2_tl

Upload: josue-lewandowski

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 2_TL

    1/66

    2010 California Amendment to the2010 California Amendment to theAASHTO LAASHTO LRFDRFD Bridge DesignBridge DesignSpecifications, Forth EditionSpecifications, Forth Edition

    LRFD for theLRFD for the Design of Retaining WallsDesign of Retaining Walls

    .

  • 8/13/2019 2_TL

    2/66

  • 8/13/2019 2_TL

    3/66

  • 8/13/2019 2_TL

    4/66

  • 8/13/2019 2_TL

    5/66

    ReferencesReferences AASHTO LRFD Bridge Design Specification

    (4th Edition)

    CA Amendments to AASHTO LRFD BridgeDesign Spec (Sep 2010) Caltrans Memo To Designers 1-35:

    Caltrans Memo To Designers 3-1: DeepFoundations

    Caltrans Memo To Designers 4-1: SpreadFootings

    Caltrans Memo To Designers 5-20:Foundation Report/Geotechnical Design

    Report Checklist for Earth Retaining Systems

  • 8/13/2019 2_TL

    6/66

    ReferencesReferences

    TRB Webinar February 17, 2010: Load andResistance Factor Design Analysis for Seismic

    Design of Slopes and Retaining Walls NCHRP Report 611 (Volumes 1 and 2): Seismic

    Anal sis and Desi n of Retainin Walls, Slo es

    & Embankments, and Buried Structures NHI Course 130094 (New!): LRFD Seismic

    Analysis and Design of Transportation

    Structures, Features, and Foundations Caltrans Standard Plans, 2006 Edition Caltrans Standard Plans, 2010 Edition

  • 8/13/2019 2_TL

    7/66

    Current Design in CaltransCurrent Design in Caltrans LRFD for bridge supports

    LRFD for Abutments, Earth retentionsystems and Buried structures effectiveOctober 4, 2010.

    For more information, please refer towebsite of Office of Special FundedProjects, LRFD Information

    http://www.dot.ca.gov/hq/esc/osfp/lrfd-information/lrfd-information.htm

  • 8/13/2019 2_TL

    8/66

    200 2010 1 4' 30', . 31 1 4' 30', . 31

    1 32' 3', . 32 1 32' 3', . 32

    1, . 33 1, . 33

    2, . 34

    3, . 3

    4, . 3

    , . 3 , . 34

    . 1, . 3 . 1, . 3

    . 2, . 3 . 2, . 3

    '0" , . 311 . 1 '0" , .3

    . 2 '0" , .

    3

  • 8/13/2019 2_TL

    9/66

    Retaining Wall Type 1 - H = 4' through 30'

    2006 Standard Plan

    2010 Standard Plan

  • 8/13/2019 2_TL

    10/66

    Retaining Wall Type 1A

    2006 Standard Plan

    2010 Standard Plan

  • 8/13/2019 2_TL

    11/66

    Retaining Wall Type 5

    2006 Standard Plan

    2010 Standard Plan

  • 8/13/2019 2_TL

    12/66

    Retaining Wall Type 6A - 6'-0" Maximum

    2006 Standard Plan

    2010 Standard Plan

  • 8/13/2019 2_TL

    13/66

    Retaining Wall Type 6B - 6'-0" Maximum

    2006 Standard Plan

    2010 Standard Plan

  • 8/13/2019 2_TL

    14/66

    TRB Webinar on February 17, 2010

  • 8/13/2019 2_TL

    15/66

  • 8/13/2019 2_TL

    16/66

    120 ,

    Difficulties with retaining wall seismic design

    M-O method blows up with high back slopes, high

    PGAs, not appropriate for passive

    Soldier pile, tieback, soil nail, and MSE walls

    Lack of guidance for slope stability

    Pseudo-static versus deformation approach Appropriate seismic coefficient

    Ground motion amplification

    Liquefaction effects

  • 8/13/2019 2_TL

    17/66

  • 8/13/2019 2_TL

    18/66

  • 8/13/2019 2_TL

    19/66

    What is LRFD?What is LRFD?Load and Resistance Factor Design

    ResistanceFactor

    Nominal

    Load factor

    Load

    es s ance

    Load Modifier

  • 8/13/2019 2_TL

    20/66

    / . ,

  • 8/13/2019 2_TL

    21/66

  • 8/13/2019 2_TL

    22/66

    ,

  • 8/13/2019 2_TL

    23/66

    ,

  • 8/13/2019 2_TL

    24/66

    ,

  • 8/13/2019 2_TL

    25/66

    ,

  • 8/13/2019 2_TL

    26/66

    Limit states for LRFDLimit states for LRFD Service Limit State:

    Load combinations (LCs) to ensurestructure performance for service life

    Strength Limit State:

    distress and damage Extreme Event Limit State:

    LCs to ensure structural survival duringextreme events (EQ, VC)

    Fatigue and Fracture Limit State:Not an issue in foundation design

  • 8/13/2019 2_TL

    27/66

    How LRFD applied to Foundation DesignHow LRFD applied to Foundation Design Service Limit State (Permanent & total

    load):pile settlement, pile top deflection (=1.0)

    Determine pile length w/ load from SLS (=0.7)=0.5 for CIDH tip resistance

    =1.0 for uplift group (only for block analysis) in cohesionless material

    Extreme Event Limit State (Comp &Tension):Determine pile length w/ load from EELS (=1.0)

  • 8/13/2019 2_TL

    28/66

    Information from Structure DesignerInformation from Structure Designer Foundation type (CIDH, Concrete pile, Steel pile)

    Scour Data

    Finished Grade Elevation

    Cut-off Elevation

    Pile Cap size

    Permissible Settlement under Service Load

    Number of Pile per Support

  • 8/13/2019 2_TL

    29/66

    At the early stage of design (PFR)

    Preliminary Foundation Design Data Sheet

    SupportFoundation Type(s)

    ConsideredEstimate of Maximum Factored

    Compression Loads (kips)

    Bent 2Class 200 Pile Group

    60 inch CIDH Pile Shaft

    280 per pile

    1850 per column

    Bent 330 inch CIDH Pile Group

    60 inch CIDH Pile Shaft1950 per column

    Abut 4 24 inch CIDH Pile Group 170 per pile

  • 8/13/2019 2_TL

    30/66

    At the foundation design stage (FR)

    Support

    No.

    Design

    Metho

    d

    Pile Type

    FinishGrade

    Elevatio

    n (ft)

    Cut-offElevatio

    n

    (ft)

    Pile Cap Size (ft)

    Permissible

    Movement underService Load (in)Number

    of Piles

    per

    Support

    B L DV DH

    Abut 1 LRFD 1 0.25

    Bent 2 LRFD 1 0.25

    Abut 3 LRFD 1 0.25

  • 8/13/2019 2_TL

    31/66

    Support No.Total Vertical Load per Support (kip)

    Lateral Load at Abutments (kip)

    Total Load Permanent Load**

    Abut 1

    Bent 2

    Abut 3

    Support

    No.

    Strength Limit State (Controlling Group)Extreme Event Limit State

    (Controlling Group)

    Compression Tension Compression Tension

    Per

    Support

    Max.

    Per Pile

    Per

    Support

    Max.

    Per Pile

    Per

    Support

    Max.

    Per Pile

    Per

    Support

    Max.

    Per Pile

    Abut 1

    Bent 2

    Abut 3

  • 8/13/2019 2_TL

    32/66

    Support No.Degradation Scour

    (ft)

    Base Flood Scour (ft)Total Scour

    (ft)

    Contraction Local

    Abut 1

    Bent 2

    Abut 3

  • 8/13/2019 2_TL

    33/66

    Foundation Recommendation for Bents(MTD 3-1 Attachment 1)

  • 8/13/2019 2_TL

    34/66

    Bent Pile Group

    1. Calculate Required Nominal Resistance for

    compression per pile (=0.7).

    2. Calculate tip elevation for Required Nominal

    Resistance for single pile.

    3. Calculate Required Nominal Resistance for totalload per Support (=0.7=0.7=0.7=0.7).

  • 8/13/2019 2_TL

    35/66

    4. Calculate group nominal resistance using the tip

    elevation calculated for total load per pile (Group

    efficiency factor).

    5. If the group nominal resistance is greater than the

    required nominal resistance per support, the tip

    elevation from single pile is Design Tip Elevation.

    6. If the group nominal resistance is smaller than the

    required nominal resistance per support, increase pilespacing or length of piles.

  • 8/13/2019 2_TL

    36/66

    Pile Data Table for Design Example

    390420

  • 8/13/2019 2_TL

    37/66

    Group Pile in LRFD Spec

    1. Minimum pile spacing

    - For driven pile, 36 inch or 2.0 pile diameters (CA

    Amendment 10.7.1.2)

    - For CIDH pile, 2.5 pile diameters (CA Amendments

    10.8.1.2): sequence of CIDH pile installation required

    in the contract documents (less than 3.0 pile dia).

  • 8/13/2019 2_TL

    38/66

    Group Pile in LRFD Spec

    2. CIDH and Driven pile group capacity in cohesive soil

    - For compression, lesser of 1) NominalaxialNominalaxialNominalaxialNominalaxial

    resistanceofeachpile2)Nominalaxialresistanceofresistanceofeachpile2)Nominalaxialresistanceofresistanceofeachpile2)Nominalaxialresistanceofresistanceofeachpile2)Nominalaxialresistanceof

    - For uplift, lesser of 1) NominalupliftresistanceofNominalupliftresistanceofNominalupliftresistanceofNominalupliftresistanceof

    eachpile2)Nominalupliftresistanceofpilegroupeachpile2)Nominalupliftresistanceofpilegroupeachpile2)Nominalupliftresistanceofpilegroupeachpile2)Nominalupliftresistanceofpilegroup

    consideredasablockconsideredasablockconsideredasablockconsideredasablock

  • 8/13/2019 2_TL

    39/66

    Group Pile in LRFD Spec

    3. CIDH pile and Driven pile group in cohesionless soil

    - For compression, 1) group efficiency factor for CIDH

    pile, 2) Nominal axial resistance of each pile for

    - For uplift, lesser of 1) NominalupliftresistanceofNominalupliftresistanceofNominalupliftresistanceofNominalupliftresistanceof

    eachpile2)Nominalupliftresistanceofpilegroupeachpile2)Nominalupliftresistanceofpilegroupeachpile2)Nominalupliftresistanceofpilegroupeachpile2)Nominalupliftresistanceofpilegroup

    consideredasablock(resistancefactor=1.0evenforconsideredasablock(resistancefactor=1.0evenforconsideredasablock(resistancefactor=1.0evenforconsideredasablock(resistancefactor=1.0evenfor

    strengthlimitstate)strengthlimitstate)strengthlimitstate)strengthlimitstate)

  • 8/13/2019 2_TL

    40/66

  • 8/13/2019 2_TL

    41/66

    Prescriptive Approach

    Explicit (quantified): Sustain damage without

    loss of life or collapse in a large, rare

    earthquake

    pro a ty o occurrence n yr(1000 yr Rp)

    Implicit (not quantified): Withstand smaller,more frequent seismic events

    Without significant damage or

    With repairable damage

  • 8/13/2019 2_TL

    42/66

    Alternative approaches (Owners discretion)

    More rigorous performance standard

    e.g., 3% probability of occurrence in 75 yr

    Multi-level (performance-based) design

    stan ar

    Upper level event for No Collapse

    Lower level event for No Damage

    Often applied to facilities of high importance Critical bridges

    Lifelines routes

  • 8/13/2019 2_TL

    43/66

  • 8/13/2019 2_TL

    44/66

    ,

  • 8/13/2019 2_TL

    45/66

    ,

  • 8/13/2019 2_TL

    46/66

  • 8/13/2019 2_TL

    47/66

    ,

  • 8/13/2019 2_TL

    48/66

    , ,

  • 8/13/2019 2_TL

    49/66

    , ,

  • 8/13/2019 2_TL

    50/66

    ,

    Earth pressure determination

    External, internal, and global stability

    Guidance on AASHTO walls

  • 8/13/2019 2_TL

    51/66

    Conventional Gravity and Semi-Gravity Walls

    Mechanically Stabilized Earth (MSE) Walls

    Metallic Strips

    Po ymer c Re n orcement

    Non-gravity Cantilever / Anchored Walls

    Discrete Elements (drilled shafts) with lagging

    Continuous Wall Elements (e.g., sheetpiles or tangent

    piles)

    Soil Nailed Walls

  • 8/13/2019 2_TL

    52/66

  • 8/13/2019 2_TL

    53/66

  • 8/13/2019 2_TL

    54/66

    ,

  • 8/13/2019 2_TL

    55/66

    ,

  • 8/13/2019 2_TL

    56/66

    ,

  • 8/13/2019 2_TL

    57/66

    ,

  • 8/13/2019 2_TL

    58/66

    ,

  • 8/13/2019 2_TL

    59/66

    ,

  • 8/13/2019 2_TL

    60/66

    ,

    Factor of safety (C/D) approach

    sp acemen - ase approac

    Liquefaction issues

    Mitigation

  • 8/13/2019 2_TL

    61/66

    ,

  • 8/13/2019 2_TL

    62/66

    ,

  • 8/13/2019 2_TL

    63/66

    ,

  • 8/13/2019 2_TL

    64/66

    ,

  • 8/13/2019 2_TL

    65/66

  • 8/13/2019 2_TL

    66/66

    Thank you