3d hyperbolic tiling and horosphere cross sectionbulatov.org/math/180110/bulatov v.(2018)...

56
3D Hyperbolic Tiling and Horosphere Cross Section Vladimir Bulatov, Shapeways Joint AMS/MAA meeting San Diego, January 10, 2018

Upload: others

Post on 17-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

3D Hyperbolic Tiling and Horosphere Cross SectionVladimir Bulatov,

Shapeways

Joint AMS/MAA meeting

San Diego, January 10, 2018

Page 2: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Region on the right looks like two components region, however it is an infinitecheese wedge with a spherical hole.

Inversive GeometryConvenient container to work with 3 dimensional hyperbolic tilings is 3D Inversive (or Moebius)Geometry. It can contain upper half space model and ball model of .

Geometric transformations are reflections in planes and inversions in spheres (splanes) and arbitrarycompositions.

Each splane divide space into two sets interior and exterior. Specific orientation is assigned tosplanes by direction of normal that points to the exterior of the splane.

Regions are defined as intersection of interiors of splanes.

Page 3: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Plane { , } is defined via - vector ofexternal normal and - distance of plane toorigin .

Reflection in plane maps point into point( )( ) = 2 , .

Where , is scalar product.

Signed distance of point to to plane is( , ) = ,

Here we have mapped interior region of theplane (on the right) on the exterior region onthe left.

Reflection in planes

Page 4: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Sphere { , } is defined via center andsigned radius .

Positive radius means interior of splane isregion inside of the ball.

Negative radius means interior of splane isregion outside of the ball.

Inversion in sphere maps point into point( )

( ) = +| |

( )

Signed distance of point to to sphere is( , ) = ( )(| | | |)

Inversion in spheres

Page 5: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Inversion is sphere becomes reflection inplane when radius of sphere tends to infinity.

Planes are spheres

Page 6: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Inversion is sphere becomes reflection inplane when radius of sphere tends to infinity.

Planes are spheres

Page 7: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Inversion is sphere becomes reflection inplane when radius of sphere tends to infinity.

Planes are spheres

Page 8: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Inversion is sphere becomes reflection inplane when radius of sphere tends to infinity.

Planes are spheres

Page 9: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Tiling can be constructed in several steps

Build Fundamental Domain - regionbounded by finite number of splanes ( , , , )

Dihedral angles between splanes are

integral fraction of : =

Build symmetry group generated byreflections in splanes

How to construct a tiling

Page 10: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Tiling can be constructed in several steps

Build Fundamental Domain - regionbounded by finite number of splanes ( , , , )

Dihedral angles between splanes are

integral fraction of : =

Build symmetry group generated byreflections in splanes

Fill space by copies of FundamentalDomain transformed by all transformationsof the group.

How to construct a tiling

Page 11: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Straightforward appoach - apply each oftransformation of the group to thefundamental domain.

Troubles

Groups are usually infinite

Fundamental Domain often is infinite

Transformations of the group may act onthe fundamental domain in rather complexway, mapping finite regions into infinity.

How to draw the tiling

Page 12: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Straightforward appoach - apply each oftransformation of the group to thefundamental domain.

Troubles

Groups are usually infinite

Fundamental Domain often is infinite

Transformations of the group may act onthe fundamental domain in rather complexway, mapping finite regions into infinity.

Different apporach is needed!

How to draw the tiling

Page 13: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Different approach - draw only pixels whichwe can see.

For each visible pixel on the screen findtransformation which maps it to thecorresponding pixel in the fundamentaldomain.

Color the pixel with color of the correspondingpixel in the fundamentral domain.

Reverse Pixels Mapping

Page 14: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Search of Reverse Mapping

Page 15: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Continue the process

Search of Reverse Mapping

Page 16: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Continue the process

Search of Reverse Mapping

Page 17: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Continue the process

Search of Reverse Mapping

Page 18: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Continue the process

Search of Reverse Mapping

Page 19: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Continue the process

Search of Reverse Mapping

Page 20: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Continue the process

Search of Reverse Mapping

Page 21: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Check the point location relative to eachgenerator.

Reflect point in first found generator whichhas point in its exterior

Continue the process until the point isinside of each generator.

Search of Reverse Mapping

Page 22: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

The composition of reflections gives therequired transformation

Search of Reverse Mapping

Page 23: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Arbitrary pattern can be placed inside of thefundamental domain

Coloring the Pixels

Page 24: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Arbitrary pattern can be placed inside of thefundamental domain

The pattern is reflected to the whole visiblespace

The calculations for each pixel areindependent and can be run on GPU inparalel in real time

Coloring the Pixels

Page 25: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Another way to color the pixel is cosetcoloring.

Here pixels are assigned different coloraccording to coset of the orientationpreserving subgroup of index 2.

In this simplest case coset coloring can beobtained by counting number of reflectionsneeded to map pixel to fundamental domainand assigning one color if count is even andanother color if count is odd.

Coset coloring

Page 26: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Color count equals to the index of subgroup.

Coset coloring

Page 27: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Color count equals to the index of subgroup.

The index of subgroup of infinite group can bearbitrary large.

This is coset coloring with 10 colors

Coset coloring

Page 28: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Simplest hyperbolic tilings are tiling withtetrahedra.

Lets start with specific example.

Hyperbolic tetrahedron with all finite vertices.

It is convenient to display tetrahedra usingCoxeter diagram.

Each plane is shown as small circle.

For each pair of faces ( , ) with dihedral angle

= the corresponding pair of circles , is

connected with 2 lines.

Building Hyperbolic Tiling

Page 29: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Let's work in the upper half space model of . Horizon of lies in the xy-plane ( = 0)

Lets place planes and orthogonal to Zaxis and orthogonal to each other.

Building Tetrahedron 1-->

Page 30: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Plane is a sphere centered at the horizon.

Dihedral angles of its intersections with planes

and are =3

and =3

.

Building Tetrahedron 2

Page 31: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Tiling generated by splanes .

It is stereographic projection of the sphericaltiling 332.

Building Tetrahedron 3

Page 32: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Fourth sphere with dihedral angles =4

=3

, =2

finishes the hyperbolic

tetrahedron.

Building Tetrahedron 4

Page 33: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Here is the tiling.

What is going on?

Tiling by tetrahedra

Page 34: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

This is the tiling.

What is going on?

We are looking in the wrong place!

Plane = 0 is the horizon (infinity) of .

Tiles become infinitely small at the horizon.

The visible noise is due to finite precision ofcalculation.

Tiling by tetrahedra

Page 35: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

"Right" places to look at the space tiling arehyperbolic planes.

One kind of hyperbolic planes in the upperhalf space model are planes orthogonal to thehorizon.

The image looks similar to 2D tiling ofhyperbolic plane in the upper half plane modelof .

However the polygons are not 2D tiles, butodd shaped slices of 3D tiles by hyperbolicplane.

Tiling in hyperbolic planes

Page 36: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Another type of hyperbolic planes are halfspheres centered at the horizon (imagebelow). The planes can be flattened bystereographic projection.

The flattened tiling (on the left) looks similar tothe 2D tilings in the Poincare circle model of

.

Tiling in hyperbolic planes

Page 37: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

"Problems" of hyperbolic tilingsThe main feature of hyperbolic tilings visualization is high range of visual scale.

In the circle model of we have few regular sized tiles near the center. Tiles shrink rapidly as weapproach the horizon.

Upper half plane model has similar behavior. Tiles shrink rapidly as we approach the horizon andstretch rapidly as we move up.

Page 38: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Introducing horospheresLet's "flatten" the hyperbolic plane.

Page 39: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Horosphere (2)Let's "flatten" the hyperbolic plane.

Page 40: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Horosphere (3)Let's "flatten" the hyperbolic plane.

Page 41: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Horosphere (4)We got horosphere.

Page 42: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Horosphere (5)Zooming out the camera.

Page 43: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Horosphere (6)Zooming out the camera.

Page 44: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Horosphere (7)Zooming out the camera.

Page 45: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Horosphere (8)Zooming out the camera. Animaton https://youtu.be/u1Lp9NS98E0

Page 46: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

There are different motion we can performwith horospere

Straight hyperbolic translation. Animatonhttps://youtu.be/PKauqA_Qp9Q

Horosphere Motion

Page 47: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

There are different motion we can performwith horospere

Hyperbolic rotation around hyperbolic straightline.Animaton 1.https://youtu.be/PhcbmsTYc-0animaton 2.https://youtu.be/rSEzGtp56vI

Horosphere Motion 2

Page 48: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

There are different motion we can performwith horospere

Moving tiling past horosphere.

Similar to horosphere hyperbolic translation.

The difference is that scale of the tiling remainthe same.

Animation.https://youtu.be/gGvlkomzvAg

Horosphere Motion 3

Page 49: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

There are 32 compact hyperbolic tetrahedrawith kaleidoscopic angles.

There is infinite number of non compacttetrahedra (tetrahedra with vertices beyondinfinity).

There is infinite number of more complexpolyhedra.

A lot of possibilities for fun.

Different Hyperbolic Tetrahedra

Page 50: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

This tetrahedron has icosahedral vertex 532and ideal vertex 333.

Animation.https://youtu.be/AVnNs3dU3-c

Tetrahedron example 1

Page 51: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Tetrahedron has ideal vertex 333.

Horosphere is moving away from that vertex.

Animation.https://youtu.be/F1cDHtS6oeE

Tetrahedron example 2

Page 52: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Animation 1https://youtu.be/tR_IFchXvo8

Animation 2https://youtu.be/-vzEcbNrFnk

Other Cross SectionsSlicing euclidean tiling wih plane also produces interesting results

Page 53: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

VRML model. VRML model.

Spherical Cross Sections

Page 54: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

3D printing involves creation of spherical colormap and applying it to a shape (sphere).

The modeling was done in ShapeJS - onlinetool for making 3d printable models via script.

The 3D printing was done by Shapeways.

3D Printing

Page 55: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

WebGL is web browser API which allow webpages run graphics program directly on usersGPU (graphics card).

WebGL example

Real Time Rendering with WebGL

Page 56: 3D Hyperbolic Tiling and Horosphere Cross Sectionbulatov.org/math/180110/Bulatov V.(2018) Hyperbolic...3D printing involves creation of spherical color map and applying it to a shape

Online adress of the talkhttp://bulatov.org/math/180110/

End