±0.75±1.0

    ±1±2

    LSB MCP3204/3208-BMCP3204/3208-C

    Differential Nonlinearity DNL — ±0.5 ±1 LSB No missing codes over-temperature

    Offset Error — ±1.25 ±3 LSBGain Error — ±1.25 ±5 LSBDynamic PerformanceTotal Harmonic Distortion — -82 — dB VIN = 0.1V to 4.9V@1 kHzSignal to Noise and Distortion (SINAD)

    — 72 — dB VIN = 0.1V to 4.9V@1 kHz

    Spurious Free Dynamic Range

    — 86 — dB VIN = 0.1V to 4.9V@1 kHz

    Reference InputVoltage Range 0.25 — VDD V Note 2Current Drain —

    —100

    0.0011503.0

    µAµA CS = VDD = 5V

    Analog InputsInput Voltage Range for CH0-CH7 in Single-Ended Mode

    VSS — VREF V

    Input Voltage Range for IN+ in pseudo-differential Mode

    IN- — VREF+IN-

    Note 1: This parameter is established by characterization and not 100% tested.2: See graphs that relate linearity performance to VREF levels.3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity

    performance, particularly at elevated temperatures. See Section 6.2 “Maintaining Minimum Clock Speed”, “Maintaining Minimum Clock Speed”, for more information.

    DS21298E-page 2 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    Input Voltage Range for IN- in pseudo-differential Mode

    VSS-100 — VSS+100 mV

    Leakage Current — 0.001 ±1 µASwitch Resistance — 1000 — Ω See Figure 4-1Sample Capacitor — 20 — pF See Figure 4-1Digital Input/OutputData Coding Format Straight BinaryHigh Level Input Voltage VIH 0.7 VDD — — VLow Level Input Voltage VIL — — 0.3 VDD VHigh Level Output Voltage VOH 4.1 — — V IOH = -1 mA, VDD = 4.5VLow Level Output Voltage VOL — — 0.4 V IOL = 1 mA, VDD = 4.5VInput Leakage Current ILI -10 — 10 µA VIN = VSS or VDDOutput Leakage Current ILO -10 — 10 µA VOUT = VSS or VDDPin Capacitance(All Inputs/Outputs)

    CIN,COUT — — 10 pF VDD = 5.0V (Note 1)TA = 25°C, f = 1 MHz

    Timing ParametersClock Frequency fCLK —

    ———

    2.01.0

    MHzMHz

    VDD = 5V (Note 3)VDD = 2.7V (Note 3)

    Clock High Time tHI 250 — — nsClock Low Time tLO 250 — — nsCS Fall To First Rising CLK Edge

    tSUCS 100 — — ns

    Data Input Setup Time tSU 50 — — nsData Input Hold Time tHD 50 — — nsCLK Fall To Output Data Valid tDO — — 200 ns See Figures 1-2 and 1-3CLK Fall To Output Enable tEN — — 200 ns See Figures 1-2 and 1-3CS Rise To Output Disable tDIS — — 100 ns See Figures 1-2 and 1-3CS Disable Time tCSH 500 — — nsDOUT Rise Time tR — — 100 ns See Figures 1-2 and 1-3 (Note 1)DOUT Fall Time tF — — 100 ns See Figures 1-2 and 1-3 (Note 1)Power RequirementsOperating Voltage VDD 2.7 — 5.5 VOperating Current IDD —

    —320225

    400—

    µA VDD=VREF = 5V, DOUT unloadedVDD=VREF = 2.7V, DOUT unloaded

    Standby Current IDDS — 0.5 2.0 µA CS = VDD = 5.0V

    ELECTRICAL SPECIFICATIONS (CONTINUED)Electrical Characteristics: Unless otherwise noted, all parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TA = -40°C to +85°C,fSAMPLE = 100 ksps and fCLK = 20*fSAMPLE

    Parameters Sym Min Typ Max Units Conditions

    Note 1: This parameter is established by characterization and not 100% tested.2: See graphs that relate linearity performance to VREF levels.3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity

    performance, particularly at elevated temperatures. See Section 6.2 “Maintaining Minimum Clock Speed”, “Maintaining Minimum Clock Speed”, for more information.

    © 2008 Microchip Technology Inc. DS21298E-page 3

  • MCP3204/3208

    TEMPERATURE CHARACTERISTICS

    FIGURE 1-1: Serial Interface Timing.

    Electrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 5V

    Parameters Sym Min Typ Max Units Conditions

    Temperature RangesSpecified Temperature Range TA -40 — +125 °COperating Temperature Range TA -40 — +125 °CStorage Temperature Range TA -65 — +150 °CThermal Package ResistancesThermal Resistance, 14L-PDIP θJA — 70 — °C/WThermal Resistance, 14L-SOIC θJA — 95.3 — °C/WThermal Resistance, 14L-TSSOP θJA — 100 — °C/WThermal Resistance, 16L-PDIP θJA — 70 — °C/WThermal Resistance, 16L-SOIC θJA — 86.1 — °C/W

    CS

    CLK

    DIN MSB IN

    tSU tHD

    tSUCS

    tCSH

    tHI tLO

    DOUT

    tENtDO tR tF

    LSBMSB OUT

    tDIS

    Null Bit

    DS21298E-page 4 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    FIGURE 1-2: Load Circuit for tR, tF, tDO.

    FIGURE 1-3: Load circuit for tDIS and tEN.

    Test Point

    1.4V

    DOUT

    3 kΩ

    CL = 100 pF

    DOUT

    tR

    Voltage Waveforms for tR, tF

    CLK

    DOUT

    tDO

    Voltage Waveforms for tDO

    tF

    VOHVOL

    90%

    10%

    * Waveform 1 is for an output with internal conditions such that the output is high, unless disabled by the output control.

    † Waveform 2 is for an output with internal conditions such that the output is low, unless disabled by the output control.

    Test Point

    DOUT3 kΩ

    100 pF

    tDIS Waveform 2

    tDIS Waveform 1

    CS

    CLK

    DOUT

    tEN

    1 2

    B11

    Voltage Waveforms for tEN

    tEN Waveform

    VDD

    VDD/2

    VSS

    3 4

    Voltage Waveforms for tDIS

    DOUT

    DOUT

    CS VIH

    TDIS

    Waveform 1*

    Waveform 2†

    © 2008 Microchip Technology Inc. DS21298E-page 5

  • MCP3204/3208

    NOTES:

    DS21298E-page 6 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    2.0 TYPICAL PERFORMANCE CHARACTERISTICS

    Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE, TA = +25°C.

    FIGURE 2-1: Integral Nonlinearity (INL) vs. Sample Rate.

    FIGURE 2-2: Integral Nonlinearity (INL) vs. VREF .

    FIGURE 2-3: Integral Nonlinearity (INL) vs. Code (Representative Part).

    FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample Rate (VDD = 2.7V).

    FIGURE 2-5: Integral Nonlinearity (INL) vs. VREF (VDD = 2.7V).

    FIGURE 2-6: Integral Nonlinearity (INL) vs. Code (Representative Part, VDD = 2.7V).

    Note: The graphs and tables provided following this note are a statistical summary based on a limited number ofsamples and are provided for informational purposes only. The performance characteristics listed hereinare not tested or guaranteed. In some graphs or tables, the data presented may be outside the specifiedoperating range (e.g., outside specified power supply range) and therefore outside the warranted range.

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 25 50 75 100 125 150

    Sample Rate (ksps)

    INL

    (LSB

    )

    Positive INL

    Negative INL

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 1 2 3 4 5

    VREF (V)

    INL

    (LS

    B) Positive INL

    Negative INL

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 512 1024 1536 2048 2560 3072 3584 4096Digital Code

    INL

    (LSB

    )

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    0 10 20 30 40 50 60 70 80

    Sample Rate (ksps)

    INL

    (LSB

    ) Positive INL

    Negative INL

    VDD = VREF = 2.7 V

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    0.0 0.5 1.0 1.5 2.0 2.5 3.0VREF (V)

    INL

    (LS

    B)

    Positive INL

    Negative INL

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 512 1024 1536 2048 2560 3072 3584 4096

    Digital Code

    INL

    (LSB

    )

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    © 2008 Microchip Technology Inc. DS21298E-page 7

  • MCP3204/3208

    Note: Unless otherwise indicated, VDD = VREF = 5 V, VSS = 0 V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE, TA = +25°C.

    FIGURE 2-7: Integral Nonlinearity (INL) vs. Temperature.

    FIGURE 2-8: Differential Nonlinearity (DNL) vs. Sample Rate.

    FIGURE 2-9: Differential Nonlinearity (DNL) vs. VREF.

    FIGURE 2-10: Integral Nonlinearity (INL) vs. Temperature (VDD = 2.7V).

    FIGURE 2-11: Differential Nonlinearity (DNL) vs. Sample Rate (VDD = 2.7V).

    FIGURE 2-12: Differential Nonlinearity (DNL) vs. VREF (VDD = 2.7V).

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -50 -25 0 25 50 75 100Temperature (°C)

    INL

    (LSB

    )

    Positive INL

    Negative INL

    -1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.0

    0 25 50 75 100 125 150

    Sample Rate (ksps)

    DN

    L (L

    SB)

    Positive DNL

    Negative DNL

    -3.0

    -2.0

    -1.0

    0.0

    1.0

    2.0

    3.0

    0 1 2 3 4 5VREF (V)

    DN

    L (L

    SB) Positive DNL

    Negative DNL

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -50 -25 0 25 50 75 100

    Temperature (°C)

    INL

    (LSB

    )

    Positive INL

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    Negative INL

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    0 10 20 30 40 50 60 70 80

    Sample Rate (ksps)

    DN

    L (L

    SB)

    Positive DNL

    Negative DNL

    VDD = VREF = 2.7 V

    -3.0

    -2.0

    -1.0

    0.0

    1.0

    2.0

    3.0

    0.0 0.5 1.0 1.5 2.0 2.5 3.0VREF (V)

    DN

    L (L

    SB)

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    Positive DNL

    Negative DNL

    DS21298E-page 8 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE, TA = +25°C.

    FIGURE 2-13: Differential Nonlinearity (DNL) vs. Code (Representative Part).

    FIGURE 2-14: Differential Nonlinearity (DNL) vs. Temperature.

    FIGURE 2-15: Gain Error vs. VREF.

    FIGURE 2-16: Differential Nonlinearity (DNL) vs. Code (Representative Part, VDD = 2.7V).

    FIGURE 2-17: Differential Nonlinearity (DNL) vs. Temperature (VDD = 2.7V).

    FIGURE 2-18: Offset Error vs. VREF.

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 512 1024 1536 2048 2560 3072 3584 4096

    Digital Code

    DN

    L (L

    SB)

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -50 -25 0 25 50 75 100Temperature (°C)

    DN

    L (L

    SB) Positive DNL

    Negative DNL

    -4

    -3

    -2

    -1

    0

    1

    2

    3

    4

    0 1 2 3 4 5VREF (V)

    Gai

    n Er

    ror (

    LSB

    )

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    VDD = VREF = 5 VFSAMPLE = 100 ksps

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 512 1024 1536 2048 2560 3072 3584 4096

    Digital Code

    DN

    L (L

    SB)

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -50 -25 0 25 50 75 100Temperature (°C)

    DN

    L (L

    SB) Positive DNL

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    Negative DNL

    02468

    101214161820

    0 1 2 3 4 5VREF (V)

    Offs

    et E

    rror

    (LSB

    )

    VDD = VREF = 2.7VFSAMPLE = 50 ksps

    VDD = VREF = 5VFSAMPLE = 100 ksps

    © 2008 Microchip Technology Inc. DS21298E-page 9

  • MCP3204/3208

    Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE, TA = +25°C.

    FIGURE 2-19: Gain Error vs. Temperature.

    FIGURE 2-20: Signal-to-Noise (SNR) vs. Input Frequency.

    FIGURE 2-21: Total Harmonic Distortion (THD) vs. Input Frequency.

    FIGURE 2-22: Offset Error vs. Temperature.

    FIGURE 2-23: Signal-to-Noise and Distortion (SINAD) vs. Input Frequency.

    FIGURE 2-24: Signal-to-Noise and Distortion (SINAD) vs. Input Signal Level.

    -1.8

    -1.6

    -1.4

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    -50 -25 0 25 50 75 100Temperature (°C)

    Gai

    n Er

    ror (

    LSB

    )

    VDD = VREF = 5 VFSAMPLE = 100 ksps

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100Input Frequency (kHz)

    SNR

    (dB

    )

    VDD = VREF = 2.7VFSAMPLE = 50 ksps

    VDD = VREF = 5 VFSAMPLE = 100 ksps

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    1 10 100Input Frequency (kHz)

    THD

    (dB

    )

    VDD = VREF = 5VFSAMPLE = 100 ksps

    VDD = VREF = 2.7VFSAMPLE = 50 ksps

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    -50 -25 0 25 50 75 100

    Temperature (°C)

    Offs

    et E

    rror

    (LSB

    ) VDD = VREF = 5 VFSAMPLE = 100 ksps

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100Input Frequency (kHz)

    SFD

    R (d

    B)

    VDD = VREF = 5 VFSAMPLE = 100 ksps

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    0

    10

    20

    30

    40

    50

    60

    70

    80

    -40 -35 -30 -25 -20 -15 -10 -5 0Input Signal Level (dB)

    SIN

    AD

    (dB

    )

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    VDD = VREF = 5 VFSAMPLE = 100 ksps

    DS21298E-page 10 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE, TA = +25°C.

    FIGURE 2-25: Effective Number of Bits (ENOB) vs. VREF.

    FIGURE 2-26: Spurious Free Dynamic Range (SFDR) vs. Input Frequency.

    FIGURE 2-27: Frequency Spectrum of 10 kHz input (Representative Part).

    FIGURE 2-28: Effective Number of Bits (ENOB) vs. Input Frequency.

    FIGURE 2-29: Power Supply Rejection (PSR) vs. Ripple Frequency.

    FIGURE 2-30: Frequency Spectrum of 1 kHz input (Representative Part, VDD = 2.7V).

    9.009.259.509.75

    10.0010.2510.5010.7511.0011.2511.5011.7512.00

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0VREF (V)

    ENO

    B (r

    ms)

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    VDD = VREF = 5 VFSAMPLE =100 ksps

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    1 10 100Input Frequency (kHz)

    SFD

    R (d

    B)

    VDD = VREF = 5 VFSAMPLE = 100 ksps

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    -130-120-110-100

    -90-80-70-60-50-40-30-20-10

    0

    0 10000 20000 30000 40000 50000Frequency (Hz)

    Am

    plitu

    de (d

    B)

    VDD = VREF = 5 VFSAMPLE = 100 kspsFINPUT = 9.985 kHz4096 points

    8.0

    8.5

    9.0

    9.5

    10.0

    10.5

    11.0

    11.5

    12.0

    1 10 100Input Frequency (kHz)

    ENO

    B (r

    ms)

    VDD = VREF = 2.7 VFSAMPLE = 50 ksps

    VDD = VREF = 5 VFSAMPLE = 100 ksps

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    1 10 100 1000 10000 Ripple Frequency (kHz)

    Pow

    er S

    uppl

    y R

    ejec

    tion

    (dB

    )

    -130-120-110-100

    -90-80-70-60-50-40-30-20-10

    0

    0 5000 10000 15000 20000 25000Frequency (Hz)

    Am

    plitu

    de (d

    B)

    VDD = VREF = 2.7 VFSAMPLE = 50 kspsFINPUT = 998.76 Hz4096 points

    © 2008 Microchip Technology Inc. DS21298E-page 11

  • MCP3204/3208

    Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE, TA = +25°C.

    FIGURE 2-31: IDD vs. VDD.

    FIGURE 2-32: IDD vs. Clock Frequency.

    FIGURE 2-33: IDD vs. Temperature.

    FIGURE 2-34: IREF vs. VDD.

    FIGURE 2-35: IREF vs. Clock Frequency.

    FIGURE 2-36: IREF vs. Temperature.

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    VDD (V)

    I DD (µ

    A)

    VREF = VDDAll points at FCLK = 2 MHz, exceptat VREF = VDD = 2.5 V, FCLK = 1 MHz

    0

    50

    100

    150

    200

    250

    300

    350

    400

    10 100 1000 10000Clock Frequency (kHz)

    I DD (µ

    A)

    VDD = VREF = 5 V

    VDD = VREF = 2.7 V

    0

    50

    100

    150

    200

    250

    300

    350

    400

    -50 -25 0 25 50 75 100Temperature (°C)

    I DD (µ

    A)

    VDD = VREF = 5 VFCLK = 2 MHz

    VDD = VREF = 2.7 VFCLK = 1 MHz

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90100

    2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    VDD (V)

    I REF

    (µA

    )

    VREF = VDDAll points at FCLK = 2 MHz exceptat VREF = VDD = 2.5 V, FCLK = 1 MHz

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    10 100 1000 10000

    Clock Frequency (kHz)

    I REF

    (µA

    )

    VDD = VREF = 5 V

    VDD = VREF = 2.7 V

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -50 -25 0 25 50 75 100Temperature (°C)

    I REF

    (µA

    )

    VDD = VREF = 5 VFCLK = 2 MHz

    VDD = VREF = 2.7 VFCLK = 1 MHz

    DS21298E-page 12 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100 ksps, fCLK = 20* fSAMPLE, TA = +25°C.

    FIGURE 2-37: IDDS vs. VDD.

    FIGURE 2-38: IDDS vs. Temperature.

    FIGURE 2-39: Analog Input Leakage Current vs. Temperature.

    0

    10

    20

    30

    40

    50

    60

    70

    80

    2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

    VDD (V)

    I DD

    S (p

    A)

    VREF = CS = VDD

    0.01

    0.10

    1.00

    10.00

    100.00

    -50 -25 0 25 50 75 100Temperature (°C)

    I DD

    S (n

    A)

    VDD = VREF = CS = 5 V

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    -50 -25 0 25 50 75 100

    Temperature (°C)

    Ana

    log

    Inpu

    t Lea

    kage

    (nA

    )

    VDD = VREF = 5 VFCLK = 2 MHz

    © 2008 Microchip Technology Inc. DS21298E-page 13

  • MCP3204/3208

    NOTES:

    DS21298E-page 14 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    3.0 PIN DESCRIPTIONSThe descriptions of the pins are listed in Table 3-1.

    3.1 Digital Ground (DGND)Digital ground connection to internal digital circuitry.

    3.2 Analog Ground (AGND)Analog ground connection to internal analog circuitry.

    3.3 Analog Inputs (CH0 - CH7)Analog inputs for channels 0 - 7 for the multiplexedinputs. Each pair of channels can be programmed to beused as two independent channels in single-endedmode or as a single pseudo-differential input, whereone channel is IN+ and one channel is IN. SeeSection 4.1 “Analog Inputs”, “Analog Inputs”, andSection 5.0 “Serial communications”, “Serial Com-munications”, for information on programming thechannel configuration.

    3.4 Serial Clock (CLK)The SPI clock pin is used to initiate a conversion andclock out each bit of the conversion as it takes place.See Section 6.2 “Maintaining Minimum ClockSpeed”, “Maintaining Minimum Clock Speed”, for con-straints on clock speed.

    3.5 Serial Data Input (DIN)The SPI port serial data input pin is used to loadchannel configuration data into the device.

    3.6 Serial Data Output (DOUT)The SPI serial data output pin is used to shift out theresults of the A/D conversion. Data will always changeon the falling edge of each clock as the conversiontakes place.

    3.7 Chip Select/Shutdown (CS/SHDN)The CS/SHDN pin is used to initiate communicationwith the device when pulled low and will end aconversion and put the device in low power standbywhen pulled high. The CS/SHDN pin must be pulledhigh between conversions.

    TABLE 3-1: PIN FUNCTION TABLEMCP3204 MCP3208

    Symbol DefinitionPDIP, SOIC, TSSOP PDIP, SOIC

    1 1 CH0 Analog Input2 2 CH1 Analog Input3 3 CH2 Analog Input4 4 CH3 Analog Input— 5 CH4 Analog Input— 6 CH5 Analog Input— 7 CH6 Analog Input— 8 CH7 Analog Input7 9 DGND Digital Ground8 10 CS/SHDN Chip Select/Shutdown Input9 11 DIN Serial Data In

    10 12 DOUT Serial Data Out11 13 CLK Serial Clock12 14 AGND Analog Ground13 15 VREF Reference Voltage Input14 16 VDD +2.7V to 5.5V Power Supply

    5, 6 — NC No Connection

    © 2008 Microchip Technology Inc. DS21298E-page 15

  • MCP3204/3208

    NOTES:

    DS21298E-page 16 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    4.0 DEVICE OPERATIONThe MCP3204/3208 A/D converters employ aconventional SAR architecture. With this architecture,a sample is acquired on an internal sample/holdcapacitor for 1.5 clock cycles starting on the fourthrising edge of the serial clock after the start bit has beenreceived. Following this sample time, the device usesthe collected charge on the internal sample/holdcapacitor to produce a serial 12-bit digital output code.Conversion rates of 100 ksps are possible on theMCP3204/3208. See Section 6.2 “Maintaining Mini-mum Clock Speed”, “Maintaining Minimum ClockSpeed”, for information on minimum clock rates.Communication with the device is accomplished usinga 4-wire SPI-compatible interface.

    4.1 Analog InputsThe MCP3204/3208 devices offer the choice of usingthe analog input channels configured as single-endedinputs or pseudo-differential pairs. The MCP3204 canbe configured to provide two pseudo-differential inputpairs or four single-ended inputs, while the MCP3208can be configured to provide four pseudo-differentialinput pairs or eight single-ended inputs. Configurationis done as part of the serial command before eachconversion begins. When used in the pseudo-differential mode, each channel pair (i.e., CH0 andCH1, CH2 and CH3 etc.) is programmed to be the IN+and IN- inputs as part of the command string transmit-ted to the device. The IN+ input can range from IN- to(VREF + IN-). The IN- input is limited to ±100 mV fromthe VSS rail. The IN- input can be used to cancel smallsignal common-mode noise which is present on boththe IN+ and IN- inputs.

    When operating in the pseudo-differential mode, if thevoltage level of IN+ is equal to or less than IN-, theresultant code will be 000h. If the voltage at IN+ is equalto or greater than {[VREF + (IN-)] - 1 LSB}, then theoutput code will be FFFh. If the voltage level at IN- ismore than 1 LSB below VSS, the voltage level at theIN+ input will have to go below VSS to see the 000houtput code. Conversely, if IN- is more than 1 LSBabove VSS, then the FFFh code will not be seen unlessthe IN+ input level goes above VREF level.

    For the A/D converter to meet specification, the chargeholding capacitor (CSAMPLE) must be given enoughtime to acquire a 12-bit accurate voltage level duringthe 1.5 clock cycle sampling period. The analog inputmodel is shown in Figure 4-1.

    This diagram illustrates that the source impedance (RS)adds to the internal sampling switch (RSS) impedance,directly effecting the time that is required to charge thecapacitor (CSAMPLE). Consequently, larger sourceimpedances increase the offset, gain and integrallinearity errors of the conversion (see Figure 4-2).

    4.2 Reference InputFor each device in the family, the reference input(VREF) determines the analog input voltage range. Asthe reference input is reduced, the LSB size is reducedaccordingly. The theoretical digital output code pro-duced by the A/D converter is a function of the analoginput signal and the reference input, as shown below.

    EQUATION 4-1:

    When using an external voltage reference device, thesystem designer should always refer to themanufacturer’s recommendations for circuit layout.Any instability in the operation of the reference devicewill have a direct effect on the operation of the A/Dconverter.

    Where:

    VIN = analog input voltage

    VREF = reference voltage

    Digital Output Code4096 VIN×

    VREF---------------------------=

    © 2008 Microchip Technology Inc. DS21298E-page 17

  • MCP3204/3208

    FIGURE 4-1: Analog Input Model.

    FIGURE 4-2: Maximum Clock Frequency vs. Input resistance (RS) to maintain less than a 0.1 LSB deviation in INL from nominal conditions.

    CPINVA

    RSS CHx

    7 pF

    VT = 0.6V

    VT = 0.6VILEAKEAGE

    SamplingSwitch

    SS RS = 1 kΩ

    CSAMPLE= DAC capacitance

    VSS

    VDD

    = 20 pF±1 nA

    LegendVA = Signal Source Ileakage = Leakage Current At The Pin

    Due To Various Junctions

    Rss = Source Impedance SS = Sampling switchCHx = Input Channel Pad Rs = Sampling switch resistorCpin = Input Pin Capacitance Csample = Sample/hold capacitanceVt = Threshold Voltage

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    100 1000 10000

    Input Resistance (Ohms)

    Clo

    ck F

    requ

    ency

    (MH

    z) VDD = 5 V

    VDD = 2.7 V

    DS21298E-page 18 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    5.0 SERIAL COMMUNICATIONSCommunication with the MCP3204/3208 devices isaccomplished using a standard SPI-compatible serialinterface. Initiating communication with either device isdone by bringing the CS line low (see Figure 5-1). If thedevice was powered up with the CS pin low, it must bebrought high and back low to initiate communication.The first clock received with CS low and DIN high willconstitute a start bit. The SGL/DIFF bit follows the startbit and will determine if the conversion will be doneusing single-ended or differential input mode. The nextthree bits (D0, D1 and D2) are used to select the inputchannel configuration. Table 5-1 and Table 5-2 showthe configuration bits for the MCP3204 and MCP3208,respectively. The device will begin to sample theanalog input on the fourth rising edge of the clock afterthe start bit has been received. The sample period willend on the falling edge of the fifth clock following thestart bit.

    Once the D0 bit is input, one more clock is required tocomplete the sample and hold period (DIN is a “don’tcare” for this clock). On the falling edge of the nextclock, the device will output a low null bit. The next 12clocks will output the result of the conversion with MSBfirst, as shown in Figure 5-1. Data is always output fromthe device on the falling edge of the clock. If all 12 databits have been transmitted and the device continues toreceive clocks while the CS is held low, the device willoutput the conversion result LSB first, as shown inFigure 5-2. If more clocks are provided to the devicewhile CS is still low (after the LSB first data has beentransmitted), the device will clock out zeros indefinitely.

    If necessary, it is possible to bring CS low and clock inleading zeros on the DIN line before the start bit. This isoften done when dealing with microcontroller-basedSPI ports that must send 8 bits at a time. Refer toSection 6.1 “Using the MCP3204/3208 with Micro-controller (MCU) SPI Ports” for more details on usingthe MCP3204/3208 devices with hardware SPI ports.

    TABLE 5-1: CONFIGURATION BITS FOR THE MCP3204

    TABLE 5-2: CONFIGURATION BITS FOR THE MCP3208

    Control Bit Selections Input

    ConfigurationChannel SelectionSingle/

    Diff D2* D1 D0

    1 X 0 0 single-ended CH01 X 0 1 single-ended CH11 X 1 0 single-ended CH21 X 1 1 single-ended CH30 X 0 0 differential CH0 = IN+

    CH1 = IN-0 X 0 1 differential CH0 = IN-

    CH1 = IN+0 X 1 0 differential CH2 = IN+

    CH3 = IN-0 X 1 1 differential CH2 = IN-

    CH3 = IN+* D2 is a “don’t care” for MCP3204

    Control Bit Selections Input

    ConfigurationChannel SelectionSingle

    /Diff D2 D1 D0

    1 0 0 0 single-ended CH01 0 0 1 single-ended CH11 0 1 0 single-ended CH21 0 1 1 single-ended CH31 1 0 0 single-ended CH41 1 0 1 single-ended CH51 1 1 0 single-ended CH61 1 1 1 single-ended CH70 0 0 0 differential CH0 = IN+

    CH1 = IN-0 0 0 1 differential CH0 = IN-

    CH1 = IN+0 0 1 0 differential CH2 = IN+

    CH3 = IN-0 0 1 1 differential CH2 = IN-

    CH3 = IN+0 1 0 0 differential CH4 = IN+

    CH5 = IN-0 1 0 1 differential CH4 = IN-

    CH5 = IN+0 1 1 0 differential CH6 = IN+

    CH7 = IN-0 1 1 1 differential CH6 = IN-

    CH7 = IN+

    © 2008 Microchip Technology Inc. DS21298E-page 19

  • MCP3204/3208

    FIGURE 5-1: Communication with the MCP3204 or MCP3208.

    FIGURE 5-2: Communication with MCP3204 or MCP3208 in LSB First Format.

    CS

    CLK

    DIN

    DOUT

    D1D2 D0

    HI-Z

    Don’t Care

    NullBit B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0*

    HI-Z

    tSAMPLE

    tCONV

    SGL/DIFFStart

    tCYC

    tCSH

    tCYC

    D2SGL/DIFFStart

    * After completing the data transfer, if further clocks are applied with CS low, the A/D converter will output LSBfirst data, followed by zeros indefinitely (see Figure 5-2 below).

    ** tDATA: during this time, the bias current and the comparator power down while the reference input becomesa high impedance node, leaving the CLK running to clock out the LSB-first data or zeros.

    tDATA **

    tSUCS

    NullBit B11B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11

    CS

    CLK

    DOUTHI-Z HI-Z

    (MSB)

    tCONV tDATA **

    Power Down

    tSAMPLE

    Start

    SGL/DIFF

    DIN

    tCYC

    tCSH

    D0D1D2

    * After completing the data transfer, if further clocks are applied with CS low, the A/D converter will output zerosindefinitely.

    ** tDATA: During this time, the bias circuit and the comparator power down while the reference input becomes ahigh impedance node, leaving the CLK running to clock out LSB first data or zeroes.

    tSUCS

    Don’t Care

    *

    DS21298E-page 20 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    6.0 APPLICATIONS INFORMATION

    6.1 Using the MCP3204/3208 with Microcontroller (MCU) SPI Ports

    With most microcontroller SPI ports, it is required tosend groups of eight bits. It is also required that themicrocontroller SPI port be configured to clock out dataon the falling edge of clock and latch data in on therising edge. Because communication with theMCP3204/3208 devices may not need multiples ofeight clocks, it will be necessary to provide more clocksthan are required. This is usually done by sending‘leading zeros’ before the start bit. As an example,Figure 6-1 and Figure 6-2 illustrate how the MCP3204/3208 can be interfaced to a MCU with a hardware SPIport. Figure 6-1 depicts the operation shown in SPIMode 0,0, which requires that the SCLK from the MCUidles in the ‘low’ state, while Figure 6-2 shows thesimilar case of SPI Mode 1,1, where the clock idles inthe ‘high’ state.

    As is shown in Figure 6-1, the first byte transmitted tothe A/D converter contains five leading zeros beforethe start bit. Arranging the leading zeros this wayallows the output 12 bits to fall in positions easilymanipulated by the MCU. The MSB is clocked out ofthe A/D converter on the falling edge of clock number12. Once the second eight clocks have been sent to thedevice, the MCU’s receive buffer will contain threeunknown bits (the output is at high impedance for thefirst two clocks), the null bit and the highest order fourbits of the conversion. Once the third byte has beensent to the device, the receive register will contain thelowest order eight bits of the conversion results.Employing this method ensures simpler manipulationof the converted data.

    Figure 6-2 shows the same thing in SPI Mode 1,1,which requires that the clock idles in the high state. Aswith mode 0,0, the A/D converter outputs data on thefalling edge of the clock and the MCU latches data fromthe A/D converter in on the rising edge of the clock.

    FIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    CS

    SCLK

    DIN

    X = “Don’t Care” Bits

    17 18 19 20 21 22 23 24

    DOUTNULL

    BIT B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0HI-Z

    MCU latches data from A/D

    Data is clocked out of A/Dconverter on falling edges

    converter on rising edges of SCLK

    DO Don’t CareSGL/DIFF D1D2Start

    0 0 0 0 0 1 X X X X XDO X X X X X X X X

    B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B80? ? ? ? ? ? ? ? ? ? ?

    D1D2SGL/DIFF

    StartBit

    (Null)

    MCU Transmitted Data(Aligned with fallingedge of clock)MCU Received Data(Aligned with risingedge of clock)

    X

    Data stored into MCU receiveregister after transmission of first8 bits

    Data stored into MCU receiveregister after transmission ofsecond 8 bits

    Data stored into MCU receiveregister after transmission of last8 bits

    Don’t Care

    0 0 0 0 0 1 X X X X XDO X X X X X X X X

    B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B80? ? ? ? ? ? ? ? ? ? ?

    D1D2SGL/DIFF

    (Null)

    X

    23

    B1

    X

    © 2008 Microchip Technology Inc. DS21298E-page 21

  • MCP3204/3208

    FIGURE 6-2: SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).

    6.2 Maintaining Minimum Clock SpeedWhen the MCP3204/3208 initiates the sample period,charge is stored on the sample capacitor. When thesample period is complete, the device converts one bitfor each clock that is received. It is important for theuser to note that a slow clock rate will allow charge tobleed off the sample capacitor while the conversion istaking place. At 85°C (worst case condition), the partwill maintain proper charge on the sample capacitor forat least 1.2 ms after the sample period has ended. Thismeans that the time between the end of the sampleperiod and the time that all 12 data bits have beenclocked out must not exceed 1.2 ms (effective clockfrequency of 10 kHz). Failure to meet this criterion mayintroduce linearity errors into the conversion outsidethe rated specifications. It should be noted that duringthe entire conversion cycle, the A/D converter does notrequire a constant clock speed or duty cycle, as long asall timing specifications are met.

    6.3 Buffering/Filtering the Analog Inputs

    If the signal source for the A/D converter is not a lowimpedance source, it will have to be buffered or inaccu-rate conversion results may occur (see Figure 4-2). It isalso recommended that a filter be used to eliminate anysignals that may be aliased back into the conversionresults, as is illustrated in Figure 6-3, where an op ampis used to drive the analog input of the MCP3204/3208.This amplifier provides a low impedance source for theconverter input, and a low pass filter, which eliminatesunwanted high frequency noise.

    Low-pass (anti-aliasing) filters can be designed usingMicrochip’s free interactive FilterLab® software. Filter-Lab will calculate capacitor and resistor values, as wellas determine the number of poles that are required forthe application. For more information on filteringsignals, see AN699, “Anti-Aliasing Analog Filters forData Acquisition Systems”.

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

    CS

    SCLK

    DIN

    X = “Don’t Care” Bits

    17 18 19 20 21 22 23 24

    DOUT

    DO Don’t Care

    NULLBIT B11 B10 B9 B8 B6 B5 B4 B3 B2 B1 B0

    HI-Z

    0 0 0 0 0 1 X X X X XDO

    SGL/DIFF

    X X X X X X X X

    B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B80? ? ? ? ? ? ? ? ? ? ?

    MCU latches data from A/D converteron rising edges of SCLK

    Data is clocked out of A/Dconverter on falling edges

    D1D2SGL/DIFF

    StartBit

    (Null)

    D1D2Start

    MCU Transmitted Data(Aligned with fallingedge of clock)

    MCU Received Data(Aligned with risingedge of clock)

    B7

    X

    Data stored into MCU receiveregister after transmission of first8 bits

    Data stored into MCU receiveregister after transmission ofsecond 8 bits

    Data stored into MCU receiveregister after transmission of last8 bits

    DO

    DS21298E-page 22 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    FIGURE 6-3: The MCP601 Operational Amplifier is used to implement a second order anti-aliasing filter for the signal being converted by the MCP3204.

    6.4 Layout ConsiderationsWhen laying out a printed circuit board for use withanalog components, care should be taken to reducenoise wherever possible. A bypass capacitor shouldalways be used with this device, placed as close aspossible to the device pin. A bypass capacitor value of1 µF is recommended.

    Digital and analog traces should be separated as muchas possible on the board, with no traces runningunderneath the device or the bypass capacitor. Extraprecautions should be taken to keep traces with highfrequency signals (such as clock lines) as far aspossible from analog traces.

    Use of an analog ground plane is recommended inorder to keep the ground potential the same for alldevices on the board. Providing VDD connections todevices in a “star” configuration can also reduce noiseby eliminating return current paths and associatederrors (see Figure 6-4). For more information on layouttips when using A/D converters, refer to AN688,“Layout Tips for 12-Bit A/D converter Applications”. FIGURE 6-4: VDD traces arranged in a

    ‘Star’ configuration in order to reduce errors caused by current return paths.

    MCP3204

    VDD

    10 µF

    IN-

    IN+

    -

    +VIN

    C1

    C2

    VREF

    4.096VReference

    1 µF

    1 µF0.1 µF

    MCP601R1

    R2

    R3R4

    MCP1541

    VDDConnection

    Device 1

    Device 2

    Device 3

    Device 4

    © 2008 Microchip Technology Inc. DS21298E-page 23

  • MCP3204/3208

    6.5 Utilizing the Digital and Analog

    Ground PinsThe MCP3204/3208 devices provide both digital andanalog ground connections to provide another meansof noise reduction. As shown in Figure 6-5, the analogand digital circuitry is separated internal to the device.This reduces noise from the digital portion of the devicebeing coupled into the analog portion of the device. Thetwo grounds are connected internally through thesubstrate, which has a resistance of 5 -10Ω.

    If no ground plane is utilized, then both grounds mustbe connected to VSS on the board. If a ground plane isavailable, both digital and analog ground pins shouldbe connected to the analog ground plane. If both ananalog and a digital ground plane are available, boththe digital and the analog ground pins should beconnected to the analog ground plane. Following thesesteps will reduce the amount of digital noise from therest of the board being coupled into the A/D converter.

    FIGURE 6-5: Separation of Analog and Digital Ground Pins.

    MCP3204/08

    Analog Ground Plane

    DGND AGND

    VDD

    0.1 µF

    Substrate

    5 - 10Ω

    Digital Side-SPI Interface-Shift Register-Control Logic

    Analog Side-Sample Cap-Capacitor Array-Comparator

    DS21298E-page 24 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    7.0 PACKAGING INFORMATION

    7.1 Package Marking Information

    Legend: XX...X Customer-specific informationY Year code (last digit of calendar year)YY Year code (last 2 digits of calendar year)WW Week code (week of January 1 is week ‘01’)NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn)* This package is Pb-free. The Pb-free JEDEC designator ( )

    can be found on the outer packaging for this package.

    Note: In the event the full Microchip part number cannot be marked on one line, it willbe carried over to the next line, thus limiting the number of availablecharacters for customer-specific information.

    3e

    3e

    14-Lead PDIP (300 mil) (MCP3204) Example:

    14-Lead SOIC (150 mil) (MCP3204) Example:

    XXXXXXXXXXXXXXXXXXXXXXXXXXXX

    YYWWNNN

    XXXXXXXXXXX

    YYWWNNN

    MCP3204-BI/P

    0819256

    XXXXXXXXXXXMCP3204-B

    0819256XXXXXXXI/XXXX

    XXXXXXXX

    NNN

    YYWW

    14-Lead TSSOP (4.4mm)* (MCP3204) Example:

    3204-C

    256

    0819

    3e

    3eI/SL

    © 2008 Microchip Technology Inc. DS21298E-page 25

  • MCP3204/3208

    Package Marking Information (Continued)

    16-Lead PDIP (300 mil) (MCP3208) Example:

    16-Lead SOIC (150 mil) (MCP3208) Example:

    XXXXXXXXXXXXXXXXXXXXXXXXXXXX

    YYWWNNN

    XXXXXXXXXXXXX

    YYWWNNN

    MCP3208-BI/P

    0819256

    XXXXXXXXXXXXXMCP3208-B

    0819256XXXXIXXXXXX

    3e

    3eI/SL

    DS21298E-page 26 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    ����������������������������������������

    ���� �� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%��%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"�����.���� �"���� ��&�� ��������"�%���������������-�/���0��

    1�+2�1� �����&�� �������%��������#��%����!�� �)��)�%�!%�%������ �

    ��� 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

    6��% �7+8-���&�� ���9�&�% ��7 7:� ��;

    7!&(��$���� 7 ����%�� � �����1�+

    ��%����%��������� � < < ������"�"����4�������4�� �� ���0 ��,� ���01� ��%����%��������� �� ���0 < <��!�"��%���!�"��=�"%� - ���� �,�� �,�0��"�"����4����=�"%� -� ���� ��0� ��>�:������9���%� � ��,0 ��0� ���0

    ���%����%��������� 9 ���0 ��,� ��0�9��"����4�� � ���> ���� ���06����9��"�=�"%� (� ���0 ��?� ����9)��9��"�=�"%� ( ���� ���> ����:�������)����������* �1 < < ��,�

    N

    E1

    D

    NOTE 1

    1 2 3

    E

    c

    eB

    A2

    L

    A

    A1b1

    b e

    ������� ������� ��)��� +�����01

    © 2008 Microchip Technology Inc. DS21298E-page 27

  • MCP3204/3208

    ������������!����"������!�����##�$%�&'��������!"�(�

    ���� �� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%����%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"����0�&&���� �"���� ��&�� ��������"�%���������������-�/���0��

    1�+2 1� �����&�� �������%��������#��%����!�� �)��)�%�!%�%������ ��-32 ��$��������&�� ��'�! !�����)�%�!%�%������'�$���$&�%����!� � �����

    ��� 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

    6��% ��99��--����&�� ���9�&�% ��7 7:� ��;

    7!&(��$���� 7 ����%�� � �����1�+:������8����% � < < ���0��"�"����4�������4�� �� ���0 < <�%��"$$��* �� ���� < ���0:������=�"%� - ?����1�+��"�"����4����=�"%� -� ,����1�+:������9���%� � >�?0�1�++��&$��@�%����A � ���0 < ��0�3

    %�9���%� 9 ���� < ����3

    %���% 9� ������-33

    %������ � �B < >B9��"����4�� � ���� < ���09��"�=�"%� ( ��,� < ��0���"���$%�������� � 0B < �0B��"���$%�������1%%& � 0B < �0B

    NOTE 1

    N

    D

    E

    E1

    1 2 3

    b

    e

    A

    A1

    A2

    L

    L1

    c

    h

    h α

    β

    φ

    ������� ������� ��)��� +����?01

    DS21298E-page 28 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    ��� 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

    © 2008 Microchip Technology Inc. DS21298E-page 29

  • MCP3204/3208

    ������������)*��!*#��+!����"������!)���&��������)!!"�

    ���� �� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%����%�����%���"������� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"����0�&&���� �"��,� ��&�� ��������"�%���������������-�/���0��

    1�+2 1� �����&�� �������%��������#��%����!�� �)��)�%�!%�%������ ��-32 ��$��������&�� ��'�! !�����)�%�!%�%������'�$���$&�%����!� � �����

    ��� 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

    6��% ��99��--����&�� ���9�&�% ��7 7:� ��;

    7!&(��$���� 7 ����%�� � ��?0�1�+:������8����% � < < ������"�"����4�������4�� �� ��>� ���� ���0�%��"$$� �� ���0 < ���0:������=�"%� - ?����1�+��"�"����4����=�"%� -� ��,� ���� ��0���"�"����4����9���%� � ���� 0��� 0���3

    %�9���%� 9 ���0 ��?� ���03

    %���% 9� ������-33

    %������ � �B < >B9��"����4�� � ���� < ����9��"�=�"%� ( ���� < ��,�

    NOTE 1

    D

    N

    E

    E1

    1 2

    eb

    cA

    A1

    A2

    L1 L

    φ

    ������� ������� ��)��� +����>�1

    DS21298E-page 30 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    �,��������������������������������������

    ���� �� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%����%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"�����.���� �"���� ��&�� ��������"�%���������������-�/���0��

    1�+2 1� �����&�� �������%��������#��%����!�� �)��)�%�!%�%������ �

    ��� 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

    6��% �7+8-���&�� ���9�&�% ��7 7:� ��;

    7!&(��$���� 7 �?��%�� � �����1�+

    ��%����%��������� � < < ������"�"����4�������4�� �� ���0 ��,� ���01� ��%����%��������� �� ���0 < <��!�"��%���!�"��=�"%� - ���� �,�� �,�0��"�"����4����=�"%� -� ���� ��0� ��>�:������9���%� � ��,0 ��00 ���0

    ���%����%��������� 9 ���0 ��,� ��0�9��"����4�� � ���> ���� ���06����9��"�=�"%� (� ���0 ��?� ����9)��9��"�=�"%� ( ���� ���> ����:�������)����������* �1 < < ��,�

    N

    E1NOTE 1

    D

    1 2 3

    A

    A1 b1

    b e

    L

    A2

    E

    eB

    c

    ������� ������� ��)��� +������1

    © 2008 Microchip Technology Inc. DS21298E-page 31

  • MCP3204/3208

    �,����������!����"������!�����##�$%�&'��������!"�(�

    ���� �� �������� !�����"�#�$��%!��&������'�(!%�&! %�(�����%�"�)�%����%�����%���"������� *������$����%�+����%�� %���,� ��&�� �� �����"�-��"��%�����!"��&�"�$�� ����%! �� ����"�$�� ����%! �� � ������%��#���"����0�&&���� �"���� ��&�� ��������"�%���������������-�/���0��

    1�+2 1� �����&�� �������%��������#��%����!�� �)��)�%�!%�%������ ��-32 ��$��������&�� ��'�! !�����)�%�!%�%������'�$���$&�%����!� � �����

    ��� 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

    6��% ��99��--����&�� ���9�&�% ��7 7:� ��;

    7!&(��$���� 7 �?��%�� � �����1�+:������8����% � < < ���0��"�"����4�������4�� �� ���0 < <�%��"$$��* �� ���� < ���0:������=�"%� - ?����1�+��"�"����4����=�"%� -� ,����1�+:������9���%� � �����1�++��&$��@�%����A � ���0 < ��0�3

    %�9���%� 9 ���� < ����3

    %���% 9� ������-33

    %������ � �B < >B9��"����4�� � ���� < ���09��"�=�"%� ( ��,� < ��0���"���$%�������� � 0B < �0B��"���$%�������1%%& � 0B < �0B

    D

    EE1

    N

    NOTE 1

    1 2 3

    b

    e

    h

    h

    c

    L

    L1

    A2A

    A1 β

    φ

    α

    ������� ������� ��)��� +�����>1

    DS21298E-page 32 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    ��� 3�%���& %��!��%����4����"�)��� '����� �� ���%��������������4�����������$���%������%�"��%��%%�255)))�&��������&5���4�����

    © 2008 Microchip Technology Inc. DS21298E-page 33

  • MCP3204/3208

    NOTES:

    DS21298E-page 34 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    APPENDIX A: REVISION HISTORY

    Revision E (September 2008)The following is the list of modifications:

    1. Updated package outline drawings inSection 7.0 “Packaging Information”.

    Revision D (January 2007)The following is the list of modifications:

    1. Undocumented changes

    Revision C (May 2002)The following is the list of modifications:

    1. Undocumented changes

    Revision B (August 1999)The following is the list of modifications:

    1. Undocumented changes

    Revision A (November 1998)• Initial release of this document.

    © 2008 Microchip Technology Inc. DS21298E-page 35

  • MCP3204/3208

    NOTES:

    DS21298E-page 36 © 2008 Microchip Technology Inc.

  • MCP3204/3208

    PRODUCT IDENTIFICATION SYSTEMTo order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

    PART NO. –X X /XX

    PackageGradeDevice

    Device MCP3204: 4-Channel 12-Bit Serial A/D ConverterMCP3204T: 4-Channel 12-Bit Serial A/D Converter

    (Tape and Reel)MCP3208: 8-Channel 12-Bit Serial A/D ConverterMCP3208T: 8-Channel 12-Bit Serial A/D Converter

    (Tape and Reel)

    Grade: B = ±1 LSB INLC = ±2 LSB INL

    Temperature Range I = -40°C to +85°C (Industrial)

    Package P = Plastic DIP (300 mil Body), 14-lead, 16-leadSL = Plastic SOIC (150 mil Body), 14-lead, 16-leadST = Plastic TSSOP (4.4mm), 14-lead

    Examples:a) MCP3204-BI/P: ±1 LSB INL,

    Industrial Temperature, PDIP package.

    b) MCP3204-BI/SL: ±1 LSB INL,Industrial Temperature, SOIC package.

    c) MCP3204-CI/ST: ±2 LSB INL,Industrial Temperature, TSSOP package.

    a) MCP3208-BI/P: ±1 LSB INL,Industrial Temperature, PDIP package.

    b) MCP3208-BI/SL: ±1 LSB INL,Industrial Temperature, SOIC package.

    c) MCP3208-CI/ST: ±2 LSB INL,Industrial Temperature,TSSOP package.

    TemperatureRange

    © 2008 Microchip Technology Inc. DS21298E-page 37

  • MCP3204/3208

    NOTES:

    DS21298E-page 38 © 2008 Microchip Technology Inc.

  • Note the following details of the code protection feature on Microchip devices:• Microchip products meet the specification contained in their particular Microchip Data Sheet.

    • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

    • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

    • Microchip is willing to work with the customer who is concerned about the integrity of their code.

    • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

    Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of ourproducts. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such actsallow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

    Information contained in this publication regarding deviceapplications and the like is provided only for your convenienceand may be superseded by updates. It is your responsibility toensure that your application meets with your specifications.MICROCHIP MAKES NO REPRESENTATIONS ORWARRANTIES OF ANY KIND WHETHER EXPRESS ORIMPLIED, WRITTEN OR ORAL, STATUTORY OROTHERWISE, RELATED TO THE INFORMATION,INCLUDING BUT NOT LIMITED TO ITS CONDITION,QUALITY, PERFORMANCE, MERCHANTABILITY ORFITNESS FOR PURPOSE. Microchip disclaims all liabilityarising from this information and its use. Use of Microchipdevices in life support and/or safety applications is entirely atthe buyer’s risk, and the buyer agrees to defend, indemnify andhold harmless Microchip from any and all damages, claims,suits, or expenses resulting from such use. No licenses areconveyed, implicitly or otherwise, under any Microchipintellectual property rights.

    © 2008 Microchip Technology Inc.

    Trademarks

    The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

    FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

    Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

    SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

    All other trademarks mentioned herein are property of their respective companies.

    © 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

    Printed on recycled paper.

    DS21298E-page 39

    Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

  • DS21298E-page 40 © 2008 Microchip Technology Inc.

    AMERICASCorporate Office2355 West Chandler Blvd.Chandler, AZ 85224-6199Tel: 480-792-7200 Fax: 480-792-7277Technical Support: http://support.microchip.comWeb Address: www.microchip.comAtlantaDuluth, GA Tel: 678-957-9614 Fax: 678-957-1455BostonWestborough, MA Tel: 774-760-0087 Fax: 774-760-0088ChicagoItasca, IL Tel: 630-285-0071 Fax: 630-285-0075DallasAddison, TX Tel: 972-818-7423 Fax: 972-818-2924DetroitFarmington Hills, MI Tel: 248-538-2250Fax: 248-538-2260KokomoKokomo, IN Tel: 765-864-8360Fax: 765-864-8387Los AngelesMission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608Santa ClaraSanta Clara, CA Tel: 408-961-6444Fax: 408-961-6445TorontoMississauga, Ontario, CanadaTel: 905-673-0699 Fax: 905-673-6509

    ASIA/PACIFICAsia Pacific OfficeSuites 3707-14, 37th FloorTower 6, The GatewayHarbour City, KowloonHong KongTel: 852-2401-1200Fax: 852-2401-3431Australia - SydneyTel: 61-2-9868-6733Fax: 61-2-9868-6755China - BeijingTel: 86-10-8528-2100 Fax: 86-10-8528-2104China - ChengduTel: 86-28-8665-5511Fax: 86-28-8665-7889China - Hong Kong SARTel: 852-2401-1200 Fax: 852-2401-3431China - NanjingTel: 86-25-8473-2460Fax: 86-25-8473-2470China - QingdaoTel: 86-532-8502-7355Fax: 86-532-8502-7205China - ShanghaiTel: 86-21-5407-5533 Fax: 86-21-5407-5066China - ShenyangTel: 86-24-2334-2829Fax: 86-24-2334-2393China - ShenzhenTel: 86-755-8203-2660 Fax: 86-755-8203-1760China - WuhanTel: 86-27-5980-5300Fax: 86-27-5980-5118China - XiamenTel: 86-592-2388138 Fax: 86-592-2388130China - XianTel: 86-29-8833-7252Fax: 86-29-8833-7256China - ZhuhaiTel: 86-756-3210040 Fax: 86-756-3210049

    ASIA/PACIFICIndia - BangaloreTel: 91-80-4182-8400 Fax: 91-80-4182-8422India - New DelhiTel: 91-11-4160-8631Fax: 91-11-4160-8632India - PuneTel: 91-20-2566-1512Fax: 91-20-2566-1513Japan - YokohamaTel: 81-45-471- 6166 Fax: 81-45-471-6122Korea - DaeguTel: 82-53-744-4301Fax: 82-53-744-4302Korea - SeoulTel: 82-2-554-7200Fax: 82-2-558-5932 or 82-2-558-5934Malaysia - Kuala LumpurTel: 60-3-6201-9857Fax: 60-3-6201-9859Malaysia - PenangTel: 60-4-227-8870Fax: 60-4-227-4068Philippines - ManilaTel: 63-2-634-9065Fax: 63-2-634-9069SingaporeTel: 65-6334-8870Fax: 65-6334-8850Taiwan - Hsin ChuTel: 886-3-572-9526Fax: 886-3-572-6459Taiwan - KaohsiungTel: 886-7-536-4818Fax: 886-7-536-4803Taiwan - TaipeiTel: 886-2-2500-6610 Fax: 886-2-2508-0102Thailand - BangkokTel: 66-2-694-1351Fax: 66-2-694-1350

    EUROPEAustria - WelsTel: 43-7242-2244-39Fax: 43-7242-2244-393Denmark - CopenhagenTel: 45-4450-2828 Fax: 45-4485-2829France - ParisTel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79Germany - MunichTel: 49-89-627-144-0 Fax: 49-89-627-144-44Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781Netherlands - DrunenTel: 31-416-690399 Fax: 31-416-690340Spain - MadridTel: 34-91-708-08-90Fax: 34-91-708-08-91UK - WokinghamTel: 44-118-921-5869Fax: 44-118-921-5820

    WORLDWIDE SALES AND SERVICE

    01/02/08

    1.0 Electrical CharacteristicsFIGURE 1-1: Serial Interface Timing.FIGURE 1-2: Load Circuit for tR, tF, tDO.FIGURE 1-3: Load circuit for tDIS and tEN.

    2.0 Typical Performance CharacteristicsFIGURE 2-1: Integral Nonlinearity (INL) vs. Sample Rate.FIGURE 2-2: Integral Nonlinearity (INL) vs. VREF.FIGURE 2-3: Integral Nonlinearity (INL) vs. Code (Representative Part).FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample Rate (VDD = 2.7V).FIGURE 2-5: Integral Nonlinearity (INL) vs. VREF (VDD = 2.7V).FIGURE 2-6: Integral Nonlinearity (INL) vs. Code (Representative Part, VDD = 2.7V).FIGURE 2-7: Integral Nonlinearity (INL) vs. Temperature.FIGURE 2-8: Differential Nonlinearity (DNL) vs. Sample Rate.FIGURE 2-9: Differential Nonlinearity (DNL) vs. VREF.FIGURE 2-10: Integral Nonlinearity (INL) vs. Temperature (VDD = 2.7V).FIGURE 2-11: Differential Nonlinearity (DNL) vs. Sample Rate (VDD = 2.7V).FIGURE 2-12: Differential Nonlinearity (DNL) vs. VREF (VDD = 2.7V).FIGURE 2-13: Differential Nonlinearity (DNL) vs. Code (Representative Part).FIGURE 2-14: Differential Nonlinearity (DNL) vs. Temperature.FIGURE 2-15: Gain Error vs. VREF.FIGURE 2-16: Differential Nonlinearity (DNL) vs. Code (Representative Part, VDD = 2.7V).FIGURE 2-17: Differential Nonlinearity (DNL) vs. Temperature (VDD = 2.7V).FIGURE 2-18: Offset Error vs. VREF.FIGURE 2-19: Gain Error vs. Temperature.FIGURE 2-20: Signal-to-Noise (SNR) vs. Input Frequency.FIGURE 2-21: Total Harmonic Distortion (THD) vs. Input Frequency.FIGURE 2-22: Offset Error vs. Temperature.FIGURE 2-23: Signal-to-Noise and Distortion (SINAD) vs. Input Frequency.FIGURE 2-24: Signal-to-Noise and Distortion (SINAD) vs. Input Signal Level.FIGURE 2-25: Effective Number of Bits (ENOB) vs. VREF.FIGURE 2-26: Spurious Free Dynamic Range (SFDR) vs. Input Frequency.FIGURE 2-27: Frequency Spectrum of 10 kHz input (Representative Part).FIGURE 2-28: Effective Number of Bits (ENOB) vs. Input Frequency.FIGURE 2-29: Power Supply Rejection (PSR) vs. Ripple Frequency.FIGURE 2-30: Frequency Spectrum of 1 kHz input (Representative Part, VDD = 2.7V).FIGURE 2-31: IDD vs. VDD.FIGURE 2-32: IDD vs. Clock Frequency.FIGURE 2-33: IDD vs. Temperature.FIGURE 2-34: IREF vs. VDD.FIGURE 2-35: IREF vs. Clock Frequency.FIGURE 2-36: IREF vs. Temperature.FIGURE 2-37: IDDS vs. VDD.FIGURE 2-38: IDDS vs. Temperature.FIGURE 2-39: Analog Input Leakage Current vs. Temperature.

    3.0 PIN DescriptionsTABLE 3-1: Pin fUNCTION TABLE3.1 Digital Ground (DGND)3.2 Analog Ground (AGND)3.3 Analog Inputs (CH0 - CH7)3.4 Serial Clock (CLK)3.5 Serial Data Input (Din)3.6 Serial Data Output (Dout)3.7 Chip Select/Shutdown (CS/SHDN)

    4.0 Device Operation4.1 Analog Inputs4.2 Reference InputFIGURE 4-1: Analog Input Model.FIGURE 4-2: Maximum Clock Frequency vs. Input resistance (RS) to maintain less than a 0.1 LSB deviation in INL from nominal conditions.

    5.0 Serial communicationsTABLE 5-1: Configuration Bits for the MCP3204TABLE 5-2: Configuration Bits for the MCP3208FIGURE 5-1: Communication with the MCP3204 or MCP3208.FIGURE 5-2: Communication with MCP3204 or MCP3208 in LSB First Format.

    6.0 Applications Information6.1 Using the MCP3204/3208 with Microcontroller (MCU) SPI PortsFIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).FIGURE 6-2: SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).

    6.2 Maintaining Minimum Clock Speed6.3 Buffering/Filtering the Analog InputsFIGURE 6-3: The MCP601 Operational Amplifier is used to implement a second order anti-aliasing filter for the signal being converted by the MCP3204.

    6.4 Layout ConsiderationsFIGURE 6-4: Vdd traces arranged in a ‘Star’ configuration in order to reduce errors caused by current return paths.

    6.5 Utilizing the Digital and Analog Ground PinsFIGURE 6-5: Separation of Analog and Digital Ground Pins.

    7.0 Packaging Information7.1 Package Marking Information