5 ad conversion

Upload: reddy-babu

Post on 07-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 5 AD Conversion

    1/46

    5 Analog/Digital-Conversion

    5.1 Components of A/D-ConvertersSample and hold circuit, Quantisation

    P. 5-1Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.3 Iterative A/D-Converter 5.4 A/D-Converter with an Intermediate Quantity

    5.5 Sigma-Delta-Converter

    5.6 Errors by A/D-Converters

    5.2 Flash A/D-Converter

  • 8/19/2019 5 AD Conversion

    2/46

    5.1 Components of A/D-Converters

    Analog Mul t ip lexer

    (MUX)

    Selects anInput Channel

    AnalogInputs

    Control

    Sample & Hold (S&H)

    Holds the Analog

    ValueConstantduring the

    ConversionTime

    Analog Digi ta l

    Conver ter

    Quantisation

    Coding

    Digital-Value

    SOC EOC

    MUX- Address S&H....

    start endof conversion

    0100

    Pref i l te r ing

    Keeps theSamplingTheorem

    f 0

    g Sampl f f 2

    P. 5-2Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

  • 8/19/2019 5 AD Conversion

    3/46

    Sampling

    Autliers Autliers

    Earlier or later sampling gives adifferent result

    P. 5-3Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

    Signal Frequency

    “Apparent”Frequency

    Sampling pulses

  • 8/19/2019 5 AD Conversion

    4/46

    k ea kT t t x t x

    0

    Sampling

    t x e dt et x X t j ee )(Fourier Transformation

    Inverse Fourier Transformation

    dt e X t x t j ee )(21

    Multiplication in Time Domain Convolution in Frequency Domain

    )(t ut x ')'()'()( d U X U X

    Sampl f T

    10 Sampling Periode

    P. 5-4Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    5/46

    k

    ea kT t t x t x 0

    Sampling

    n T nf

    T 001

    k kT t 0 0T : Sampling Periode

    t x e e X

    ne

    en

    en

    n

    ea

    T n

    f X T

    duuf X T

    nu

    T

    duuf X T n

    uT

    T

    nf

    T

    f X f X

    00

    00

    00

    00

    1

    1

    1

    1

    (Changing Summation and Integral)

    (Dirac-Function)

    P. 5-5Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    6/46

    Sampling

    Example Convolution ')'()'()( d U X U X

    )'( X

    '

    )'( U

    '

    )'( U

    '

    )'( U

    '

    Mirroring

    Translation

    P. 5-6Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    7/46

    )'( X

    '

    Sampling

    Example Convolution

    )'( X

    '

    1

    Multiplication

    Translation

    Integration

    ')'()'()( d U X U X

    )( U X

    P. 5-7Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    8/46

    SamplingExample Convolution with a Dirac Pulse

    )()()()( 000 t t X d t X t t t t t X

    t

    X(t)

    t

    )( 0t t

    0t

    X(- )

    t

    )( 0t t

    0t t 0t

    )()( 0t t t x

    P. 5-8Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    9/46

    Sampling

    t

    X(t)

    t

    )( i t t

    t

    )()( i t t t x

    1t 2t

    1t 2t

    P. 5-9Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

    Example Convolution with a Dirac Pulse

  • 8/19/2019 5 AD Conversion

    10/46

    SamplingTime Domain Frequency Domain

    Multication Convolution

    P. 5-10Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    11/46

    g Sampl f f 2

    Sampling

    )(2 minmax f f f Sampl or more general

    )(f X e

    f g f

    f Abt f g Abt f f g Abt f f Abt f 2 Abt f 3g f

    2 Abt f

    g Abt f f

    2Overlapping Signal can not be reconstructed

    Sampling theorem by Shannon or Nyquist-Criterion

    P. 5-11Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

    Sampled Signal

    Sampl f 3Sampl f 2Sampl f Sampl f Sampl f

    2Sampl f

    2

    Sampl f

  • 8/19/2019 5 AD Conversion

    12/46

    Anti-aliasing-Filter

    g f

    2Sampl f f Pre-filtering no overlapping!

    g Sampl f f 2 g Sampl f f 3,3

    The slow rate of the Filter should be considered!

    P. 5-12Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    13/46

    Sample & Hold Circuit

    +

    -C

    S 2

    '

    eu

    auC ueu

    S 1Sampling

    Save

    Forward Voltage Follower

    No galvanic Connection tothe input

    eu

    Signal amplitude is hold constantduring A/D-Conversion

    P. 5-13Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

    S 1 S 2opened

    opened

    closed

    closed

    Step 1: Sample

    Step 2: Hold

  • 8/19/2019 5 AD Conversion

    14/46

    Opening the relais Response time andcharging the Capacitance(low pass from Q1 and C)

    Droop (Regeldifferenz):

    Discharge of the Capacitancebecause of leakage currents inQ1 und IC2(~1mV/ms)

    C should habe a high value so that the „Droop“ is minimizedC should have a low value, so that fast changing signals can be followed

    P. 5-14Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

    Sample & Hold Circuit

  • 8/19/2019 5 AD Conversion

    15/46

    Quantisation step12 2

    max, eq

    U U

    Number of Digits

    Number of

    Output Stages

    3 = 2 2-1

    N-digits number

    12max,

    N e

    q

    U U

    2-digits number

    Quantisation noise

    qqe

    Um U U U

    U 122

    12

    max,qqN

    eUm U U

    U U

    1221 max,

    1221 max,

    N eU

    2 N

    n= 2 N

    2N-1

    4=2 2

    Number of counting steps

    Shift Thresholds at

    1221

    6 2max,max, ee U U

    N-Digits digital number

    01z z 011 z z z N

    P. 5-15

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    16/46

    Quantisierungsfehler

    1221

    21

    2

    minmax

    minmax

    N

    LSBung quantisier

    X X

    StepsOutput X X X

    error

    minmax X X : Analog values sector

    N : Number of Digits

    eff noise

    eff signal

    U

    U dB

    N S

    ,

    ,lg20

    12

    1 2

    2

    2

    ,LSB

    T

    T LSBeff noise

    U dt

    T t

    U T

    U

    Signal-Noise-ratio

    P. 5-16Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.1 Components of A/D-Converters

  • 8/19/2019 5 AD Conversion

    17/46

  • 8/19/2019 5 AD Conversion

    18/46

    5.2 Flash A/D-Converter

    P. 5-18Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    PrincipleComparison of the voltage to beconverted with well known graduated reference voltages

    PropertiesResolution 4 to 12 Bit Suitable for a high signal dynamic

    Stufe 1

    Stufe 2

    Stufe 3

    Stufe 4

    Comparators

    BinaryOutputs

  • 8/19/2019 5 AD Conversion

    19/46

    P. 5-19

    Example:Parallel-A/D-Converter with4-Comparators

    1K

    2K

    3K

    4K Voltage Comparator Signals DigitalNumber Output

    00

    4

    2

    4

    1U U U E

    00 43

    42

    U U U E

    00 44

    43

    U U U E

    0U U E

    4321 K K K K 012 z z z

    0001

    0011

    0111

    000

    001

    010

    011

    25,0

    0

    5,0

    75,0

    1111 100 1

    041

    0 U U E

    ref E U U

    Decoder

    0U

    043

    U

    0

    4

    2U

    041

    U

    Conversion Time dependent on switching speed of the comparators and the coder

    – 10 8 Values/sec – high expenditure, 8-Bit ADU necessitates 2 8 – 1 comparators!

    0000

    5.2 Flash A/D-Converter

    5 3 It ti AD C t

  • 8/19/2019 5 AD Conversion

    20/46

    5.3 Iterative AD-Converter Counting Procedure Use of D/A-Converter

    – Count increases by 1 U V increases by Q= U – Reference voltage U V at the output of the DAU – Compare with U e – Equality stop counting – otherwise the counter increased (at clock) – new counter signal is D/A-converted – Procedure is repeated until U V > U e

    Convesion time is dependent on : – Transient behavior of D/A-Converter

    – Switching speed of comparators – Input value – Number of digits n of output(max. 2 n

    steps) – Clock Frequency f

    Advantage: better resolution through moreadjustable steps

    P. 5-20Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    ClockGenerator

    Clock

    Stop

    Comparator

    Stop

    Input

    Erasecount-up counter

    5 3 I i AD C

  • 8/19/2019 5 AD Conversion

    21/46

    5.3 Iterative AD-Converter

    Incremental Follow-Up-Converter

    forward and reverse counter

    By a new conversion U v is notreset to „0“

    Saves time in comparisonwith the incremental converter

    The conversion is terminated,when U v is alternating increased

    and decreased by U

    P. 5-21Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Set

    Count-up

    Counter

    Forward

    Reverse

    Digital-AnalogConverter

    5 3 I i AD C

  • 8/19/2019 5 AD Conversion

    22/46

    Digital- Analog-Converter by Pulse Wide Modulation

    Basic CoponentsDigital stream

    digital Pulse Stream analog Output Signal

    FunctionThe digital pulses have the same frequency

    The pulse wide („High“ -Duration) is proportional to the output voltageThe digital pulse stream is low pass filtered

    The analog output voltage of the low pass filter is proportional to the mean

    duration of the „High“ -level

    RC-low pass filter

    5.3 Iterative AD-Converter

    P. 5-22Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5 4 A/D C t ith I t di t Q tit

  • 8/19/2019 5 AD Conversion

    23/46

    5.4 A/D-Converter with an Intermediate Quantity

    u

    f ||||

    u x N x = f T Tor = k u x T Tor

    VCO(VoltageControlledOscillator)

    &

    T Tor

    u/f-Converter

    u/t-Converter

    ut ||||

    u x &

    Clock Signal f 0

    N x = t f 0 = k‘ u x f 0

    P. 5-23Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5 4 A/D C t ith I t di t Q tit

  • 8/19/2019 5 AD Conversion

    24/46

    P. 5-24

    T x

    T 0=1/ f 0

    t

    t

    t

    t

    T 0

    t

    t

    T x =1/f x

    00 T f

    T T

    N x x

    x x x x T f T T

    N 00

    Periode Duration Measurement Frequency Measurement

    S 0

    ux&S0 ux&S0

    S 0

    uxux

    Counter & x N T 0

    ux

    given

    Counter & x N f 0

    ux

    given

    0f N

    T x x 0T

    N f x x

    x x

    x

    x

    x N f

    f N N

    T T 1

    0

    0

    x x

    x

    x

    x N T

    T N N

    f f 1

    0

    0

    5.4 A/D-Converter with an Intermediate Quantity

    5 4 A/D C t ith I t di t Q tit

  • 8/19/2019 5 AD Conversion

    25/46

    25

    u/f- Sawtooth-Converter

    • Relative slow, sampling time can beuntil 2n / f ref long

    • Sensitive to noise-peaks

    The frequency of occurence of thepulses is dependent on theIntegration time ( t x-t 1)

    If U a reaches U r the relais is closedduring T a

    The capacitance is discharged duringthe constant time T a

    entladen des Kondensators

    Impulsformer

    P. 5-25

    5.4 A/D-Converter with an Intermediate Quantity

    5 4 A/D Converter with an Intermediate Quantity

  • 8/19/2019 5 AD Conversion

    26/46

    u/f- Converter by the charge balancing method

    I 0: Constant current source

    0t t

    0t t r a U U

    mono-stable trigger circuitchanges ist input during T a

    ux is integratedIntegration time isdependent on ux

    Discharging during current sourceis connected

    Faster conversion

    Integration during T a(constant time intervall)

    T g and f g are the maesure for thevoltage U x

    P. 5-26Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.4 A/D-Converter with an Intermediate Quantity

    5 4 A/D Converter with an Intermediate Quantity

  • 8/19/2019 5 AD Conversion

    27/46

    27

    u/t- Pulse Wide Converter

    f N

    RC U

    U x x 0

    RC t U

    U dt U RC

    U U at

    aa 0

    max,0

    0max,1

    0)( 3 t U a

    x x a

    x x a

    t t RC U

    RC t U

    U

    U t U

    300

    max,

    )(

    f N

    U RC U

    t t x x x 0

    3

    5.4 A/D-Converter with an Intermediate Quantity

    5 4 A/D Converter with an Intermediate Quantity

  • 8/19/2019 5 AD Conversion

    28/46

    Dual Slope Voltage-Time -Converter

    -

    +

    -

    +

    Integrator

    Comparator

    Ue

    -Uref

    Rs 1

    s 2 Ua

    Control+Clock

    s

    & Counter Z000000

    Dual-Slope-Converter

    • First, U e is integrated during the given Time intervall T 1, than U a is desintgratedthrough Integration of – U

    ref by 0

    • Is U a=0 reached, the counting is stopped

    • The time intervall T1 is well known but independent on U e

    • The time intervall T 2 of the desintegration is proportional to U e

    P. 5-28Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.4 A/D-Converter with an Intermediate Quantity

    5 4 A/D Converter with an Intermediate Quantity

  • 8/19/2019 5 AD Conversion

    29/46

    -

    +

    -

    +

    Integrator

    Comparator

    Ue

    -U ref

    Rs

    1

    s 2 Ua

    Control+Clock

    s

    & counterZ000000

    Dual-Slope-Converter

    T1(given):Integrator charges the capacitance (counter N 1)

    T2(whilst U a>0) :Integrator discharges capacitance; (counter N 2)

    Typisch: Conversion Time 10 msResolution: >14 bit

    s

    01

    Ua

    T1 T2

    t

    t

    für U e2 >U e1

    P. 5-29Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.4 A/D-Converter with an Intermediate QuantityDual Slope Voltage-Time -Converter

    -

    5 4 A/D Converter with an Intermediate Quantity

  • 8/19/2019 5 AD Conversion

    30/46

    1~ N

    The precision is onlydependent on U ref !

    2~ N

    1

    2

    N N

    U u ref x

    Dual Slope Voltage Time Converter

    • Very high resolution• Slow (typ. f Tast a few10 Hz)• Not sensitive to drift (clock,

    RC,...) and to noise (because ofintegration)

    P. 5-30Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.4 A/D-Converter with an Intermediate Quantity

    01

    )(2

    1

    3

    2

    3

    t

    t

    t

    t ref xa dt U dt u RC

    t U

    0)()( 2312 t t U t t u ref x

    021 N U N u ref x

    -

    5 5 Sigma Delta Converter

  • 8/19/2019 5 AD Conversion

    31/46

    Integrator

    1 Bit-Delta-Modulator

    Prediction

    Error Value

    Analogsignal

    Bit Stream

    1 Bit-Sigma-Delta-Modulator (Smoothed Version of the Delta-Modulator)

    1 Bit-A/D-Converter

    5.5 Sigma-Delta-Converter

    Rising

    more „1“

    DecayMore „0“

    constant valuemore swiches

    y(t)„1“

    „0“t

    t

    Inputsignal

    P. 5-31Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5 5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    32/46

    5.5 Sigma-Delta-Converter

    PropertiesSampling frequency typ. 100 kHzOversampling: f a >> f smaxTyp. 10-24 Bit resolution

    Application in audio technology

    „Delta“ „Sigma“Components

    ref ref U BitstreamU 2

    „1“-Density≈ Information

    Mean value (Bit stream) = Mean Value (Signal) = Mean Value (Feed Back)

    +U ref

    -U ref t

    „1“

    „0“t

    P. 5-32Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    comparator 1 Bit storeintegrator Difference

    AnalogInput

    Clock

    Bit streamoutput

    5 5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    33/46

    Typical: Conversion Time 1 msResolution: >16 bit

    0

    0

    10

    10

    I I K U

    I I K U

    r a

    r a

    1 Word

    01

    T i i C

    U r x a

    V V U N N

    U M x 8,0154

    2

    1

    [Schrüfer]

    5.5 Sigma-Delta-Converter Possible Realisation

    P. 5-33Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5 5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    34/46

    5.5 Sigma Delta Converter

    Integration

    Difference

    Compare with0V

    Fit to the clockedge

    Clock rate =Sampling rate(64-times higher thansignal frequency

    Pulse proportionModulated Signal

    Eingangsspannung bei U ref Less Switching

    P. 5-34Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5 5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    35/46

    P. 5-35http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma_D.html

    5.5 Sigma Delta Converter

    Integration

    Difference

    Compare with0V

    Fit to the clockedge

    Clock rate =Sampling rate(64-times higher thansignal frequency

    Pulse proportionModulated Signal

    5 5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    36/46

    Mean Value of the bit stream corresponds to:Input signal overlapped with disturbing signals

    The more bit stream pulses are used the more precise is the mean valueOversampling is necessary

    Reducing the sampling pointsincreasing resolution

    Input:16 1Bit-Values

    16:1decimation

    Meanvalue

    Output : 4Bit-Value

    Digital Decimation from Bit Stream

    01114375,0167

    5.5 Sigma Delta Converter

    (Down Sampling, reducing the number of samples in a discrete-time signal)

    P. 5-36Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    37/46

    Input Signal

    Input Signal –Feedback Signal

    Feedback Signal

    Integrator Output Signal

    5.5 Sigma Delta Converter

    P. 5-37

    5.5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    38/46

    Comparator

    Bit Stream

    Low Pass Filtered Signal

    Digital Low Pass Filter:

    g

    g

    s s F

    )(

    gesa mt ref N

    N U t U 1)(

    5.5 Sigma Delta Converter

    P. 5-38

    5.5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    39/46

    39

    0 0.5 1 1.5 2 2.5 3x 10-3

    00.5

    1Digital zurückgerechnetes Signal mit Fenster=1

    Zeit ins [s]Amplitudein[V]

    0 0.5 1 1.5 2 2.5 3x 10-3

    00.5

    1Digital zurückgerechnetes Signal mit Fenster=10

    Zeit ins [s]Amplitudein[V]

    0 0.5 1 1.5 2 2.5 3x 10-3

    00.5

    1Digital zurückgerechnetes Signal mit Fenster=50

    Zeit ins [s]Amplitudein[V]

    0 0.5 1 1.5 2 2.5 3x 10-3

    00.5

    1Digital zurückgerechnetes Signal mit Fenstergrösse= 125

    Zeit ins [s]Amplitudein[V]

    0 0.5 1 1.5 2 2.5 3x 10-3

    00.5

    1Digital zurückgerechnetes Signal mit Fenster=500 (eine Periode)

    Zeit in [s]Amplitudein[V]

    Example. Window 1

    Example. Window 2

    The bigger the window is, thesmaller the limit frequency of

    the digital Low PassMean ValuePhase Shift

    125120

    196.0

    12594

    175.0

    5.5 Sigma Delta Converter

  • 8/19/2019 5 AD Conversion

    40/46

    P. 5-40Frequency of the disturbing signals in theneighborhood of the signal frequencyHigh Signal Value

    5.5 Sigma-Delta-Converter 1 O d g

  • 8/19/2019 5 AD Conversion

    41/46

    g

    Sigma-Delta-Converter 2. Order Reducing disturbing signals

    1. Ordnung

    http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma_D.html

    Signal band width can be higher Clock rate kann be smaller Accuracy of the output signal can be higher (less conversion noise)

    Not one after the other!

    P. 5-41Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.5 Sigma-Delta-Converter

    http://www.beis.de/Elektronik/DeltaSigma/DeltaSigma_D.htmlhttp://www.beis.de/Elektronik/DeltaSigma/DeltaSigma_D.html

  • 8/19/2019 5 AD Conversion

    42/46

    gStructure

    Two Disturbations

    • Quantisation noise (Digitalisation)

    • Conversion Noise (within the Bitstream) dependent on:

    - Order of the Sigma-Delta-Converter

    - Oversampling rate

    P. 5-42Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    5.5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    43/46

    gConversion Noise

    Modulator Order

    Typical:24 Bit, Modulator third order with 64-Times Oversampling(-160 dB Conversion Noise and -147 dB Quantisation Noise)

    P. 5-43Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    SNR [dB]

    Oversampling Rate

    5.5 Sigma-Delta-Converter

  • 8/19/2019 5 AD Conversion

    44/46

    g

    High FrequencySignal is supressedDistrubing Effects are amplified(„ Alias-Effekt “)

    Lower Frequency BandDesired input signals are transmittedDisturbing signals are significantly reducedFor Modulators of a higher order disturbingsignals are even better supressed (" NoiseShaping ")

    Störsignal (Komparator und Speicher)

    Störsignal (Komparator und Speicher)Nutzsignal

    First Order

    Zweite Ordnung

    Nutzsignal

    P. 5-44Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Disturbing Signal

    Usefull SignalDisturbing Signal

    Usefull Signal

    Second Order

    5.6 errors by A/D-Converter

  • 8/19/2019 5 AD Conversion

    45/46

    Offset-Error

    Amplification Error

    Absolute Deviation of the

    width of theQuantisation Steps fromIdeal Value 1 U LSB

    Deviation betweenconverted value and theright value

    Integral Nonlinearity

    Differential Nonlinearity

    P. 5-45Prof. Dr.-Ing. O. KanounChair for Measurement and Sensor Technology

    Overview A/D-Converter

  • 8/19/2019 5 AD Conversion

    46/46

    Overview A/D Converter

    Prof. Dr.-Ing. O. Kanoun

    Flash Converter SuccessiveApproximation

    Dual Slope Sigma Delta

    MainAdvantages

    Disadvantages

    ConversionTime

    Typ.Resolution

    Slow Conversionrate. Highprecision external

    componentsnecessary

    Speed limited to~5Msps. Mayrequire anti-

    aliasing filter.

    Metastability, highpowerconsumption, large

    size, expensive.

    Higher order (4thorder or higher) -multibit ADC and

    multibit feedbackDAC.

    Ultra-High Speed

    when powerconsumption notprimary concern

    Medium to high

    resolution (8 to16bit), 5Msps andunder, low power,small size.

    high resolution,

    low powerconsumption,good noiseperformance

    High resolution, low

    to medium speed,digital filter reducesanti-aliasingrequirements.

    Does not changewith increasedresolution.

    Increases linearlywith increasedresolution.

    Increases linearlywith increasedresolution.

    Tradeoff betweendata output rateand noise freeresolution.

    Ca. 10 ns-100ns Ca. 1 µs-100µs Ca. x ms Ca. 200 µs-2ms

    16 bit24 bitMore bits?

    12 bit22 bit

    8 bit18 bit

    4 bit8 bit