335 variable-pitch axial flow fans for thermal power stations

Upload: sudhirkumar99

Post on 04-Jun-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    1/14

    1 Variable-Pitch Axial Flow Fans for Thermal Power Stations

    Dipl.-Ing. (FH) Lothar Mller,Zweibrcken

    Variable-Pitch Axial

    Flow Fans for ThermalPower Stations

    Axial-flow fans with impeller bla-

    des adjustable under load have

    been designed and built for ther-

    mal power stations for about 30

    years. The decision to develop this

    fan type was prompted not only by

    its easy design integration into

    overall plant configurations but al-

    so and primarily by the operating

    cost benefits it offers, specificallywhen compared with centrifugal

    fans with variable inlet vanes.

    Since the magnitude of the economicbenefit obtained (reduced station po-wer consumption) depends on the si-ze of the generating station (blockoutput), the fan operating regime(part-load operation), overall plantdesign and fuel costs, it took a num-ber of years for axial-flow fans withvariable pitch (VP) impellers to beco-me established in thermal power sta-tion applications.

    By now, this fan type has gainedworldwide acceptance in forced draft,induced-draft, pulverizer air fan andflue gas desulphurization (FGD) ser-vice. A large percentage of thesefans, specifically larger ones, goes toNorth American markets, where ap-prox. 450 axial-flow fans have beendeployed on power station blocks in

    the up to 900 MW range since 1974.

    Among the most interesting plant ty-pes are the so-called mono-blocksystems which comprise only a singleforced-draft, induced-draft, and pul-verizer air fan per boiler.

    The two induced-draft fans at theWeiher and Bexbach power stations,with their outside impeller diametersof 5.0 and 5.3 m and input power ra-tings of 13500 and 11500 kW, res-

    pectively, are among the worlds lar-gest power station fans. They are al-so worth noting for the high tip speedof 162 m/s of their (nodular cast iron!)blades.

    The decision to adopt a mono solu-tion for blocks of this size had beenpreceded by several years of satis-factory experience gathered with theinduced-draft fans of two coal-fired

    350 MW blocks which were likewiseoperating with only one induced-draftunit per boiler.

    Axial-flow fans with variable bladepitch angle may be of single-stage ormulti-stage design. To our knowled-ge, only fans with up to two stagesare in use in power stations today -with the exception of the three-stageforced draft unit shown in Fig. 1which, in 1953, marked the start of

    this fan development at TLT (still na-med Dingler Werke at the time).

    Comparison of axial andcentrifugal fancharacteristics

    It is evident from Fig. 2 that the iso-ef-ficiency curve of variable-pitch axialflow run approximately parallel to thesystem resistance graph, implyinggood efficiencies throughout a broadoperating range. In the case of centri-fugal fans with variable inlet vanes,the iso-efficiency curves intersect thesystem resistance curves, meaningthat their efficiency under part-loadconditions is automatically lower thanwith axial-flow units.

    Moreover, an axial-flow fan can beselected to ensure that the boiler de-sign point will be located above themaximum efficiency range in the fieldof characteristic curves, the operating

    Fig. 1: Three-stage axial flow fresh-air fan

    14

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    2/14

    4

    Variable-Pitch Axial Flow Fans for Thermal Power Stations 2

    points of maximum interest thereforefalling into the highest efficiencyspectrum.

    Fields of application

    Axial-flow fans in thermal power stati-ons are used as fresh-air (forced-draft), induced draft and pulverizer airfans; in recent years they have alsobecome more widespread in a flue-gas desulphurizing (FGD) context(Fig. 3). Their use is not contingent onthe fuel type employed (coal, oil, gas,peat), although fuel type is naturally adesign determinant, specifically withinduced-draft units.

    Regarding the installation of fansdownstream of electrostatic precipita-tors, todays flue gas desulphurizingplants support various circuit configu-rations and hence, different arrange-ment of induced draft and FGD fans.In recent years, axial fans operatingas booster fans on the wet-gas sidedownstream of the scrubber have gai-ned particular importance. With theseunits, the choice of material, surfaceprotection considerations and sealing

    towards the conveyed-medium circuitrequire particular attention.

    Disposition

    Axial-flow boiler fans may be fittedhorizontally or vertically. Fresh-airand pulverizer air fans are preferably

    installed horizontally, while induceddraft units are also known to performwell when fitted in an upright positionin the stack. In flue gas desulphu-rization systems, fans serving on thewet-gas side downstream of thescrubber are likewise designed forvertical operation and are even so-

    metimes configured with integratedmotors.

    An overview of these installation prin-ciples is given in Fig. 4. The inlet box

    opening may have any orientation, upto 360 deg., relative to the fan axis.

    Vertical solutions may provide the fol-lowing benefits:

    - simplified flue gas ducting;

    - reduction of pressure losses due tofewer deflection points;

    - no need for sound insulation or spe-cial silencer structures (with in-ductfans);

    - no need for separate installationspace as unused space is available;

    - easier assembly and disassemblythrough optional lateral offset ofactive components, i.e., the housingand rotor (i.e., these can be movedsideways without requiring anychange in the position of adjoiningcomponents).

    Mounting configurations

    Fig. 5 summarizes the main installati-on arrangements that have found tobe viable in practice. For fans moun-ted at floor level, buried concreteblock foundations were primarily em-ployed in former years (refer to sub-fi-gure a).

    Fig. 2: Comparison between characteristic maps of axial-flow and centrifugal fans

    Centrifugal fan

    Volume flow %

    100 % boiler load point

    Boiler design point

    Axial-flow fan

    Boiler flow resistance line

    Fig. 3: Axial-flow fans in thermal power plants

    FL-V Fresh-air fan / SZ-V Induced draft fanML-V Pulverizer air fan / REA-V FGD fan

    Boiler

    Air

    pre-heat-

    er

    Airpre-heat-

    er

    StackDamper

    REA-V

    SZ-V

    FL-V

    ML-V

    REA

    Electro-static

    precipi-tator

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    3/14

    3 Variable-Pitch Axial Flow Fans for Thermal Power Stations

    Solutions illustrated in sub-figures b)and c) are preferred nowadays sincethey are associated with a less com-plex oscillation behaviour. Put simply,a configuration of this type may be

    viewed as a two-mass oscillation sy-stem.

    Mass 1: Rotor, consisting of the im-peller and main bearing assembly

    Spring 1: Overall spring stiffness ofthe main shaft, bearing assembly andfan housing

    Mass 2: Concrete block

    Spring 2: Spring stiffness of the anti-vibration mountings

    Given the mass ratio of approx. 20 : 1between the concrete block and therotor and the resulting low frequencyresponse of the foundation, the two-mass oscillation system may be con-sidered decoupled for the purposes ofoscillation modelling. At this mass ra-tio, the foundations influence on the Fig. 4: Arrangement of axial flow fans

    a) Vertically in the stack

    c) Horizontally at floor level

    b) Vertically in a supportingsteel structure

    Fig. 5: Axial flow fan installation configurations

    a) Buried concrete block foundation b) Vibration-insulated concrete blockfoundation on buried concrete slab

    c) Vibration-insulated concrete blockfoundation on ceiling slab

    d) Vibration-insulated steel framefoundation on supporting steelstructure

    e) Raised table type slab foundationon supporting crossmembers

    f) Vibration-insulated upright fan onsupporting steel structure

    14

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    4/14

    4

    Variable-Pitch Axial Flow Fans for Thermal Power Stations 4

    natural bending frequency of the rotorsystem is negligible.

    With isolated frame foundations of thetype illustrated in sub-figure d), the

    natural vibration behaviour of the fra-me must be included in the analysis.Frequency criteria generally used forisolated foundations must be appliedto the natural frequencies of the fra-me as well.

    When fans are placed on ceilingslabs, as shown in sub-figure c), caremust be taken to ensure that an ap-propriately sized girder extends un-der both the fan and the motor.

    Raised slab foundations of the tabletype, illustrated in sub-figure d), haveto be supported by strong crossmem-bers under the motor and fan at themain force transmission points.

    For fans erected directly on anti-vi-bration mounts (e.g., upright induc-

    ted-draft units fitted in the stack orvertical FGD fans mounted on sup-porting steel structures) as depictedin sub-figure f), the natural oscillationbehaviour of the frame structure

    must be taken into account, just aswith horizontal fans mounted on iso-lated foundations.

    Computing models for the block andframe foundations are usually availa-ble today for both anti-vibrationmounting and direct floor installation.The natural oscillation frequenciescan be determined for such foundati-ons with up to 6 degrees of freedom,including translational motion and ro-tation about the three main spatial

    axes, plus the most frequent coupledmodes.

    A few other boiler fan installation me-thods exist but are of minor signifi-cance and shall therefore not be dis-cussed here.

    Design

    Induced draft, forced draft, pulverizerair and FGD fans do not differ greatlyin terms of their basic design. The fo-

    cus of the present article is on axial-flow induced draft fans. The horizon-tal fan type shall be considered for thepurposes of our further comments.

    In line with the design objective, va-riable-pitch axial flow fans were de-veloped with the following main crite-ria in mind:

    - good access to rotating partsthrough an appropriate separationof housings and suitable arrange-

    ment of access doors;- possible avoidance of inlet and out-

    let side duct displacement in theevent of a rotor change;

    - minimum shut-down times, achie-ved through a replacement of entire

    fig. 6: Axial-flow boiler fan

    Fan housing / top part

    Dual-stage rotor

    Coupling half

    Intermediate shaft

    Compensator

    Inlet box

    Hydraulic adjusting mechanism

    Duct angle unit

    Noise insulation

    Actuator for impellerblade pitch adjustment

    Oil supply system

    Vibration sensor

    Bearing temperature indicator

    Diffuser

    Fan housing /bottom part

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    5/14

    5 Variable-Pitch Axial Flow Fans for Thermal Power Stations

    components (e.g., rotor, main bea-ring assembly, actuating mecha-nism);

    - high availability and longevity

    through selection of appropriate ma-terials and sealing systems, in con-junction with rugged design;

    - maximum standardization of com-ponents to speed up the accumula-tion of operating experience.

    Fig. 6 clearly illustrates how the abo-ve design requirements are met inpractice. The rotor - consisting of theimpellers, the main bearing assemblyand the blade adjustment mechanism- can be installed and removed as acomplete subassembly on bothsingle-stage and dual-stage fan mo-dels.

    The fan housing with its removabletop portion is connected to the diffu-ser and inlet box via a quickly remo-vable non-metallic bandage helddown by a steel strap.

    With this design, a rotor replacementon the induced draft fan of a 600 MWblock can be accomplished in aboutthree shifts.

    The induced draft fan shown in Fig. 7has a two-stage rotor whose bladesare adjusted simultaneously by theactuating mechanism provided on theimpeller outlet side.

    The fan is powered by a constant-speed electric motor normally arran-ged outside the fan itself. The motoris connected to the rotor via a hollowshaft with a torsionally flexible cur-

    ved-tooth or multiple spring disccoupling. Basically, an integration ofthe drive motor into the fan housinghub is likewise conceivable. This de-sign was adopted for the flue gas de-

    sulphurization fans in three NWK po-wer stations; these fans are all arran-ged on the wet-gas side.

    Due to the temperature loads actingon induced draft fans, the interior ofthe hub is thermally insulated in orderto protect the rotating components.

    Cooling air is supplied into the hubthrough the hollow bracing and bla-des by a set of separate externalfans. It is important that the cooling

    air-carrying ducts are insulated toprevent temperatures below the dewpoint.

    Fig. 7: Dual-stage induced draft axial flow fan with bade pitch adjustment

    14 13 2

    10

    Section B-B Section C-C Section A-A

    3 1 5 4

    B

    B

    C

    C6 13

    117

    9

    8

    12

    6

    A

    1. Rotor

    2. Inlet box3. Fan housing4. Diffuser

    5. Hydraulic blade

    adjusting system6. Oil supply systems7. Actuating gear unit

    8. Cooling air fan

    9. Brake10. Anti-vibration mounts11. Vibration sensor

    12. Pumping limit indicator

    13. Compensator14. Drive motor

    14

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    6/14

    4

    Variable-Pitch Axial Flow Fans for Thermal Power Stations 6

    If the rotor is supported in sliding bea-rings, a brake is fitted on the drive-si-de coupling to protect the bearingsagainst running in mixed-friction con-ditions and to prevent rotor spinning

    once the motor has been de-energi-zed.

    Lubricating oil for the main bearingand hydraulic oil for the hydraulic ac-tuating mechanism are supplied by oilsupply units mounted outside the fan(Fig. 8). These are normally equippedwith two pumps of approximatelyequal output, of which one is a stand-by pump brought on stream by apressure monitoring switch when thefirst pump fails. To prevent bearingdamage when the fan coasts to a stopafter a power failure, the secondpump is sometimes connected to anuninterruptible power supply, specifi-cally on fans with sliding bearings.

    Forced lubrication oil is fed to thepoint of use via a dual filter and an air-oil or water-oil heat exchanger. If thebearings of the main drive motor arelikewise lubricated off this system, an

    accurate distribution of the oil flow tothe various bearing points must beensured.

    Fig. 9 is a cross-sectional view of asingle-stage rotor. It consists of theimpeller with blades, the main bearingassembly, and the blade control me-chanism.

    Impeller body

    In this design the impeller body is ent-

    irely of welded construction. The cen-trifugal forces are absorbed by a ringarranged inside the hub.

    This welded design has proven high-ly advantageous, particularly on indu-

    ced-draft fans, since a cost-efficientcasting for the load levels encounte-red would be difficult to produce withany degree of reliability.

    The welded hub design makes it pos-sible to select induced draft fans ofhigher speeds, which in turn permitsreduced fan sizes and the use ofsingle-stage instead of dual-stageunits (examples include the induced-draft fans in the Weiher, Bexbach andMannheim power stations).

    Blade shaft bearing assembly

    In a variable-pitch axial flow fan theblade shaft bearing assembly is one

    of the most critical components.

    In the design illustrated on page 7,centrifugal forces are absorbed byhermetically sealed deep-groove ballthrust bearing while the transverse

    Fig. 8: Bearing lubricating oil circuit schematic

    Motor oilreturn

    Fan oil return

    Fan leakageoil line

    Thermostats Heating elements Pumps Level sensors

    Dual filter with

    differential pres-sure indication

    Motor oil supply

    Water cooler

    Flow monitoring switch

    Fan oil supply

    Pressuremonitoring

    Mixer valve

    Drive motor Fan

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    7/14

    7 Variable-Pitch Axial Flow Fans for Thermal Power Stations

    forces resulting from the adjustmentfunction are handled by an angular-contact ball bearing.

    Anti-friction bearings are by definitionintended to rotate; however, in thepresent application they serve merelyto accommodate the blade pitchangle adjustment. Proper design, lu-brication and sealing of the bladeshaft bearing assembly are thereforeof outstanding importance.

    The bearings may either be greasedor oil-lubricated. Operating tests anddevelopment trials have shown thatonly a few grease types will retaintheir lubricating properties over an ex-tended period under the prevailingtemperature loads and centrifugal for-ces. A fully enclosed design of thethrust bearing was therefore adopted;

    this has greatly increased the servicelife of the bearing assembly compa-red to the solutions used in previousyears. Since the anti-friction bearingswill not fail suddenly, the bearing sta-

    tus can be monitored on-line fromoutside the fan by measuring the re-quisite oil pressure for the bladeangle adjustment.

    Blade foot sealing

    Tightness of the blade shaft passagethrough the hub casing is a major re-liability criterion, specifically in the de-

    sign of induced-draft axial flow fans.

    Experience has shown that the sea-ling system employed ensures a100% tight shaft entry into the hubchamber.

    Impeller blades

    Impeller blades are screwed onto theblade shafts. Individual blades canthus be replaced without removingthe entire rotor. Proven blade materi-

    als include aluminium alloys for fresh-air (forced draft) and pulverizer airfans, and cast steel or nodular castiron for induced draft fans in coal-firedboiler duty.

    Although the performance and sepa-rating efficiencies of todays elec-

    trostatic precipitators are much im-proved and dust loads on the clean-gas side have dropped significantly

    as a result, the accumulated experi-ence suggests that cast steel ornodular cast iron remain the materialsof choice.

    Fig. 9: Rotor of a single-stage axial-flow fan

    Multi-disc coupling

    Radial bearing

    Lubricating oil supply

    Thrust bearing

    Bearing housing

    Lubricating oil return line

    View X

    Actuating leverOil supply line

    Oil return line

    Leakage oil

    Hydraulic controvalve

    Actuating cylinder

    Blade shaft bearing

    Counterweight

    Impeller blade shaft

    Guide vaneImpeller blade

    Blade foot gasket

    Shaft

    Fig. 10: Particle-size distribution of various

    dust types

    Overs R %

    Grainsizedm

    Undersize particles D %

    14

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    8/14

    4

    Variable-Pitch Axial Flow Fans for Thermal Power Stations 8

    It has been found that short-time filter

    failures give rise to high wear rates;moreover, in the case of an air-

    preheater failure, temperatures in the

    fan area may reach 300C.

    Since the endurance strength of al-uminium alloys drops very quickly attemperatures over 200C, the use ofaluminium blades on induced draftfans in coal-fired boiler service im-

    plies significant operating reliabilityand safety hazards.

    Impeller blade wear

    Abrasive wear of the impeller bladesis a function of the following:

    - relative speed of dust particles im-pinging on the blade surface

    - impeller blade material

    - angle of impact

    - dust concentration

    - grain size distribution

    - dust load distribution

    - hardness of dust particles

    Only the first two parameters are con-trollable by the fan manufacturer.

    Extensive trials have shown that the-re exists an approximately squarecorrelation between the relativespeed of the dust particles and the ra-te of blade abrasion. Under otherwise

    equal conditions, the granulometricdistribution of the particles also has asignificant influence on blade wear,as illustrated for three dust types inFig. 10. As will be appreciated fromFig. 11, the volumetric abrasion rate(cm3 of material removed per kg ofimpinging dust) is much higher withF36 dust than with S type par-ticles. Knowing the dust particle sizedistribution is therefore a key prere-quisite for any correct advance eva-

    luation of impeller blade service lifeunder wear conditions.

    Extensive wear tests conducted overmany years, supported by field expe-rience gathered with induced draftfans, have led to the development ofa computing method whereby the ser-vice life of impeller blades can be pro-jected if the values of the above para-meters are known.

    Rotor main bearing

    The illustration on page 9 shows thecompact design bearing systemwhich has given good results insingle- and dual-stage axial flow fansfor years. This design approach mini-mizes the necessary removal, refit-ting and alignment work (particularlythe latter), since the flanges in thebearing mounting area are handledsimultaneously with the blade runningsurface of the outer fan housing shell.In addition, this bearing design allows

    for the selective use of sliding and an-ti-friction bearings without any chan-ge in exterior diameter.

    Both systems have proven their valuein many installations for years. Theanti-friction bearings are oil-lubrica-ted, with an external oil-supply unit re-circulating the oil sump in the bearinghousing. Moreover, this oil sumpallows the fan to remain in operationfor quite a while if the forced circulati-on system should fail.

    Sliding bearings

    The sliding bearing assembly (Fig.12) consists of tilting-pad radial bea-

    Fig. 11: Volumetric steel abrasion as a function

    of dust particle size

    Impact angle

    Volumetricabrasionrate

    Fig. 12: Sliding bearing assembly

    Impeller

    Radial bearing

    Radial bearingOil supply

    Oil return

    Bearing housing

    Section A-A Section B-B

    Shaft

    Gap pump for emer-gency operation

    Oil level

    Thrust bearing

    Thrust bearing

    Temperaturesensor

    A B

    BA Oil supply

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    9/14

    9 Variable-Pitch Axial Flow Fans for Thermal Power Stations

    14

    rings and thrust bearings with self-ad-justing circular sliding pads arrangedcircumferentially on both sides of ashaft collar. The bearing housing issplit horizontally, allowing bearing

    parts to be inspected or replacedwithout having to remove the impel-lers from the shaft.

    Bearings are lubricated by an oil sup-ply system mounted outside the fan.Emergency lubrication after an oil-supply failure is ensured by a gappump fitted directly onto the mainshaft. This pump draws oil from thesump in the bearing housing andfeeds it to the point of use. The sy-stem is effective only briefly under fullload, but permits an extended coast-down cycle.

    The decision between sliding and an-ti-friction bearings is often a philoso-phical one, at least in part, since bothbearing types have proven their meritover the years. It may be observedthat split-type sliding bearings offeradvantages with large and thereforeheavy rotors, and may yield an un-limited service life when combined

    with a reliable lubricating system.The tilting pads of the radial bearingsare adjustable both longitudinally andtransversely and will therefore adaptto possible shaft deflections.

    A properly rated sliding bearing, unli-ke an anti-friction bearing, is not awearing part requiring periodic re-placement if used with appropriateoil-quality.

    Moreover, bearing failures will deve-

    lop over much longer time spans andcan thus be forecast, and hence avoi-ded, via temperature and oscillationmonitoring.

    Anti-friction bearings, on the otherhand, provide superior emergencyoperating characteristics due to theexisting oil sump in the bearing hou-sing. Nevertheless, a premature failu-re of such bearings can never be ru-led out.

    Hydraulic blade pitch adjustment

    For controlling the impeller bladepitch setting and hence, the fans vo-lumetric throughput and outlet pres-

    sure, the following actuator systemsare available:

    - pneumatic

    - electromechanical

    - mechanical

    - oil hydraulic

    Pneumatic and electromechanical sy-stems play virtually no role in powerplant fan engineering, while mechani-cal blade pitch control systems usedto be employed specifically on smal-ler units. Oil-hydraulic control sy-stems have emerged as the most sui-table solution for this purpose. They

    operate with less hysteresis sincethey use fewer mechanical powertransmission elements; in addition,they are capable of transmitting hig-her actuating forces of the magnituderequired in over 300 kW blocks.

    Systems embodying the principle illu-strated in Fig. 13 have been built withonly minor changes for more than 30years.

    An actuator system of this type com-

    prises the following main elements:

    - an actuating cylinder moving axiallyalong the fan axis and turning withthe rotor;

    - a piston within the actuating cylinderwhich is axially fixed and rotateswith the same speed as the cylinder;

    - a feedback rod

    - a stationary control valve which re-ceives the command to change theblade angle via an actuating gearunit outside of the fan housing andconverts it into a hydraulic signal.Pressurized oil will thus be directedto the appropriate cylinder side, im-parting an axial movement to the cy-linder. This axial displacement cau-ses the impeller blade to turn, due tothe geometry of the levers attached

    to the end of the blade shafts whichengage the actuating disk. The mo-vement is carried out simultaneous-ly, even on multi-stage fans.

    The actual position of the impellerblades is indicated outside the fanhousing and can be transmitted to acontrol center.

    Effective sealing in the joint areasbetween stationary and rotary com-ponents is an essential requirement

    with such actuator systems. Sealsmay consist of plastic or metal ele-ments. The control delays for the re-levant pitch adjustment range usuallyvary between 30 and 45 seconds. Ho-

    Impeller blade pitch indication(Actual position)

    Impeller blade pitch(Setpoint command)

    Feedback rod

    Control valve

    Leakage oil

    Oil return

    Oil supply

    Actuating stroke

    Actuating cylinder

    Actuating lever

    Piston

    Fig. 13: Schematic view of the hydraulic blade pitch control system

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    10/14

    4

    Variable-Pitch Axial Flow Fans for Thermal Power Stations 10

    wever, faster responses can beachieved through appropriate dimen-sioning of the actuating system.

    Instrumentation

    The choice of instruments and moni-toring devices are major factors in the

    design of variable-pitch axial flowfangs.

    The complexity of the instrumentationsystem is increased primarily by the

    frequent request for a 2v3 solutionto be implemented in the fan monito-ring system for integration into the au-tomatic operating control environ-ment.

    Fig. 14 summarizes the main instru-

    ments provided on a variable-pitchaxial flow fan in induced-draft serviceand its peripheral equipment.

    Fan protection

    To ensure the safe and reliable ope-ration of an axial flow fan, the relevantkey parameter values (readings)must be continuously known.

    By continuously recording all chan-ges in fan operating behaviour, speci-fically oscillations and current opera-ting point positions (pumping limit mo-nitoring), it is possible to ensure an

    Fig. 14: Schematic instrumentation diagramm

    Pressureswitch

    Brake r. p. m.measurement

    Pump monitoring unit

    Pressure and flow indication

    Blade pitch position indicator

    Actuating pressure indicator

    Vibration measuring devices

    Temperature monitoring

    Cooling air fan

    Hydraulic impeller blade pitch actuating systemBearing lubrication

    Pumps

    Dual filter

    Water cooler

    Mixer valve

    Thermocouples

    Levelmeasuringdevices

    Heatingelements

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    11/14

    11 Variable-Pitch Axial Flow Fans for Thermal Power Stations

    advance detection of dangerous ope-rating states and imminent failures.

    In addition, reliable monitoring of the

    fan allows the appropriate mainten-ance and overhaul steps to be sche-duled so as to be carried out upon at-tainment of defined limits, instead ofupon completion of a defined numberof operating hours.

    Figs. 15 to 17 show examples of theswitchgear and control schematicswith protection system criteria for in-duced-draft axial flow fans.

    Operating experience

    From the experience gathered to da-te, it emerges that operating cam-

    paigns of six years and more are de-finitely realistic with variable-pitch axi-al flow units representing state-of-the-art technology.

    However, extensive prior develop-ment work was necessary to achievethis outstanding performance. Impro-vements at the level of fan monitoringand control equipment were a neces-sary part of this effort.

    The following paragraphs give a des-cription of the operating experiencegained with key fan components.

    Impeller blades

    The problem of blade wear had longbeen a priority issue in induced-draftfan engineering. Through the selec-tion of improved blade materials(steel, nodular cast iron) and higherfilter efficiencies it has been possibleto reduce wear rates substantially.

    More recently, increased blade wearhas been reported only where unitswere operated significantly above the

    Fig. 15: Start-up program of an induced-draft axial flow fan

    Fan motor ON

    Shutoff-damper OPEN

    Automatic operating control

    Command

    Start-up trigger signal

    Lubricating pump ON

    Hydraulic pump ON

    Brake oil pump OFF

    Impeller blades closed

    Brake disengaged

    Control system OFF

    Shutoff damper closed

    Clearance criteria

    Lubricating oil level min.

    Hydraulic oil level min.

    Brake disengaged

    Oil temperature min.

    Bearing temperature limit

    Impeller blades closed

    Bearing oil flow min.

    Oil pressure min.

    Cooling water present

    Shut-off damper closed

    Operation monitoring ON

    Fan ON

    Air / flue duct unobstructed

    14

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    12/14

    4

    Variable-Pitch Axial Flow Fans for Thermal Power Stations 12

    load levels assumed at the designand rating stage.

    Blade shaft bearings

    The difficulties observed in this res-pect in previous years were attributa-ble to unsuitable lubricants and ina-dequate sealing of the bearing as-sembly.

    Service life deficiencies have beenvastly improved through selective de-sign improvement in conjunction withlaboratory and field trials.

    Today, service lives permitting a boi-

    ler campaign of more than 4 yearsduration are no longer uncommon. Inindividual cases, service periods inexcess of 60,000 operating hours ha-ve been reached.

    Hydraulic blade-pitch adjustment

    An analysis of past failures of thissubassembly has revealed that theseals in the joint area between its sta-tionary and rotating componentsused to constitute a weak link. The-

    se problems have been overcomethrough dedicated design optimizati-on (use of metal sealing elements)supported by laboratory and opera-ting trials. As a result of these efforts,

    the campaign durations now com-monly expected will be reliably rea-ched.

    Rotor main bearing

    Anti-friction bearings

    Exceedingly frequent operation at ze-ro load with thrust reversals (frequentstart-ups) or exceeding the pumpinglimit may reduce the service life of thebearings. Fretting corrosion associa-ted with the anti-friction bearings andindividual failures due to alternatingstress situations that could not be an-ticipated at the time of design have

    been ruled out through new bearingdesign approaches and expandedcalculation methods.

    Sliding bearings

    No serious problems have occurredto date with the sliding bearing confi-guration outlined above. The tilting-pad bearings employed accommoda-te operating deflections of the fanshaft, thus avoiding edge loading ef-fects.

    A reliable distribution and monitoringof oil flows to the bearing points andadvanced anti-seizure features (en-suring performance after a failure of

    the lubricant supply) ensure a longservice life.

    Only minor improvements have beenmade to the shaft seal system.

    Summary

    Summing up, it may be stated thatthese variable-pitch axial flow fanshave performed well in thermal powerstation service. A further intense in-formation-sharing process betweenthe operator and fan manufacturerand ongoing product development fo-cused on critical components will

    yield further improved results in thefuture.

    Fig. 16: Automatic control

    scheme of an induced draft

    axial flow fan

    Hydraulic oil temperature 40C

    Heater OFF

    Hydraulic oil temperature bar

    Hydraulic oil pump 2 ON

    Lubricating oil pressure bar

    Lubricating oil pump 2 ON

    Hydraulic oil temperature 30C

    Heater ON

    Lubricating oil temperature 20C

    Heater ON

    Hydraulic oil temp. at constant 50C

    Automatic oil flow control via mixer valve

    Lubricating oil temperature 30C

    Heater OFF

    Bearing ambient temp. 60C

    Cooling air fan ON

    Bearing ambient temp. 30C

    Cooling air fan OFF

    Lubricating oil temp. at constant 50C

    Automatic oil flow control via

    mixer valve

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    13/14

    13 Variable-Pitch Axial Flow Fans for Thermal Power Stations

    Fig. 17: Operation monitoring and emergency shutdown program for an induced-

    draft axial flow fan

    Lubricating oil pump 2 ON

    Hydraulic oil pump 2 ON

    Bearing temperatures 75 C

    Lubricating oil level min.

    Hydraulic oil level min.

    Fan lubricating oil flow 1/min.

    Motor lubricating oil flow 1/min.

    Lubricating oil filter p bar

    Hydraulic oil filter p bar

    Fan at stall limit

    Oscillation amplitude 100 m

    Lubricating oil level max.

    Hydraulic oil level max.

    Hydraulic oil temperature 60C

    Lubricating oil temperature 50C

    Volume measurement with advancepumping limit alarm

    pabsolute

    pinlet box

    ptotal

    Medium temperature

    Processor

    Alarm Warning to control room

    Emergency shutdown

    Bearing temperature 85C

    Lubricating oil pressure min.

    Oscillation amplitude 250 m

    Fan at stall limit

    14

  • 8/13/2019 335 Variable-pitch Axial Flow Fans for Thermal Power Stations

    14/14