)&3...&3 ,qwhuqdwlrqdo &rqihuhqfh rq )urqwlhuv ri 6wdwlvwlfdo 3k\vlfv 'dwh -xqh...

73

Upload: others

Post on 17-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 2: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 3: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Presentation time

Presentation time

Page 4: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 5: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

7th June (Friday)

10:30-10:40 Opening -

10:40-11:20 Cristian Enachescu Elastic models, lattice dynamics and finitesize effects in molecular spin crossover sys-tems

11:20-12:00 Shin-ichi Ohkoshi Functional metal complexes and metal oxidenanomaterials

12:00-12:40 Takashi Shimada A mechanism of determining the robustnessof evolving open systems

12:40-14:00 Lunch -

14:00-14:40 Werner Krauth Irreversible Markov chains and their applica-tions in statistical physics

14:40-15:20 Koji Hukushima Phase transitions in frustrated spin models

15:20-15:40 Break

15:40-16:20 Tota Nakamura Machine learning as an improved estimatorfor magnetization curve and spin gap

16:20-17:00 Hidemaro Suwa Self-consistent dynamics of Hubbard Model

17:00-19:00 Poster -

Page 6: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

8th June (Saturday)

9:30-10:10 Irinel Chiorescu Sensitive detection and improved control ofquantum spins

10:10-10:50 Masaki Oshikawa

10:50-11:30 Naoto Nagaosa Chiral dynamics in quantum materials

11:30-12:10 Takashi Mori Some rigorous results in nonequilibrium dy-namics of isolated quantum systems

12:10-13:20 Lunch -

13:20-14:00 Hans De Raedt Relaxation, thermalization, and Markoviandynamics of one and two spins coupled to aspin bath

14:00-14:40 Chikako Uchiyama Master equation approach to line shape –Role of initial correlation in linear response–

14:40-15:20 Toru Sakai Numerical Exact Diagonalization Study onFrustrated Quantum Spin Systems

15:20-15:40 Break

15:40-16:20 Hisao Hayakawa Berry’s phase and fluctuation theorem innon-equilibrium driven systems

16:20-17:00 Seiji Miyashita Dynamics of collapse of metastable states

17:00-17:30 Break -

17:30-18:00 Reception -

18:00-20:00 Party -

Page 7: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Poster presentation

7th (Friday) 17:00-19:00

Index Name Title

P-01 Daiki Adachi Anisotropic Tensor Renormalization Group

P-02 Yuri Akiba Effect of Particle Attributes on Desiccation Crack Pat-terns

P-03 Shunsuke Furukawa Fractional quantum Hall states with symmetry-enriched edge modes in multicomponent Bose gases

P-04 Shunsuke C. Furuya Polarization amplitude near quantum critical points

P-05 Taiki Haga Interscale entanglement versus Kolmogorov-Sinai en-tropy in quantum chaotic systems

P-06 Andrew K. Harter PT symmetry breaking in Floquet systems

P-07 Yuki Hino Extended fluctuation theorem for geometrical pumping

P-08 Fumihiro Ishikawa Localized Mode and Nonergodicity of a Harmonic Os-cillator Chain with the Generalized Langevin EquationAnalysis

P-09 Shin-ichi Ito Uncertainty quantification based on 4DVar data assim-ilation for massive simulation models

P-10 Tadashi Kadowaki Experimental and Theoretical Study of Thermody-namic Effects in a Quantum Annealer

P-11 Eriko Kaminishi Quantum dark soliton in one-dimensional Bose gas

P-12 Ryui Kaneko Tensor network study of the Kitaev spin liquid

P-13 Tadamune Kaneko Evolution of mutational robustness for gene regulatorynetworks

P-14 Naoyuki Karasawa Positive Definite Relaxation Mode Analysis: Applica-tion to a Single Protein Trimer

P-15 Shusuke Kasamatsu Direct coupling of ab-initio calculations and replica ex-change Monte Carlo method for thermodynamic sam-pling of configurational disorder in solids

Page 8: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Index Name Title

P-16 Astunari Katsuki A statistical study of the dune size distribution usinga lattice model

P-17 Kenji Kimura The behavior of liftings in the event chain Monte Carlofor classical spin systems

P-18 Koki Kitai Accelerating metamaterials design by quantum anneal-ing

P-19 Kazue Kudo Constrained quantum annealing of graph coloring

P-20 Akiyoshi KURODA Performance Tuning of Deep Learning FrameworkChainer on the K computer.

P-21 Nobuya Maeshima Dynamical Charge Structure Factor of the 1D IonicHubbard Model

P-22 Munehisa Matsumoto Quantum Critical Point in 4f-3d intermetallics

P-23 Hans-Georg Matuttis The Minus Sign Problem reinvestigated with alterna-tive Hubbard-Stratonovich Transformations

P-24 Yoshihiro Michishita The property of Open Quantum System in strongly-correlated electron system

P-25 Kota Mitsumoto Spin-glass transition without quenched randomness ina dynamically distorted pyrochlore magnet

P-26 Kaoru Mizuta Emergence of robust symmetries in Floquet prethermalphases under a resonant drive

P-27 Satoshi Morita Calculation of higher-order moments by higher-ordertensor renormalization group

P-28 Yuichi Motoyama DSQSS–PIMC solver for quantum lattice model

P-29 Yohsuke Murase Successful strategies in the Tragedy of the Commons

P-30 Masaaki Nakamura Exact Plaquette-Ordered Ground States with ExactCorner States of the Generalized Hubbard Model inCorner Sharing Lattices

P-31 Tomoaki Nogawa Dimensional Reduction of Dynamical Systems by Ma-chine Learning

Page 9: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Index Name Title

P-32 Yuji Nozawa Bound states’ contributions to transport properties inthe one-dimensional Hubbard model: The hydrody-namic approach

P-33 Takahiro Ohgoe Ab initio studies on superconductivity and inhomo-geneity in Hg-based cuprate superconductor

P-34 Takahiro Ohgoe Resummation of diagrammatic series with zero conver-gence radius for the unitary Fermi gas

P-35 Tsuyoshi Okubo Study on Z2-vortex ordering by massively parallelMonte Carlo simulation

P-36 Kouichi Okunishi Quantum Monte Carlo simulation for the cornerHamiltonian and the ground-state entanglement of theS=1/2 XXZ chain

P-37 Hiroaki Onishi Magnon-pair excitation and transport in spin nematics

P-38 Takuro Shimaya Critical coarsening in a model of a bacterial mixtureinside a channel

P-39 Taro P. Shimizu Measuring instability of large chaotic systems by timeseries analysis

P-40 Hiroshi Shinaoka Dynamical susceptibility in DMFT: a sparse QMCsampling approach

P-41 Tatsuhiko Shirai Thermalization in open many-body systems based oneigenstate thermalization hypothesis

P-42 Kazumasa A. Takeuchi Revisiting Model-A dynamic scaling laws in twistednematics: phase ordering and critical percolation

P-43 Keiichi Tamai Empty interval distribution of absorbing phase transi-tions: Experimentally feasible way to probe universalfeatures

P-44 Yusuke Tomita Wavelet analysis of two-dimensional Potts models

P-45 Naoki Yoshioka Jump distance distribution of epicenters in thermallyinduced cracking of fiber bundles

Page 10: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Oral Presentations on June 7th

Page 11: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 12: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Shin-ichi Ohkoshi Department of Chemistry, School of Science, The University of Tokyo

Up to date, we have reported various unique magnetic functional materials using cyano-

bridged bimetallic assemblies.[1 4] We have also developed novel metal oxides, -Fe2O3[5–

8] and -Ti3O5[9,10] by chemical nanoscale synthesis. Cyano-Bridged Bimetallic Assemblies: We have developed several octacyano-bridged

bimetallic assemblies showing photomagnetization. Among them, Fe2[Nb(CN)8](4-pyridinealdoxime)8·2H2O is the first example showing photoreversible light-induced spin-crossover phenomenon. Furthermore, we have synthesized a chiral photomagnet, Fe2[Nb(CN)8](4-bromopyridine)8·2H2O. By alternatively irradiating with blue and red lights, spontaneous magnetization was reversibly switched, and 90º switching of the polarization plane of the output SH light was observed. Prussian blue analogs: Recently, we have reported cesium detection by THz light in Cs

cyanide-bridged manganese-iron framework.[11] From first-principles phonon mode calculations and terahertz time-domain spectroscopy measurements, the vibration mode of the Cs ion was found to be at 1.5 THz, significantly apart from other lattice vibrations. Furthermore, using rubidium manganese hexacyanoferrate as demonstration system, we reported a logical strategy to design a phase transition material.[12] Huge coercive field and high-frequency millimeter wave absorption of -Fe2O3: We

obtained pure -Fe2O3 and found that it has a huge coercive field over 20 kOe at room temperature and shows high-frequency millimeter wave absorption at 182 GHz. These properties can be widely tuned by metal-substitution. This material is a strong candidate for next generation high-density magnetic recording media and millimeter wave absorbing material, and in fact, -Fe2O3 is displayed at Science Museum London (UK) in a special exhibition on big data and information security. External stimulation induced metal-semiconductor phase transition in -Ti3O5: A novel

phase of Ti3O5 ( -Ti3O5) was prepared as nanoparticles. Phase transition between -Ti3O5 (metallic conductor) and -Ti3O5 (semiconductor) was repeatedly observed at room temperature by light irradiation. Furthermore, reversible switching is also induced by other external stimuli such as pressure. This material exhibits high performance heat storage properties, which are understood from thermodynamic studies.

[1] S. Ohkoshi, et al., Nature Chemistry, 3, 564 (2011). [2] S. Ohkoshi, et al., Nature Photonics, 8, 65 (2014). [3] S. Ohkoshi, et al., Acc. Chem. Res., 45, 1749 (2012). [4] S. Ohkoshi, et al., Nature Materials, 3, 857 (2004). [5] A. Namai, S. Ohkoshi, et al., Nature Communications, 3, 1035 (2012). [6] S. Ohkoshi, et al., Scientific Reports, 5, 14414 (2015). [7] J. Tu ek, S. Ohkoshi, et al., Scientific Reports, 5, 15091 (2015). [8] S. Ohkoshi, et al., Scientific Reports, 6, 27212 (2016). [9] S. Ohkoshi, et al., Nature Chemistry, 2, 539 (2010). [10] H. Tokoro, S. Ohkoshi, et al., Nature Communications, 6, 7037 (2015). [11] S. Ohkoshi, et al., Scientific Reports, 7, 8088 (2017). [12] H. Tokoro, S. Ohkoshi, et al., Scientific Reports, 8, 63 (2018).

Page 13: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 14: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 15: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 16: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Electronic Engineering, Shibaura Institute of Technology

Page 17: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 18: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Oral Presentations on June 8th

Page 19: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 20: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 21: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 22: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Zernike Institute for Advanced Materials,University of Groningen, Nijenborgh 4,

NL-9747 AG Groningen, The Netherlandswww.compphys.org

Page 23: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

References :

Page 24: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Graduate School of Material Science, University of Hyogo, Hyogo 678-1297, Japan National Institute for Quantum and Radiological Science and Technology (QST)

SPring-8, Hyogo 679-5148, Japan

Page 25: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 26: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Dynamics of collapse of metastable states

Seiji Miyashita

The Physical Society of Japan, 2-31-22, Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan

The time-evolution of in dissipative systems has been an important topic in statistical

physics. Relaxation of the metastable state is one of the main subjects still in progress in the frontier of studies. The most typical model is the magnetization dynamics in the ordered phase driven by a magnetic field, and we have studied several aspects of such dynamics, e.g., the effects of the system size [1], quantum fluctuation [2], long-range interaction [3], and realistic permanent magnets [4]. Not only the thermodynamic first order phase transitions, but also those for steady states in non-equilibrium systems under some driving forces are also interesting problems [5]. Under a cycle of driving force, systems show hysteresis phenomena [6]. We will study such processes from a view point of eigenvalue problem of the time evolution functions [6,7] for the pure quantum process and the dissipative process. There are also first order phase transitions driven by the temperature, e.g., the spin-

crossover (SC) systems, the q-states Potts mode, etc. There, the entropy plays an important role, and two types of processes exist, i.e., the mechanical force driven process and the entropy driven process. We will study dynamical properties of SC systems after a rapid photo-excitation [8]. [1] P. A. Rikvold, H. Tomita, S. Miyashita and S. W. Sides, Phys. Rev. E 49, 5080 (1994).[2] H. De Raedt, S. Miyashita, K. Saito, D. Garcia-Pablos and N. Garcia, PRB 56, 11761- (1997).

S. Miyashita, H. De Raedt and B. Barbara, Phys. Rev. B 79, 104422 (1-11) (2009)T. Hatomura, B. Barbara and S. Miyashita, Phys. Rev. Lett. 116, 037203, (2016).

[3]

[5] T. Shirai, T. Mori and S. Miyashita, Phys. Rev. E 91, 030101(1-6) (2015)[6] T. Shirai, S. Todo, H. de Raedt, and S. Miyashita,

[7] H. Takano, H. Nakanishi and S. Miyashita, Phys. Rev. B 37, 3716-3719 (1988).[8] C. Enachescu, L. Stoleriu, M. Nishino, S. Miyashita, A. Stancu, M. Lorenc, R. Bertoni, H.

Cailleau, and E. Collet, Phys. Rev. B 95, 224107 (1-9) (2017).

Page 27: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Poster Presentations on June 7th, 17:00–19:00

Page 28: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1Department of Physics, The University of Tokyo 2Institute for Solid State Physics, The University of Tokyo

dd

d

Page 29: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1. Graduate School of Life and Environmental Sciences, University of Yamanashi.2. Department of Environmental Sciences, University of Yamanashi.

beforeafter

Phys. Rev. EJ. Phys. Soc. Jpn.

Page 30: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1Department of Physics, Keio University 2Department of Physics, University of Tokyo

3RIKEN Center for Emergent Materials Science (CEMS)

Page 31: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama, Japan 2Department of Physics, Ehime University Bunkyo-cho 2-5, Matsuyama, Ehime, Japan

Page 32: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

The University of Tokyo

Page 33: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 34: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Extended fluctuation theorem for geometricalpumping

Yuki Hino, Hisao Hayakawa

Yukawa Institute for Theoretical Physics, Kyoto University

In mesoscopic systems, there exists a different type of current from the steady one, calledthe geometrical pumping current. This current is realized by periodically modulations ofseveral control parameters. It is remarkable that there exist a net average current even if theaveraged bias is zero. The geometrical pumping is originated from the Berry-like geometricalphase. Ren et al. reported that the steady FT does not exist in the geometrical pumping dueto the emergence of the geometrical phase [1]. Although several attempts have been madeto establish the extended FT for geometrical pumping such as Ref.[2], they have not beencompleted yet.

In this poster, we present our attempt and two obtained results. First, we have derivedthe FT for the distribution Pn(Jn) of the instantaneous current Jn :

|ε| ln Pn(Jn)

Pn(−Jn)= AnJn − |ε|{vn(Jn)− vn(−Jn)}, (1)

where ε is the dimensionless angular velocity of the modulation, An is the thermodynamicaffinity at the discretized modulation phase n and vn(Jn) is the geometrical phase effect atn. Second, we have obtained the FT for the current distribution P (J) of the one cycle of theparameter modulation, which is expressed as:

lnP (J)

P (−J)� a(ε)J − b(ε)J3 + · · · . (2)

References

[1] J. Ren, P. Hanggi and B. Li, Phys. Rev. Lett. 104, 170601 (2010)

[2] K. L. Watanabe and H. Hayakawa, Phys. Rev. E 96, 022118 (2017)

1

Page 35: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

mass :

coupling constant

harmonic chain (bath)

tagged particle 0 20 40 60 80 100t

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a(t)

0.0 0.5 1.0 1.5 2.0 2.5ω

−0.5

0.0

0.5

1.0

1.5

2.0

a(ω)

Page 36: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1 Earthquake Research Institute, The University of Tokyo 2 Graduate School of Information Science and Technology, The University of Tokyo

Page 37: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1DENSO CORPORATION, Nihonbashi, Chuo-ku, Tokyo 103-6015, Japan 2Graduate School of Information Science, Tohoku University, Sendai 980-8579, Japan

Page 38: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 39: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1Institute for Solid State Physics, The University of Tokyo, Japan2Department of Physics, The University of Tokyo, Japan

3Department of Applied Physics, The University of Tokyo, Japan

D

D

Page 40: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Physics, Osaka UniversityACybermedia Center, Osaka University

Page 41: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Naoyuki Karasawa, Ayori MitsutakeA, and Hiroshi Takano

Fac. Sci. Technol., Keio Univ., ASch. Sci. Technol. Meiji Univ.

H. Takano and S. Miyashita proposed a method of identifying slow relaxation modes in a classical many-body system [1]. In this relaxation mode analysis (RMA) method, slow relaxation modes and rates are estimated from time series through variational optimization if the time evolution of the state of a system is described by a Markov process with detailed balance. This method was applied to the analysis of Monte Carlo (MC) data in random spin systems first and MC and molecular dynamics (MD) trajectories in homopolymers and heteropolymers later [2]. The RMA method is related to signal-processing methods for blind source separation

(BSS). The goal of BSS is to recover source signals from observed signals that are linear combinations of the source signals. Recently, these signal-processing methods have been applied to the analysis of MD trajectories in biopolymers. However, in general, time series of positions and velocities of atoms are not linear mixtures of source signals. In the context of the RMA method, it is explained why the signal-processing methods work well for the simulation trajectories of biopolymers. A distinctive difference between the RMA method and the signal-processing methods is

the introduction of an additional parameter, called an evolution time parameter. This parameter enables us to better estimate the relaxation modes and rates, although it increases computational difficulty. Recently, we proposed a simple and effective extension of the RMA method, which is referred to as the positive definite RMA method, to introduce the evolution time parameter robustly [3]. In this method, an eigenvalue problem for the time correlation matrix of physical quantities relevant to slow relaxation in a system is first solved to find the subspace in which the matrix is numerically positive definite. Then, we implement the RMA method in the subspace. We apply the method to the analysis of a 3- s MD trajectory of a heterotrimer of an erythropoietin protein and two of its receptor proteins, and we demonstrate the effectiveness of the method. [1] H. Takano and S. Miyashita, J. Phys. Soc. Jpn. , 3688 (1995).

[2] A. Mitsutake and H. Takano, Biophys. Rev. , 375 (2018). [3] N. Karasawa, A. Mitsutake, and H. Takano, J. Chem. Phys. , 084113 (2019).

Page 42: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1Academic Assembly, Yamagata University 2Institue for Solid State Physics, the University of Tokyo

Page 43: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

CST, Nihon University

Page 44: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 45: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1Graduate School of Frontier Sciences, The University of Tokyo, 2Department of Mechanical Engineering, The University of Tokyo, 3Research and Services Division of

Materials Data and Integrated System, National Institute for Materials Science, 4Green Computing Systems Research Organization, Waseda University, 5JST, PRESTO, 6RIKEN

Center for Advanced Intelligence Project, 7International Center for Materials Nanoarchitectonics, National Institute for Materials Science

QA

FM

RCWA

Repeat unit

QUBOparameters

TrainingData

BestPrediction

Atomistic simulation

Training regression model

Minimizing trained model

Page 46: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Computer Science, Ochanomizu University, Tokyo 112-8610, Japan

Page 47: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

R-CCS, Operations and Computer Technologies Division, Application Tuning Development Unit, FUJITSU LIMITED.

Page 48: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan 2Division of Materials Science, University of Tsukuba, Tsukuba, Japan 3Doctoral Program in Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Japan

U

UUU

k

kN k

sN kN k

N k sN k

N k

N k ksN k

U t tN t

Page 49: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

4f-3d

Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 305-0801, Japan

3d4f

Page 50: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Mechanical Engineering and Intelligent systems, The University of Electro-Communications, Tokyo, Japan

Page 51: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 52: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Spin-glass transition without quenched randomness in a dynamically distortedpyrochlore magnet

K. Mitsumoto, Chisa HottaB and H. YoshinoA

School of Science, Cybermedia CenterA, Osaka Univ., Department of Basic Science, Univ. of TokyoB

A pyrochlore oxide Y2Mo2O7 is known as a representative frustrated magnet which exhibits a

spin-glass transition. A recent experimental study on Y2Mo2O7 suggested that each magnetic ion

Mo4+ is distorted to or away from the center of tetrahedron with Jahn-Teller mechanism and argued

that the displacements satisfy 2-in-2-out structures. [1] The lattice displacements are enough large to

vary the sign of the exchange interaction between Mo4+ ions. Being motivated by this experiment,

we introduce a spin model without quenched randomness which include not only spin variables but

also lattice-displacement variables and performed Monte Carlo simulations.

Model: Classical Heisenberg spins Si = (Six, Siy, Siz) ( |Si | = 1) and lattice displacements σi = +1

(in), −1 (out) on pyrochlore lattice cite i (i = 1, 2, ..., 16L3) follow the Hamiltonian given by

H/J =∑<i j>

[Ji j (σi, σ j )Si · S j + εσiσ j

](1), Ji j (σi, σ j ) = 1 − δ(σi + σ j ), (2)

where < i j > represents all nearest neighbor pairs, ε > 0 and δ > 0 are parameters of elastic energy

scale and the amplituce of the lattice distortions, respectively. The first term of Eq. (1) represents the

exchange interaction determined by Eq. (2). The second term of Eq. (1) represents elastic energy

which is the same form as "spin-ice" Hamiltonian. Note that the exchange interactions of in-in bonds

become ferromagnetic if δ > 0.5.

We observed dynamical and static physical quantities in equilibrium generated by replica exchange

MC simulations. We found a spin-glass behavior in the system for δ = 1.5, ε = 0.6. The relaxation

times of both spins and lattice displacements diverge at the same temperature Tc ≈ 0.07 with power

laws (Fig. 1). It suggests that spin and lattice are frozen simultaneously. On the other hand structure

factors of both variables don’t display any Bragg peaks bellow Tc, which means there is no long range

order. The heat capacity shows a broad peak above Tc. The linear magnetic susceptibility has a cusp

like feature in the vicinity ofTc. Moreover we found that the non-linear magnetic susceptibility exhibits

a negatively diverging feature for at Tc. These results suggest the present model can be regarded as a

spin-glass model without quenched randomness.

Cσ(t)

τσ

T − 0.07T − 0.07

tt

CS(t)

τS

Figure 1. Relaxation time of (a) spins τS and (b) lattice displacements τσ determined by their auto-correlation function

(inset) CS (t) = 1N

∑Ni=1 Si (t) · Si (0), Cσ (t) = 1

N

∑Ni=1 σi (t)σi (0).

[1]P. M.M. Thygesen et al. (2017) Physical Review Letters, 118(6), 067201.

Page 53: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Physics, Kyoto University

Page 54: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Institute for Solid State Physics, University of Tokyo

q

Page 55: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1ISSP, Univ. of Tokyo, 2Hitachi Ltd.

et al

Page 56: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

RIKEN Center for Computational Science, Pukyong National Univ.

Page 57: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Physics, Ehime University Department of Physics, Technical University Dresden, 01069 Dresden, Germany, Institute for Theoretical

Solid State Physics, IFW Dresden, 01171 Dresden, Germany

Page 58: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Faculty of Medicine, Toho University

N

i

n

Page 59: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 60: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Ab initio

Research Institute for Science and Engineering, Waseda University, RIKEN Center for Emergent Matter Science,

Institute for Solid State Physics, The University of Tokyo, Department of Applied Physics, The University of Tokyo,

Toyota Physical and Chemical Research Institute

T

ab initioy

et al

Page 61: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Center for Computational Quantum Physics, Flatiron Institute Research Institute for Science and Engineering, Waseda University

Laboratoire de Physique Statistique, Ecole Normale Superi ure Laboratoire Kastler Brossel, Ecole Normale Superi ure

et alet al

et al

Page 62: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1Department of Physics, The University of Tokyo 2The Institute for Solid State Physics, The University of Tokyo

L L

LTv J

Tv

L

Page 63: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Physics, Niigata University

Page 64: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

J JJ J

Page 65: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1 Department of physics, The University of Tokyo.2 Department of physics, Tokyo Institute of Technology.

et alet al

et al

et al

Page 66: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1 Department of Physics, Tokyo Institute of Technology. 2 Department of Physics, The University of Tokyo.

Page 67: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

1) Department of Physics, Saitama University, 2) Department of Condensed Matter Physics, MU Brno, 3) Institute for Solid State Physics, TU Wien, 4) Research Institute

for Interdisciplinary Science, Okayama University, 5) University of Michigan, 6) Institute for Solid State Physics, University of Tokyo

ab-initio

et al et alet al

et al

Page 68: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 69: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

Department of Physics, The University of Tokyo

Z

Page 70: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

The Institute for Solid State Physics, The University of TokyoTokyo College, The University of Tokyo

Page 71: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW

College of Engineering, Shibaura Institute of Technology

m

〈εm〉

q = 1q = 2q = 3q = 4

(a) (b)

〈εm〉

q = 1q = 2q = 3q = 4

m

m q

Page 72: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW
Page 73: )&3...&3 ,QWHUQDWLRQDO &RQIHUHQFH RQ )URQWLHUV RI 6WDWLVWLFDO 3K\VLFV 'DWH -XQH 9HQXH .RVKLED +DOO +RQJR &DPSXV 7KH 8QLYHUVLW\ RI 7RN\R 6FRSH 6WDWLVWLFDO SK\VLFV LV RQH RI WKH PRVW