3.4 introduction to eigenvalues

17
MAT 2401 Linear Algebra 3.4 Introduction to Eigenvalues http://myhome.spu.edu/lauw

Upload: melvyn-osborne

Post on 17-Jan-2018

227 views

Category:

Documents


0 download

DESCRIPTION

HW Written Homework

TRANSCRIPT

Page 1: 3.4 Introduction to Eigenvalues

MAT 2401Linear Algebra

3.4 Introduction to Eigenvalues

http://myhome.spu.edu/lauw

Page 2: 3.4 Introduction to Eigenvalues

HW Written Homework

Page 3: 3.4 Introduction to Eigenvalues

Overview Eigenvalues are used in a variety of

real life applications. Eigenvalues are central to many

theories for applicable mathematics. Eigenvalues is one of the most

important topics in elementary linear algebra.

More to come in section 7

Page 4: 3.4 Introduction to Eigenvalues

Notations Pay attention to the notations.

They will be confusing – numbers or vector?

Page 5: 3.4 Introduction to Eigenvalues

Example Preview – Population Modeling (Leslie Matrix) Suppose we are interested in the

population of a certain type of bird in a forest area.

We can divide the population in two age groups – hatchlings (age<1) and adults.

Page 6: 3.4 Introduction to Eigenvalues

Example Preview – Population Modeling (Leslie Matrix) Suppose we can estimate the

following parameters:•Birth rate from hatchlings Bh •Birth rate from adults Ba •Survival rate of hatchlings Sh •Survival rate of adults Sa

Page 7: 3.4 Introduction to Eigenvalues

Example Preview – Population Modeling (Leslie Matrix) We can model the population from

year to year by the matrix equation1

1

1

n h a n

n h a n

n n

h B B ha S S a

x Ax

1 0

2 1

3 2

1n n

x Axx Axx Ax

x Ax

Page 8: 3.4 Introduction to Eigenvalues

Example Preview – Population Modeling (Leslie Matrix) Stable proportion of population in

the age groups1

1

1

n h a n

n h a n

n n

h B B ha S S a

x Ax

1n nx x

Page 9: 3.4 Introduction to Eigenvalues

Example Preview – Population Modeling (Leslie Matrix) Q: How to find ? A: From the relationship: Ax= x.

1

1

1

n h a n

n h a n

n n

h B B ha S S a

x Ax

1n nx x

Page 10: 3.4 Introduction to Eigenvalues

Eigenvalues and Eigenvectors Let A be a nxn matrix, a scalar,

and x a non-zero nx1 column vector.

and x are called an eigenvalue and eigenvector of A respectively if

Ax= x

Page 11: 3.4 Introduction to Eigenvalues

Example 1 (Eigenvector Given)

Find the eigenvalue of A if the eigenvector is

(a) (b)

1 42 3

A

1

11

x

2

21

x

Page 12: 3.4 Introduction to Eigenvalues

How to Find the Eigenvalues and Eigenvector?Recall: Theorem from 3.3 A is invertible if and only if det(A)≠0Equivalently A is singular if and only if det(A)=0Now, …

x=Ax

Page 13: 3.4 Introduction to Eigenvalues

Example 2Find the eigenvalues and

eigenvectors of 1 42 3

A

Page 14: 3.4 Introduction to Eigenvalues

Remarks Eigenvalue and eigenvector always

come in pairs. Eigenvectors are unique up to

scalar multiple.

Page 15: 3.4 Introduction to Eigenvalues

Example 3Find the eigenvalues and

eigenvectors of 1 2 21 2 11 1 0

A

Page 16: 3.4 Introduction to Eigenvalues

Remarks1. det(I-A)=0 is called the

_________________ of A.2. It is a polynomial equation of

degree ___.

Page 17: 3.4 Introduction to Eigenvalues

Visual Summary

2 2 5 4 6 8

Linear System

x y zx y zx y z

1 1 1 2 2 5

4 6 8

Agumented Matrix

1 0 2 10 1 3 20 0 0 0

# of Solutions

.23 ,

Parametric SolutionsLet z t

x ty t t Rz t