3. technical options of phosphorus removal in wwtp_matthias barjenbruch

Upload: vu-le

Post on 23-Feb-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    1/30

    Technical Options of Phosphorus Removal in

    Wastewater Treatment plant (WWTP)

    M. Barjenbruch, E. Exner

    FG Siedlungswasserwirtschaft, TU BerlinGustav-Meyer-Allee 25, D - 13355 Berlin

    Phone: +49 / (0) 30 / 314 72246; Fax: +49 / (0) 30 / 314 72248e-mail: [email protected], [email protected]

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    2/30

    Importance of phosphorus12. frequent element of the crust of earth

    Phosphorus is a chemical element. Symbol Pordinal number 15 and has a specific weight of 31 g/mol

    Greek - lichttragend, given by the shining of the white

    phosphorus in the reaction with oxygen. P was discovered in 1669 by Hennig Brand, a German pharmacist

    and alchemist.

    Phosphorus is essential important for all organism.

    P-compounds are parts of DNA- and RNA-molecules

    The phosphorus containing compounds ADP/ATP are playing and

    important parts in the energy metabolism of all cells.

    A man with 70 kg contains about 700 g phosphorus, from which 600 gis bound in the bones

    Important nutrient for the growth of plants and essential fertilizer

    Main resources come from: Morocco, South Africa, Russia, China and

    USAResource remain only according WHO only about 60-80 years

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    3/30

    Objectives of the P-elimination

    Prevention of the eutrophication of water bodies. P effects in water bodies

    eutrophication already in the lower range of microgram especially in:

    Lakes, dammed or tide influenced water bodies, Northern Sea of Baltic Sea

    Factor of minimum for the growth of plants: N : P = 7:1.

    Classification of lakes:

    Eutrophic; nutrient rich lakes, in depth about 0-30%,

    O2-saturation, only 2 m sight in depth, high production of algae,tot. P~ 45 - 85 g/l

    River according the German Surface water ordinance

    50 g P/l large rivers in the middle mountain; inlets to the Baltic Sea

    50/100 g P/l all other rivers

    Surveillance value of WWTP according wastewater ordinance

    10,000 - < 100,000 PE: 2.0 mg P/l

    > 100,000 PE: 1.0 mg P/l Special regional restrictions!

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    4/30

    Examples of Eutrophication

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    5/30

    Origin and estimation of the specific P-load in municipal

    sewage [in g P / (Ed)]

    1,6

    05)

    0,246)

    0,054)

    1,6

    2,252)

    0,752)

    0,42)

    Metabolism products1)

    Washing powder for textiles

    Household detergents/washing-up liquid

    Other P-sources3)

    1,95,0Sum, related to PE

    6,915,7Average Concentration (mg/l)9)

    1,27)1,28)Industry/trade/settlement aeras (as PE)

    20051975Origin of phosphorus

    Concentration in Germany: 5,6 - 14 mg P/l

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    6/30

    Phosphorus in the sewage

    Main part of the total phosphorus (ca. 68%):

    In an inorganic solved status, mainly orthophosphate and

    possible condensed phosphates

    Smaller part of the total phosphorus:

    organic solved and none solved mode (phosphonate, hardly

    degradable organic P-compounds from textile industry andfrom heat-/power-production)

    Condensed and organic parts of phosphorus will mainly

    tranfered into ortho phosphates Only ortho phosphate can be removed from the water

    by precipitation and following separation!

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    7/30

    Processes of phosphorus elimination

    Phosphorus can not be transferred like as nitrogen into thegaseous status and eliminated to the air.

    Phosphorus compounds must be removed from the wastewater ina stable (solid) aggregated status bounded in separateble particlesvia the sludge path.

    Processes of chemical P-elimination

    Me3+ + PO43-

    Me(PO)4 + Me (OH) metals: Fe3+, Al3+

    Pre-, simultaneous- and final pr, Nachfllung, or combinationprecipitation

    Influence parameters for the efficiency of the precipitation

    Dosage

    -relation factor pH-value

    Ca2+

    Particle separation

    Processes of biological P-elimination (Bio-P)

    Combination of Bio-P and chemical P-elimination

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    8/30

    Processes of the chemical P-elimination

    SF TF/ATPS SS

    PAPre-precipitation

    = 2-3CPe

    2 mg/l

    Combined

    precipitation

    = 2 2,5

    ATPS SS

    PAPA PA PA

    CF < 0,5 mg/l= 0,3 mg/l

    = 1,2 1,5

    Simultaneous

    precipitation

    = 1,2 1,5 1-1,5 mg/l

    z.T. < 1,0ATPS SS

    PAPA PA

    PA

    PA: preciptation agent

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    9/30

    -value: relative amount of precipitant with the unit [mol Me/mol XP,Prec]

    with:

    XMe necessary amount of precipitant (metal) (mg Me/l sewage),

    XP,Fll phosphorus to be precipitated (mg P/l sewage),

    AMMe atomic mass of metal (mg/mmol),

    AMP atomic mass of phosphors (mg/mmol)

    and the atomic mass AM: (P) Phosphor: 31; (Fe) iron 56 ; (Al) aluminium 27

    = 1,0 stochiometric dosage

    = 1,5 50 % over stochiometric dosage

    Calculation of the amount of the precipitant

    ]/[/

    /

    ,

    PmolMemolAMX

    AMX

    PFllP

    MeMeprec

    BioPPDNPBMPoutPInPprecP XXXCCX ,,,,,,

    According the kind of bounded P in the sludge:

    XPBM = 1,0 % (nitrification, COD Elimination)

    XPBDN = 0,5 % (denitrification)

    XPBioP = 1,0 % (anaerobic tank)

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    10/30

    Concurrent reactions

    Parallel to the precipitation reaction several concurrent

    reactions appear:

    Hydroxyd development

    Me3+ + 3OH- Me(OH)3

    Carbonate development

    Ca2+ + CO32- CaCO3

    Komplexierung of organic substance

    Different reaction of adsorption

    Follow ups of by-reaction

    Higher consumption of precipitation agent

    Increase of the sludge production

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    11/30

    Amount of additional sludge

    The phosphate, hydroxides and all other flucculated

    compounds formed by the precipitation agents produce

    a higher amount of sludge (Dry solids (DS)) 2,5 g DS/g Fe (about 5,0 g DS/g P),

    4 g DS/g Al (about 4,0 g DS/g P).

    If you apply calcium products you have to calculate with1.35 amount of flocculant as an increase of sludge:

    pH-value at 9,5 about 50 g DS/(PE d),

    pH-value at 11 about 200 g DS/(PE d).

    Theses additional amounts of sludge have be regarded

    in the planning of the sludge treatment process!

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    12/30

    Jar-tests with iron-(III)-chloride

    Example

    -value 0 1,2 2,0 2,8 3,6

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    13/30

    Common precipitants

    Product description Chemical formu typical

    delivery form

    density or

    bulk density

    [t/m3]

    storage and

    dosage

    effective kation

    for

    P-precipitation

    common

    active substances

    per kg

    delivery form

    pH

    from

    (saturated)

    dilution

    aluminium chloride AlCl3 dilution

    1,3

    reservoir

    acid-resitent pump

    Al3+

    58 60 g/kg

    2,2 mol/kg 1

    Iron (III)-chloride FeCl3 dilution

    1,41 1,43

    reservoir

    acid-resitent pump

    Fe3+

    135 138 g/kg

    2,4 2,5 mol/kg 1

    Iron (III)-chloridsulphate FeClSO4 dilution

    1,43 1,52

    reservoir

    acid-resitent pump

    Fe3+

    123 g/kg

    2,2 mol/kg 1

    iron(II)-sulphate FeSO4 7 H2O residual damp

    (green-) salt

    1

    Einsumpfbunker

    acid-resitent pump

    Fe2+

    Fe3+

    178 195 g/kg

    3,2 3,5 mol/kg2

    Sodium aluminate NaAl(OH)4 dilution

    1,3 1,5

    reservoir

    pump

    Al3+

    62 105 g/kg

    2,3 3,9 mol/kg 14

    Calciumhydroxid

    White lime hydrate

    (extinguihedr lime)

    stabilisied lime milkj

    (20 %ig)

    Ca(OH)2 powder

    0,45

    suspension

    1,15

    Silo

    Schnecke

    Tank

    Exzenterpumpe

    Ca2+

    376 g/kg

    9,4 mol/kg

    75 g/kg

    1,9 mol/kg

    12,5

    polyaluminium-(hydroxid)-

    chloride (PAC)

    [Al(OH)3-xClx]n dilution

    1,2 1,37 reservoir

    acid-resitent pump

    Al3+

    70 90 g/kg

    2,6 3,3 mol/kg 1 3

    According DWA 2011

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    14/30

    Requirements on the an die pureness of

    the flocculation agent

    Parameter [mg/mol ESMe]

    Lead (Pb) 15

    Cadmium (Cd) 0,2

    Chromium (Cr) 15

    Copper (Cu) 15

    Nickel (Ni) 20

    Mercury (Hg) 0,15

    Zinc (Zn) 50

    AOX 5

    Guidance values in flocculation agents to protect theenvironment against heavy metal discharge

    According DWA 2011

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    15/30

    Dosage of the precipitation agent

    at locations with by flow increase turbulence

    in short distance of the storage tank

    hydraulic direct jumpIncrease of the cross section,

    absorption chamber of weirs,

    Drop constructionjunction of part flows

    Installation of mixer with a high frequency

    Installation of screens and static mixers Archimedes screw (e.g. filtration)

    Pressure side turbulence of pumps

    Aerated flow section (Fe2+)

    Protection pipe

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    16/30

    Example of good location for the dosage of

    precipitations agents

    Cnannel

    Sewage

    blast pipe

    Precipitation agent

    Break, bendVenturi Flow breaker

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    17/30

    Examples of location for dosage

    Bad solution bad mixing of the flocculant

    durch Randlage kaum B nearly no

    contact to the complete water surface

    good solution Dosage into the change of flow direction

    but better would be over the whole

    cross-section

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    18/30

    Examples of location for dosage

    Good mixing conditions special injections form different side of

    the pipe

    Against the flow direction

    also good mixing conditions

    but danger of corrosion

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    19/30

    Storage of the flocculation agent

    Sealed filling place

    Separated catchment of

    losses of the flocculation

    agent

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    20/30

    Principle of the enhanced biological P-elimination

    PO4 -P

    A

    C

    Time

    luxery uptake

    ANAEROBIC AEROBIC

    P-Release P-Up-take

    B

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    21/30

    Biological P-elimination

    Advantages:

    No additional agents (flocculants) necessary

    Decrease of salts in the effluent of a WWTP

    Lower additional sludge production

    No additional heavy metals in the sludge

    No disturbances possible for the nitrification process

    DisadvantagesHigher investment cost for the construction

    of the anaerobic tank

    A little bit more instable process, so often additional chemical dosageis required

    In winter time higher tendency of bulking sludge

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    22/30

    DimensioningContact time and Detention time

    Detention time

    VAN

    tR = QIn

    Contact time

    VANtc =

    (Qrs + Q In)

    Dimensioning (biological P-elimination) DWA A 131 anaerobic tank: > 0,5 to 0,75 h

    Regarding the maximum dry weather flow and the flow of the

    return sludge

    Bi P

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    23/30

    Bio-PPhoredox-process (Detention time: 0,5 to 0,75 h)

    Effluent

    Aeration

    Secondary Settler

    Return sludge

    Excess Sludge

    anoxic zone

    denitrification

    aerated zone

    COD-elimination

    & nitrification

    Internal recirculation

    Inlet

    anaerobic

    zone = 1,2 1,5

    PA1-1,5 mg/l

    z.T. < 1,0

    CPe

    2,0 mg/l

    E l

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    24/30

    ExampleWWTP Lbeck-Priwall

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    25/30

    Modified-UCT-Process

    effluent

    Aeration

    Secondary

    settlerReturn slduge

    Excess sludge

    Anoxic zone

    denitrificationaerated zone

    COD-elimination &

    Nitrification

    interanl recirculation

    Inlet

    Anaerobic

    zone

    ISAH

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    26/30

    ISAH-process

    Effluent

    Aeration

    Secondary

    SettlerReturn sludge

    Excess Sludge

    Anoxic zone

    denitrificationAerated zone

    COD-elimination

    & nitrification

    Internal recirculation

    Inlet

    Anaerobic

    zone

    Returnsludge

    Denitrifcation

    P elimination in Germany and DWA North East

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    27/30

    1,70

    1,20

    1,00 1,000,90

    1,000,90

    0,80 0,80 0,80 0,80 0,80 0,80 0,78 0,75 0,75 0,75

    3,5

    2,4 2,4

    0,8 0,80,7

    0,640,76

    0,64 0,660,75

    0,63 0,67 0,63

    1,70

    0

    0,5

    1

    1,5

    2

    2,5

    3

    3,5

    4

    1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009Jahr

    Pges.-

    Ablaufwert[mg/L]

    Pges.-Abl. D[mg/L]

    Pges.Abl-Nord-Ost

    P-elimination in Germany and DWA North-EastPtot- mean values in WWTP effluent 1992 to 2009

    Effluent:

    1.0 0.49 mg P/l

    Inlet:

    14 5.6 mg P/l

    DWA, 2010

    Pto

    t-Effluent

    values[m

    g/l]

    Year

    Effects of PA-consumption on P -effluent

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    28/30

    Effects of PA-consumption on Ptot-effluent

    with lower Ptot-Effluent value higher amount of precipitant is needed

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    Bio-P Deni Chem-P

    KP

    [molMe

    /kgP]

    CP,AN 0,5 mg/l CP,AN 1,0 mg/l CP,AN 2,0 mg/l

    26

    44

    107

    73

    14

    38

    14

    1510

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    29/30

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    Bio-P Deni Chem-P

    KP

    [molMe/kgP]

    Zulauf Biologie Rcklaufschlamm Ablauf Biologie Mehrfachdosierung

    23

    6727

    108

    318

    7

    12

    13

    12

    11

    Influence of the dosage location

    Inlet to activated tank has the highestfloccucation agent demand 20-25%

  • 7/24/2019 3. Technical Options of Phosphorus Removal in WWTP_Matthias Barjenbruch

    30/30

    1. Biologische StufeBio-P-Becken

    Thank your

    for attention