2etang02

1
7/26/2019 2etang02 http://slidepdf.com/reader/full/2etang02 1/1 53-rd Mathematical Olympiad in Poland Second Round, February 22–23, 2002 First Day 1.  Prove that all functions  f  : R R satisfying  x  ∈ R  f (x) = f (2x) = f (1 x) are periodic. 2.  In a convex quadrangle  ABCD  the following equalities < ) ADB  = 2 < ) ACB  and  < ) BDC  = 2 < ) BAC hold. Prove that  AD =  CD. 3.  A positive integer  n  is given. In an association consisting of  n  members work 6 commissions. Each commission contains at least  n/4 persons. Prove that there exist two commissions containing at least  n/30 persons in common. Second Day 4.  Find all prime numbers  p  ≤ q  ≤ r  such that all the numbers  pq  + r, pq  + r 2 , qr  + p, qr + p 2 , rp  + q , rp + q 2 are prime. 5.  Triangle ABC  with  < ) BAC  = 90 is the base of the pyramid ABCD. Moreover it holds AD = BD  and  AB  = CD. Prove that  < ) ACD  ≥ 30 . 6.  Find all positive integers n such that for all real numbers  x 1 ,x 2  ...x n , y 1 ,y 2  ...y n the following inequality x 1 x 2  ...x n  + y 1 y 2  ...y n  ≤  x 2 1  + y 2 1  ·  x 2 2  + y 2 1  · ... ·  x 2 n  + y 2 n holds.

Upload: jose-mauricio-freire

Post on 13-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2etang02

7/26/2019 2etang02

http://slidepdf.com/reader/full/2etang02 1/1

53-rd Mathematical Olympiad in Poland

Second Round, February 22–23, 2002

First Day

1.  Prove that all functions  f   : R→ R  satisfying

∀ x  ∈ R   f (x) = f (2x) = f (1 − x)

are periodic.

2.  In a convex quadrangle  ABCD  the following equalities

<) ADB  = 2<) ACB   and   <) BDC  = 2<) BAC 

hold. Prove that  AD =  C D.

3.  A positive integer  n is given. In an association consisting of  n members work6 commissions. Each commission contains at least  n/4 persons. Prove thatthere exist two commissions containing at least  n/30 persons in common.

Second Day

4.  Find all prime numbers  p  ≤ q  ≤ r  such that all the numbers

 pq  + r , pq   + r2 , qr  + p , qr + p2 , rp + q , rp + q 2

are prime.

5.   Triangle ABC  with <) BAC  = 90◦ is the base of the pyramid ABCD. Moreoverit holds

AD = BD   and   AB = C D .

Prove that  <) ACD  ≥ 30◦.

6.  Find all positive integers n such that for all real numbers x1, x2 . . . xn, y1, y2 . . . yn

the following inequalityx1x2 . . . xn + y1y2 . . . yn  ≤

 x21 + y2

1  · 

x22 + y2

1  · . . . · 

x2n

 + y2n

holds.