3. 3 separation of variables we seek a solution of the form cartesian coordinatescylindrical...

24
3. 3 Separation of Variables We seek a solution of the form ) ( ) ( ) ( ) , , ( z h y g x f z y x V Cartesian coordinates ) ( ) ( ) ( ) , , ( z h g s f z s V Cylindrical coordinates ) ( ) ( ) ( ) , , ( h g r f r V Spherical coordinates ways possible! Usually only for the appropriate sym

Upload: sharyl-stevens

Post on 12-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

3. 3 Separation of Variables

We seek a solution of the form

)()()(),,( zhygxfzyxV Cartesian coordinates

)()()(),,( zhgsfzsV Cylindrical coordinates

)()()(),,( hgrfrV Spherical coordinates

Not always possible! Usually only for the appropriate symmetry.

Page 2: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Example 3.3

0

problem

ldimensiona-Two

2

2

2

2

y

V

x

V

Special boundary conditions (constant potential on planes):

xVivyVyViii

axViixVi

for 0)(),(),0()(

,0),()(,0)0,()(

0

Page 3: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

)()(),( :Ansatz yYxXyxV

22

22

2

2 1 and

1k

dy

Yd

Yk

dx

Xd

X

Special choice of the separation constants to be able to fulfill the boundary conditions.

Boundary conditions (i, ii, iv):

)cossin)((),( kyDkyCBeAeyxV kxkx

a

nkkyCeyxV kx with,sin),(

Page 4: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Boundary condition (iii):

1

0 )sin(),0()(n

n a

ynCyVyV

a

n dya

ynyV

aC

0

0 )sin()(2

Fourier sum

Fourier coefficients

1

)sin(),(n

a

xn

n a

yneCyxV

superposition

Page 5: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Example: constV 0

odd is if

4

even is if 0

0 nn

V

nCn

Page 6: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Contributions of the first terms of the Fourier sum at x=0.

a) n=1, b) n<6, c) n<11, d) n<101

Page 7: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Set of functions is called

n

nn ygyfCygcomplete )(function any for )()( if

a

nn nndyyfyforthogonal0

' 'for 0)()( if

a

n dyyfnormal0

2 1)( if

a

n dyyfygnormalorthofor0

n )()(C sets

normal-ortho is )sin(2

)(a

yn

ayfn

Page 8: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Jean Bapitiste Joseph Fourier 21 March 1768 – 16 May 1830

Page 9: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Example 3.4

Page 10: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Example 3.5

An infinitely long metal pipe is grounded, but one end is maintained at a given potential.

Page 11: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Spherical Coordinates Use for problems with spherical symmetry.

0sin

1)(sin

sin

1)(

12

2

2222

2

V

r

V

rr

Vr

rr

Laplace’s equation:

Boundary conditions on the surface of a sphere, origin, and infinity.

Solution as a product

(((),,( rRrV

Page 12: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Assume azimuthal symmetry

Solution as a product

((),( rRrV

Separation constant )1(21 llCC

Radial equation Rlldr

dRr

dr

d)1()( 2

Solution 1( ll BrArrR

Page 13: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Angular equation

sin)1()(sin lld

d

d

d

Solutions Legendre polynomials )(cos( lP

The second solution can (usually) be excluded because it becomes infinite at

Rodrigues formula 3,2,1,0,)1(!2

1)( 2

lx

dx

d

lxP l

l

ll

Orthogonality

1

1

'

0

'

' if 12

2

' if 0)()(

sin)(cos)(cos

lll

lldxxPxP

dPP

ll

ll

Page 14: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

The first Legendre polynomials

8/)33035()(

2/)35()(

2/)13()(

)(

1)(

244

33

22

1

0

xxxP

xxxP

xxP

xxP

xP

Page 15: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Example 3.6

Page 16: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Example 3.8

Page 17: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Multipole Expansion

Approximate potential at large distance

Dipole:2

0

cos

4

1)(

r

qdV

r

Page 18: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually
Page 19: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Potential of a general charge distribution at large distance

')'(1

4

1)(

0

dV rrr

Warning! The integral dependson the direction of r.

01

0

')'()'(cos)'(1

4

1)(

nn

nn

dPrr

V

rr

Page 20: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

Addition theorem for Legendre polynomials:

lml

lml

ml

ln

ml

l

lm

ml

mll

dYrr

Y

lV

YYl

P

rr

,

,0

*1

0

*

')'()','()'(),(

)12(

1)(

)','(),(12

4)(cos

cos''

rr

rr

Spherical harmonics:

imlm

ml eP

lY )(cos

4

12),(

solutions for 3D separation

Angular distributionat large distance

Page 21: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

The monopole and Dipole Terms

monopoler

QV

omon 4

1)( r

2

ˆ

4

1)(

rV

odip

rpr

dipole

dipole moment

n

iiiqd

1

' ,')'(' rprrp

Page 22: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

A quadrupole has no dipole moment.

physical dipole

drrp qqq ''

“pure” dipole is the limit

constqqd dp,,0

Dipole moments are vectors and add accordingly.

21 ppp

Page 23: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

In general, multipole momentsdepend on the choice of the coordinate system.

Has a dipole moment.

app Q If Q=0 the dipole moment does not depend on the coordinate system.

Page 24: 3. 3 Separation of Variables We seek a solution of the form Cartesian coordinatesCylindrical coordinates Spherical coordinates Not always possible! Usually

The electric field of a dipole along the z-axis.

)ˆsinˆcos2(4

),(3

rEr

pr

odip