441 lecture 10

Upload: nanduslns07

Post on 02-Apr-2018

223 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 441 Lecture 10

    1/19

    Spacecraft and Aircraft Dynamics

    Matthew M. Peet

    Illinois Institute of Technology

    Lecture 10: Linearized Equations of Motion

  • 7/27/2019 441 Lecture 10

    2/19

    Aircraft DynamicsLecture 10

    In this Lecture we will cover:

    Linearization of 6DOF EOM

    Linearization of Motion

    Linearization of Forces Discussion of Coefficients

    Longitudinal and Lateral Dynamics

    Omit Negligible Terms

    Decouple Equations of Motion

    M. Peet Lecture 10: 2 / 19

  • 7/27/2019 441 Lecture 10

    3/19

    Review: 6DOF EOM

    FxFyFz

    = m

    u + qw rvv + ru pww + pv qu

    and

    L

    M

    N

    =

    Ixx p Ixz r qpIxz + qrIzz rqIyyIyy q+ p

    2Ixz prIzz + rpIxx r2Ixz

    Ixz p + Izz r + pqIyy qpIxx + qrIxz

    M. Peet Lecture 10: 3 / 19

  • 7/27/2019 441 Lecture 10

    4/19

    Linearization

    Consider our collection of variables:

    X, Y, Z, p, q, r, L, M, N, u, v, w... also dont forget ,, .

    To Linearize:Step 1: Choose Equilibrium point:X0, Y0, Z0, p0, q0, r0, L0, M0, N0, u0, v0, w0.

    Step 2:Substitute.

    u(t) = u0 + u(t) v(t) = v0 + v(t) w(t) = u0 + w(t)

    p(t) = p0 + p(t) q(t) = q0 + q(t) r(t) = r0 + r(t)

    X(t) = X0 + X(t) Y(t) = Y0 + Y(t) Z(t) = Z0 + Z(t)

    L(t) = L0 + L(t) M(t) = M0 + M(t) N(t) = N0 + N(t)

    Step 3: Eliminate small nonlinear terms. e.g.

    u(t)2 = 0, u(t)r(t) = 0, etc.

    M. Peet Lecture 10: 4 / 19

  • 7/27/2019 441 Lecture 10

    5/19

    LinearizationStep 1: Choose Equilibrium

    For steady flight, let

    u0 = 0 v0 = 0 w0 = 0

    p0 = 0 q0 = 0 r0 = 0

    X0 = 0 Y0 = 0 Z0 = 0

    L0 = 0 M0 = 0 N0 = 0

    Other Equilibrium Factors

    Weight

    Weight: Pitching Motion changes forcedistribution.

    X0 = mg sin 0

    Z0 = mg cos 0

    M. Peet Lecture 10: 5 / 19

  • 7/27/2019 441 Lecture 10

    6/19

    LinearizationStep 2: Substitute into EOM

    We use trig identities and small angle approximations ( small):

    sin(0 + ) = sin 0 cos + cos 0 sin= sin 0 + cos 0

    cos(0 + ) = cos 0 cos sin 0 sin= cos 0 sin 0

    M. Peet Lecture 10: 6 / 19

  • 7/27/2019 441 Lecture 10

    7/19

    LinearizationStep 2: Substitute into EOM

    Substituting into EOM, and ignoring 2nd order terms, we get

    u + g cos 0 =X

    m

    v g cos 0 + u0r =Y

    m

    w + g sin 0 u0q =Z

    m

    p =Izz

    IxxIzz I2xzL +

    Ixz

    IxxIzz I2xzN

    q =M

    Iyy

    r =Ixz

    IxxIzz I2xzL +

    Ixx

    IxxIzz I2xzN

    Note these are coupled with , .

    M. Peet Lecture 10: 7 / 19

  • 7/27/2019 441 Lecture 10

    8/19

    LinearizationStep 2: Substitute into EOM

    We include expressions for , .

    = q

    = p + r tan 0

    = r sec 0

    For steady-level flight, 0 = 0, so we can simplify

    = q

    = p

    = r

    which is what we will mostly do.

    M. Peet Lecture 10: 8 / 19

  • 7/27/2019 441 Lecture 10

    9/19

  • 7/27/2019 441 Lecture 10

    10/19

    LinearizationForce Contribution

    Out of (u,v,w, u, v, w ,p,q,r, a, e, r, T), we make the restrictive

    assumptions on form (Why?): X(u, w, e, T)

    Y(v, p, r, r)

    Z(u, w, w, q, e, T)

    L(v, p, r, r, a) M(u, w, w, q, e, T)

    N(v, p, r, r, a)

    where we have following new variables

    T - Throttle control input.

    e - Elevator control input.

    a - Aileron control input.

    r - Rudder control input.

    It could be worse ( , , ). Reality is worse.

    M. Peet Lecture 10: 10 / 19

  • 7/27/2019 441 Lecture 10

    11/19

    LinearizationForce Contribution

    To linearize the forces/moments we use first-order derivative approximations:

    X =X

    uu +

    X

    ww +

    X

    ee +

    X

    TT

    Y =Y

    vv +

    Y

    pp +

    Y

    rr +

    Y

    rr

    Z =Z

    uu +

    Z

    ww +

    Z

    w w +

    Z

    qq+

    Z

    ee +

    Z

    TT

    L =L

    vv +

    L

    pp +

    L

    rr +

    L

    rr +

    L

    aa

    M =M

    u u +M

    w w +M

    w w +M

    q q+M

    ee +

    M

    TT

    N =N

    vv +

    N

    pp +

    N

    rr +

    N

    rr +

    N

    aa

    M. Peet Lecture 10: 11 / 19

  • 7/27/2019 441 Lecture 10

    12/19

  • 7/27/2019 441 Lecture 10

    13/19

    Longitudinal Dynamics

    Although we now have many equations, we notice that some of them decouple:

    u + g cos 0 =

    X

    m

    w + g sin 0 u0q =Z

    m

    q =M

    Iyy

    = q

    where 1

    mX = Xuu + Xww + Xee + XTT

    1

    mZ = Zuu + Zww +

    Z

    w w + Zqq+

    Z

    e

    e + ZTT

    1

    IyyM = Muu + Mww + Mw w + Mqq+ Mee + MTT

    and also, x = u cos 0 u0 sin 0 + w sin 0

    z = u sin 0 u0 cos 0 + w cos 0

    M. Peet Lecture 10: 13 / 19

  • 7/27/2019 441 Lecture 10

    14/19

    Simplified Longitudinal Dynamics

    Note = q

    u + g cos 0 = Xm

    w + g sin 0 u0 =Z

    m

    =M

    Iyy

    where

    1

    m

    X = Xuu + Xww + Xee + XTT

    1

    mZ = Zuu + Zww + Zw w + Zq + Zee + ZTT

    1

    IyyM = Muu + Mww + Mw w + Mq + Mee + MTT

    M. Peet Lecture 10: 14 / 19

  • 7/27/2019 441 Lecture 10

    15/19

    Simplified Longitudinal Dynamics

    Combining:

    u + g cos 0 = Xuu + Xww + Xee + XTT

    w + g sin 0

    u0

    = Zuu + Zww + Zw w + Zq

    + Zee + ZT T

    = Muu + Mww + Mw w + Mq + Mee + MTT

    Homework: Put in state-space form. Hint: Watch out for w.

    M. Peet Lecture 10: 15 / 19

  • 7/27/2019 441 Lecture 10

    16/19

    Lateral Dynamics

    The rest of the equations are also decoupled:

    v g cos 0 + u0r =

    Y

    m

    p =Izz

    IxxIzz I2xzL +

    Ixz

    IxxIzz I2xzN

    r =Ixz

    IxxIzz I2xzL +

    Ixx

    IxxIzz I2xzN

    = p + r tan 0

    where 1

    mY = Yvv + Ypp + Yrr + Yrr

    1

    Izz L = Lvv + Lpp + Lrr + Lrr + Laa

    1

    IxxN = Nvv + Npp + Nrr + Nrr + Naa

    and alsoy = u0 cos 0 + v

    M. Peet Lecture 10: 16 / 19

    Al i R i

  • 7/27/2019 441 Lecture 10

    17/19

    Alternative Representation

    M. Peet Lecture 10: 17 / 19

    C l i

  • 7/27/2019 441 Lecture 10

    18/19

    Conclusion

    Today you learned

    Linearized Equations of Motion:

    Linearized Rotational Dynamics

    Linearized Force Contributions New Force Coefficients

    Equations of Motion Decouple

    Longitudinal Dynamics

    Lateral Dynamics

    M. Peet Lecture 10: 18 / 19

    C l i

  • 7/27/2019 441 Lecture 10

    19/19

    Conclusion

    Next class we will cover:

    Longitudinal Dynamics:

    Finding dimensional Coefficients from non-dimensional coefficients Approximate modal behaviour

    short period mode phugoid mode

    M. Peet Lecture 10: 19 / 19