4. mechanical properties of polymerspt.bme.hu/~vas/phd_polymer materials...

26
1 1 Polymer Materials Science BMEGEPT9107, 2+0+0, 3 Credits Lecturer: Prof. Dr. László Mihály Vas Budapest University of Technology and Economics Department of Polymer Engineering 2016.11.24. 4. Mechanical Properties of Polymers 2 Polymer Materials Science Books, textbooks, lecture notes, guides G. Bodor: Structural investigation of polymers. Akadémai Kiadó, Budapest; Ellis Horwood, Chichester, 1991. I.M. Ward, D.W. Hadley: An introduction to the mechanical properties of solid polymers. J. Wiley & Sons, Chichester – New York, 1993. T.A. Osswald, G. Menges: Materials Science of polymers for engineers. Hanser Pub., New York, 1996. L.M. Vas: Lecture notes, ppt slides, http://pt.bme.hu/~vas G. Strobl: The Physics of Polymers. Concepts of Understanding their Structures and Behaviour. Springer Verlag, Berlin. 1996. 2016.11.24.

Upload: others

Post on 23-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

1

1

Polymer Materials ScienceBMEGEPT9107, 2+0+0, 3 Credits

Lecturer: Prof. Dr. László Mihály Vas

Budapest University of Technology and EconomicsDepartment of Polymer Engineering

2016.11.24.

4. Mechanical Properties of Polymers

2

Polymer Materials ScienceBooks, textbooks, lecture notes, guides

� G. Bodor: Structural investigation of polymers. Akadémai Kiadó, Budapest; Ellis Horwood, Chichester, 1991.

� I.M. Ward, D.W. Hadley: An introduction to the mechanical properties of solid polymers. J. Wiley & Sons, Chichester – New York, 1993.

� T.A. Osswald, G. Menges: Materials Science of polymers for engineers. Hanser Pub., New York, 1996.

� L.M. Vas: Lecture notes, ppt slides, http://pt.bme.hu/~vas

� G. Strobl: The Physics of Polymers. Concepts of Understanding theirStructures and Behaviour. Springer Verlag, Berlin. 1996.

2016.11.24.

Page 2: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

2

3

Polymer Materials ScienceRecapitulation

� Structure of Polymers (microscale levels)

• Atomic structure• Molecular structure• Morphological or fine structure

� Properties of Polymers (macroscale levels)

• Mechanical properties• Effect of temperature• Effect of humidity• Other properties

2016.11.24.

2016.11.24. 4

Content of Polymer Materials ScienceRecapitulation

� Polymer materials, typical material classes, molecular and morphological structure of polymers, polymer blends and alloys

� Testing methods of polymer structures

� Mechanical behavior of polymer materials

� Behavior of polymers under changing temperature, humidity and other environmental factors

� Strength and fracture-mechanical properties of polymers

� Phenomenological modeling of the mechanical behaviors of solid polymers

� Statistical-mechanical modeling of polymers

Page 3: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

3

5

Classification of PolymersRecapitulation

� Classification in respect of structure

• Linear polymers (linear, chain molecular structure)

- Semi-crystalline polymers (e.g. PE, PP, PA, PAN, PET)

- Amorphous polymers (PVC, PS, PMMA, PC)

• Crosslinked polymers (network structure – amorphous polymers.)

- Elastomers (weakly cross-linked, e.g. rubbers: NR, BR, PUR)

- Duromers (strongly cross-linked; resins: e.g. UP, EP, VE)

� Classification in respect of thermal and mechanical behavior

• Thermoplastics (they can be molten reversibly ⇒ linear polymers; e.g. PE, PP, PA, PET, PVC, PS, PMMA, PC)

•Non-thermoplastics - thermosets- Linear polymers (Kevlar, PAN, cellulose, chitin, protein)- Crosslinked polymers (elastomers, duromers)- Semi-crosslinked & semi-crystalline polymers (wool fiber, XPE)

2016.11.24.

6

Micro- and

macrostructural

levels of

polymersRecapitulation

Properties measurable on

macro-level are the resultant

of the microscale ones.

• Density

• Mechanical properties

• Thermal properties

• Moisture take up

• Others

Structural graph

2016.11.24.

Page 4: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

4

7

Mechanical properties 1.

� Micro- and macro-deformation components

Microdeformation components Macrodeformation components

• Energy elastic (εU) - reversible

• Entropy elastic (εS) - reversible

• Energy dissipating (εD) - irreversible

→→→→

→→→→

→→→→

• Elastic (εe)

(Mech: reversible)

(Tdyn: reversible)

• Delayed elastic (εd)

(Mech: reversible)

(Tdyn: irreversible)

• Remaining (εr)

(Mech: irrev.)

(Tdyn: irreversible)

2016.11.24.

8

Mechanical properties 2.

� General scheme of mechanical tests

A – sample, material-operator: Y(t)=A[X](t)

Stimulus Response

2016.11.24.

Step function Ramp function Sinusoidal function

Page 5: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

5

9

Mechanical properties 3.

� Time dependent mechanical properties - Creep

ATP WCE

LDPELDPE

Creep compliance:

Total strain of polymer:

ε(t)=εe+εd(t)+εr(t)

2016.11.24.

10

Mechanical properties 4.

� Time dependent mechanical properties – Stress relaxation

ATP WCERelaxation modulus:

Total strain of polymer:

ε(t)=εe+εd(t)+εr(t)

2016.11.24.

Page 6: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

6

11

Mechanical properties 5.

� Time dependent mechanical properties – Quasi-static

hysteresis

ATP WCEStimulus

XY-Record

RelaxationCreep

Total strain of polymer:

ε(t)=εe+εd(t)+εr(t)

Sample: flexible foil, roving, fiber

A

2016.11.24.

12

Mechanical properties 9.

� Dynamic tests - periodic and impact loads

Dynamic test: Speed of stimulus is too large to neglect the inertial forces

Characterizing testing time [s]

Deformation speed [1/s]

Creep

Creep

tests

Impulse-like

tests

Impact

tests

Quasy-static

tests

Quasy-static

deformation

Wave propagation

of large speed

Tran-sition range

Elastic waves

2016.11.24.

Effect of deformation-rate on the load-strain curve

Major Z.: Dinamikus mechanikai vizsgálatok … Anyagvizsgálók Lapja 1995/1. 21-24.

Page 7: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

7

13

Mechanical properties 7.

� Time dependent mechanical properties - Dynamic tests

Deformation stimulus: step + sinusoidal

Stress response: relaxation + sinusoidal

Removing the relaxation response:

By high-pass filtering

(oscilloscope setting: AC mode)

A

2016.11.24.

Mechanical properties 7.

Strain stimulus: sinusoidal

Stress response: sinusoidal

Test condition: Linear viscoelastic (LVE) behavior

Performing: With small enough stimulus amplitude

δδδδ = delay in phase

Analysis of the filtered sinusoidal response

Energy loss/period:

Dynamic

hysteresis

142016.11.24.

� Time dependent mechanical properties - Dynamic tests

Page 8: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

8

15

Mechanical properties 8.

� Time dependent mechanical properties - Dynamic hysteresis

Dynamic material behaviors

Complex elastic modulus

Complex elastic modulus

and its components

Loss modulus

Loss factor

Dynamic or storage modulus

2016.11.24.

Ideally elastic Viscoelastic Ideally viscous

16

Mechanical properties 8a.

� Time dependent mechanical properties - Dynamic viscosity

Dynamic tensile flow –

under normal stress

Dynamic shearing flow –

under shear stress

Complex tensile viscosity Complex shear viscosity

2016.11.24.

Components: Components:

Page 9: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

9

17

Mechanical properties 8b.

� Time dependent mechanical properties - Dynamic viscosity

Cox-Merz rule

The chord slope of the measured shear rate vs. shear stress curve (chord-viscosity) can be identified as the magnitude of the complex viscosity.

De Witt rule

Concerning the effect the angular frequency, ω, and the quasi-static shear rate are similar:

2016.11.24.

18

Mechanical properties 9.

� Quasi-static strength properties of polymers

Effect of drawing on the tensile test curve of fibers

Relationships between the structural and strength properties

Bobeth W.: Textile Faserstoffe. Springer-Verlag, Berlin 1993.2016.11.24.

BendingCompression

Tensile test

Page 10: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

10

19

Mechanical properties 9.a.

� Quasi-static strength properties of polymers

Effect of spherulitic structure and spherulite-size on the deformability of

polyolefins

Menges G.: Werkstoffkunde der Kunststoffe Hanser V. München, 1985.

2016.11.24.

Spherulite size

20

Mechanical properties 11.

� Toughness, impact strength of polymers

WRI – work up to starting crack/fracture

WRT – work of crack propagation

WT=WRI+WRT – total fracture work

Experience:

When modulus increases ⇒ impact

strength decreases

Pulse-like stimulus forms

Notched specimen form

2016.11.24.

Page 11: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

11

21

Mechanical properties 12.

� Long-term strength properties of polymers

Basis of designing

polymer parts:

• Small deformability:σB,t – duration strength

σB,∞ - fatigue strength

• Large deformability:σε,t – duration stress

Creep curves

Stress-time curves

2016.11.24.

22

Effect of temperature 3.

� Polymer material classes based on structure and thermal behavior

I. Amorphous (A) polymers

• Linear (L)>Thermoplastics (ATP)

Thermoplastic elastomer (ATPE)>Not thermoplastic

• Crosslinked (C)>Slightly crosslinked

Elastomers (SCE or R)

>Highly crosslinked (resins, HCR)

II. Semicristalline (S) polymers

• Linear (L)>Thermoplastics (STP)

Thermoplastic elastomer (STPE)>Not thermoplastic

• Post-crosslinked (e.g. PEX)

CelluloseProtein

Elastomer

PEX

2016.11.24.

Polymers

L

A

S

C

Page 12: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

12

Effect of temperature 2.

Amorphous polymer physical

states by chain heat motion:

• Glassy (G): mB, MB

• Rubbery (R): mB, MB

• Viscous (V): mB, MB

× ××

Heat motion types of chains:

• Micro-Brownian (mB): center of gravity

remains at place

• Macro-Brownian (MB): center of gravity

displaces

Transition temperatures:

• Tg : glassy

• Tm : crystal melting

• Tf : flow

• Td : decomposition (=Tb)

∆Gm=∆Hm-Tm ∆Sm=0 ⇒ Tm=∆Hm/∆Sm

232016.11.24.

≤≤≤≤

� Physical states of polymers

Physical condition

Solid Liquid Gas

Crystal-

line

phase

Amor-

phous

phase

Crystal +

Glassy

Amorph.

Crystal +

Rubbery

amorph.

Rubbery

amorph.

Viscous

liquid

Td

24

Effect of temperature 2.

� Measuring methods of thermomechanical curves

TMA

HCTT

11/24/2016

Y(T)=ε(to,T,σo), or

Y(T)=σ(to,T,εo)

DMA

Y1(T)=σB(T,v)

Y2(T)=εB(T,v)

Y1(T)=E’(T,ω),

Y2(T)=E”(T,ω) or

d(T, ω)

Page 13: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

13

25

Effect of temperature 4.

� Thermomechanical curves of ATP

TMA curves

(Thermomechanical

analyzer)

HCTT curves

(Heat chamber tensile

tester)

2016.11.24.

DMA/DTMA curves

(Dynamic

thermomechanical

analyzer)

Tb=Td

Glassy state

Rubbery state

Viscous flowstate

Effect of temperature 3.

G

R V

εdom=εεεεe εdom=εεεεd εdom=εεεεr

Tr= rigidity temperature

26

Single phase: amorphous

2016.11.24.

E.g.: PS, SB, ABS, PVC, PC, PVAL, PMMA

εdom=dominant strain

� Thermomechanical curves of ATP

Viscous flow state

Glassy state

Rigidity

Tem

per

ature

Glassy state

Forced elasticity

Rubbery state

CLDCLD - Cross link density

Glassy state

Rubbery state

Viscous flow state

T

Transition temperatures vs. molecule mass

Effect of T, m, and CLD

Tb=Td

lg (msegm)

Page 14: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

14

27

Effect of temperature 5.

� Thermomechanical curves of ATP

Crosslinked

• Slightly crosslinked (SC)▬ Slightly crosslinked elastomers (SCE)

(Tg< 0oC; at Tg+20oC: > 100%

deformability)

• Medium crosslinked (MC)▬ Thermo-elastomers (MCE)

(Tg> 20oC; at Tg+20oC: > 100%

deformability)

• Highly crosslinked (HC) ▬ Resins/duromers (Tg> 50

oC)

RG

Single phase:

amorphous

2016.11.24.

E.g.: NR, BR, CR, PUR

Tb=Td

CLD

Glassy state

Rubbery state

Rubbery

state

ELASTOMER

Glassy

state

THERMO-ELASTOMER

CLD – Cross-link density

Glassy state

28

Effect of temperature 5.

� Effect of mixture ratio (a) and softener (b) on the thermomechanicalcurves of ATP

Softener contentincreases

2016.11.24.

As the effect of softener Tg (and/or Tm )

decreases by:

• Copolymerization (mainly: Tg),

• Softener (PVC: Tg),

• Moisture content (PA: mainly Tg)

Estimation of Tg :(short block copolymer)

Two phases detected ⇒ Non-miscible polymer blend

Page 15: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

15

Effect of temperature 5.

E’

G

R

CC

R V

εdom=εεεεe εdom=εεεεd εdom=εεεεrεdom=εεεεe+ εεεεd

<

DMA

TMA

HCTT

Tm<Tf<Tb Two phases: amorphous + crystalline

Tm<Tf<Tb

292016.11.24.

E.g.: PCTFE=PTFCETb=Td

� Semi-crystalline thermoplastic polymers (STP)

Crystal +Glassy amorphous

Crystal +Rubbery amorphous

Viscousliquid

Rubbery amorphous

Crystal

+

Glassy

Am.

Crystal

+

Rubbery

Am.

Rubbery

Am.Visc.

liqu.

30

Effect of temperature 8.

� Semi-crystalline thermoplastic polymers (STP)

Tf < Tm <Tbb

Effect of

crystallinity

<

G

C

R

V

C

2016.11.24.

E.g.: PE, PP, POM, PA, PET, PBT

Tb=Td

Two phases: amorphous + crystalline

Crystallinity [%]

Crystal +Glassy amorphous

Crystal +

Rubbery

amorphous

Viscousliquid

CLD

Secundary dispersionregions G”

Crosslinked am.

Crosslinked am.

Page 16: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

16

31

Effect of temperature 9.

� DMA curves of PE

• E’ monotonously decreases with T in general

• E’ may slightly increase in rubbery state.

• Otherwise increase in E’ refers to changes in structure (crystallization, crosslinking) during

measurement.

Kóczy L.: Szálasanyagok általános jellemzői. In: Textilipari Kézikönyv. Műszaki K. Bp. 1979.

2016.11.24.

32

Effect of temperature 9.

� Relationship between Tmand the structural properties

Thomson’s formula

Effect of the mean molecule mass (m): Effect of the crystallite size (h):

Ratio of Tm and Tg :(lamella of h-thickness and ∞-width;σe= surface stress∆Hcm=melting heat of crystal element)

(qm=specific melting heat)

ho=thickness of the basic element.

Tm is determined by

the thermodynamics:

2016.11.24.

Fre

quen

cy

Page 17: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

17

33

Effect of temperature 10/1.

� Amorphous thermoplastic elastomer

(ATPE) – DMA curves

Copolymer (A,B)

The hard (B)

segment is

glassy amorphous

2016.11.24.

Hard

Soft

Glassy

Rubbery AGlassy B

Rubber

yA

, B

Vis

cous

liquid

34

Effect of temperature 10/2.

� Semicrystalline thermoplastic elastomer

(RTPE) – DMA curves

Copolymer (A,B)

The hard (B)

segment

is crystallized.

2016.11.24.

Hard

Glassy

Cryst.

Rubbery ACryst. B

Vis

cous

liquid

Soft

Page 18: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

18

35

Effect of temperature 8.

� DMA curves of drawn HDPE depending on the direction

HDPE

E’=E1

E”=E2

2016.11.24.

36

Effect of temperature 9.� DMA curves of amorphous (APET) and crystalline (CPET) polyesters

2016.11.24.

Cold crystallization

Page 19: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

19

37

Effect of temperature 12.

Polymermaterial

Tg[Co]

Tm[Co]

Tf[Co]

Tb[Co]

PE -LDPE-HDPE

-90...-25-120...-70

-124...138

PP - isotactic -35...-10 163...175 175 328...410

PVC – amorph. 60...105 - 150...180 185

PS 90...110 - 160...240

PAN 50...100 - - 300...330

PTFCE 45

PTFE -113, +127 325...330 - 425

PA6 40...60 215...220 310...380

PA6.6 45...65 250...260 310...380

PES -PETP 69...80 250...280 283...306

POM -85 178...198

PEEK 143 335

PC 130...180 255...267

PMMA 45...120

Polyisoprene(natural rubber)

-73

Aramid-Kevlar 300 550

� Heat expansion: larger by 8-10-times than that of metals

� Heat conductive factor: smaller by 1-3 magnitudes than that of metals

� Specific heat is larger, heat capacity is much smaller than those of metals

� Rigidity temperature(fragility, Tfr=Tr) measurement:

2016.11.24.

Sample

38

Effect of temperature 13.

� Tensile test curves of ATP (a) and STP (b) polymers as a function of temperature

ATP (inclined to crystallization) STP

11/24/2016

Str

ess

Deformation

Str

ess

Deformation

Temperature

Load rate

High

||||Low

Low

||||High

Crosslinked

polymers

(duromer,

elastomer)

Linear

polymers

(thermopl.)

Page 20: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

20

39

Effect of temperature 14.

� Effect of changing temperature rate

Tg increases with cooling rate ⇒ the glassy transition is of more

kinetic (heat motion related) than thermodynamic nature.

Javorszkíj – Detlaf: Fizikai zsebkönyv.

Műszaki K. Bp. 1974.

Hertzberg R.W.: Deformation and fracture

mechanics … J.Wiley, New York, 1989.

2016.11.24.

ATP STP

Crystal

Glass

LiquidOver-cooledliquid

40

Effect of temperature 11.

� Effect of excitation frequency (f) and temperature (T) on

thermomechanical curves of different types

•••• Phenomenon of mechanical glassing: shifting effect of frequency on Tg

•••• Temperature-time equivalence: by similar effects T~logto~log(1/f)

Increasing IncreasingIncreasing

log Frequency (f) Temperature (T) log Load time (to)

log

Modulu

s

Loss

fac

tor

log

Modulu

s

Loss

fac

tor

log

Modulu

s

Loss

fac

tor

2016.11.24.Ritchie – Critchley – Hill: Lágyítók, stabilizátorok, töltőanyagok. Műszaki K. Bp. 1976.

Page 21: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

21

41

Effect of temperature 16.

� Using temperature-time superposition for accelerating long term tests in case of ATP (a) and STP (b)

STP: Shifting by Arrhenius (Arrh)

equation (or a combination of WLF

and Arrh. formulae depending on

the temperature ranges)

ATP: Shifting by WLF equation

(determination is based on free-

volume theory

Time-shifting factor Modulus-shifting factor:

Thermo-rheologically simple material:

aT and bT depend on T only

11/24/2016

42

Effect of temperature 16.� Derivation of the shifting factor

STP: by Arrhenius equation

ATP: Derivation of the WLF equation based on the free-volume theory

Doolittle’s viscosity equation:

Free-volume fraction: Relaxation time:

Heat expansion coefficient:

2016.11.24.

Page 22: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

22

43

Effect of temperature 12.

� Use of temperature-time equivalence for speeding the long-term tests – constructing master curve in case of ATP

Shift: with WLF equation

aT = shifting factor

Relaxation

measurements

Master curve at 25oC

E, R

ela

xati

on

mod

ulu

s [G

Pa]

Temperature, T[oC]

Time, t[hour]

2016.11.24.

c1= -17,44; c2=51,6 oC

Tg< T<Tg+100Castiff E.-Tobolsky T.S.: J. Colloid Sci. 1955.

44

Effect of temperature 16.� Use of temperature-time equivalence for speeding the long-term tests – constructing master curve in case of ATP and STP

Creep shear relaxation modulus of PS (a) and tensile relaxation modulus of PE (b) as a function of the loading time at different temperatures and the constructed master curves

Thamm F.: Műanyagok szilárdságtana. TK.19722016.11.24.

Shea

r re

laxa

tion m

odulu

s, G

Load time, t [sec] Load time, t [sec]

Shea

r re

laxat

ion m

odulu

s, G

Ten

sile

rel

axat

ion m

odulu

s, E

Ten

sile

rel

axat

ion m

odulu

s, E

Load time, t [sec]

Load time, t [sec]

Page 23: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

23

45

Effect of temperature 16.

� Use of other superposition principles for speeding up the long-term tests

Generalized shift factor:

Joint effect of the temperature (T) and water content (w) on the measured and calculated shear creep of UP; the calculation was performed with taking into account of the effect of T and w (record 1) as well as that of only T (record 2)

Resultant shift factor (thermo- and hydro-rheologicallysimple material):

Urzsumcev-Makszimov: MK.1982.2016.11.24.

46

Effect of temperature 16.a.

� Influence of temperature on processing/application

� Basic properties of melt processing

Spencer-Gilmore state-equation

ATP: To=Tf

STP: To=max (Tm, Tf)

Arrhenius relation

Shear viscosity

Ef= activation

energy of flow

N= number of molecules

po= internal pressure (interaction of molecules)

Vo= own volume of molecules

2016.11.24.

Page 24: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

24

47

Effect of water content 1.

� Polymer states depending on the solvent concentration

Crystal+

Amorph.

Crystal+

Amorph.Amorph. Amorphous

LiquidSolid

PHYSICAL CONDITION

Polymer

Solvent

Dry Swollen Solution

2016.11.24.

Bobeth W.: Textile Faserstoffe. Springer-

Verlag, Berlin. 1993.Condition of dissolving: ∆GO=∆HO-T ∆SO<0

Dissolving of a semi-crystalline polymer

Solvent

Cross-bond

Polymer solution

48

Effect of water content 2.

� Dissolving process – temperature dependent stages

(oldat)

2016.11.24.

Polymer

Solvent

Gel layer

Liquid layer (solution)

Infiltration layer

Swollen solid polymer layer

Page 25: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

25

49

Effect of water content 2.

� Mechanism of water take up and its softening effect

Ways of water take up:

• Diffusive – direct (b)

– indirect (c)

• Capillary (d)

PAPolar molecule

Humidity = constantDrying

Moisturing

Humidity[%]Time

Humidity[%]

Drying

Moisturing

Wat

er c

onte

nt

Wat

er c

onte

nt

Wat

er c

onte

nt

Water content at equilibrium

Hyteresis

Macromolecule

Direct

Indirect

11/24/2016

Dry

Wet

50

Effect of water content 4.� Time dependent process of liquid uptake

Water uptake of PET fiber bundle tested

by Krüss K12 micro-tensiometer

2016.11.24.

Czél G.: Nem kör keresztmetszetű kompozit csövek

viselkedésének elemzése. PhD, BME Bp. 2009.

An invertible explicit approximate solution of Lucas-

Washburn equation that is suitable for describing

both capillary and diffusive liquid uptake:

UP resin uptake of glass fiber mat

tested by Krüss K12 micro-tensiometer

UP resin uptake of glass fiber mat

in vacuum-injection tool

Vas L.M., Gombos Z., Nagy V.: Evaluation method of liquid uptake measurements

based on approximate invertible solution of the LW equation, (in press)

UP/üvegszál

Different approximate functions of water uptake

Measured

Function by Vas

Power function

Function by Ellyin

UP/glass fiber

Page 26: 4. Mechanical Properties of Polymerspt.bme.hu/~vas/PhD_Polymer Materials Science/PolMatsScience_LM… · 3 5 Classification of Polymers Recapitulation Classification in respect of

26

51

Polymers in the technoclimate 1.

� Environmental effects in the technoclimate

PP – polymer

part

Technoclimate

2016.11.24.

52

Polymers in the technoclimate 2.

� Aging, decomposition processes

Gradual (a) and sudden (b) depolymerization

Degradation (a) and elimination (b)

Depolymerization:

PS, PMMA

Degradation: PA

Elimination: PVC (HCL pre-

cipitation)

Migration: PVC (colour, softener)

In addition a slight crosslinking can take place, as well.

2016.11.24.