5 (fluid flow)

Upload: gooni2012

Post on 16-Jul-2015

89 views

Category:

Documents


1 download

TRANSCRIPT

Fundamentals of fluid flow

Mohsen SoltanpourEmail: [email protected] URL: http://sahand.kntu.ac.ir/~soltanpour/

. . . : )(Velocity field ) (particles ) (solid . :

) (v x ) n = f n (t ) (v z ) n = hn (t

) (v y ) n = g n (t

n:*

. ) - **:(field approach

) v x = f ( x, y , z , t ) v y = g ( x, y , z , t ) v z = h ( x, y , z , t/http://sahand.kntu.ac.ir/~soltanpour

) (x,y,z ) (t *. ) (steady flow .** )(unsteady flow . :

) v x = f ( x, y , z ) v y = g ( x, y , z ) v z = h ( x, y , z

. ) (x,r, ) ( ) (: )v = v ( r , x = vr (r , x)er + v x (r , x)i

r 2 v = v x (r )i = vmax [1 ( ) ]i R

x

r ) (uniform ***./http://sahand.kntu.ac.ir/~soltanpour

.* :

x

**:z

0V

x

0V

xz

) (streamlines :/http://sahand.kntu.ac.ir/~soltanpour

) (pathlines . .

/http://sahand.kntu.ac.ir/~soltanpour

dx = v xp dt dy = v yp dt dz = v zp dt

:

dA t )(streamtube . . . . ) dA (

v = vx i + v y j + vz k ds = dxi + dyj + dzk

V ds

0 = v ds

v ds :

dx dy dz = = vx v y vz) ( ) ( . ) (streakline ./http://sahand.kntu.ac.ir/~soltanpour

t < t1

t > t1

(Pathline) :

http://sahand.kntu.ac.ir/~soltanpour/

t < t1

t > t1

(Streakline) :

http://sahand.kntu.ac.ir/~soltanpour/

) ( . .

)0pathline (t=t

)0pathline (t>t

)0streakline (t=t/http://sahand.kntu.ac.ir/~soltanpour

)0streakline (t>t

: P ) ( . . A 0= t )0K (x0,y0,z t=t )1 P (x1,y1,z. A . t=t +t ) (B P B . C t=t +2t P C . 1 t A 1 A B 1 B C 1 C . P ) 1.(t=t)0 :M(x0,y0,z t=t+2t P )0 :L(x0,y0,z t=t+t P )0 :K(x0,y0,z t=t P )1 : P(x1,y1,z

) 1( t=t

) 2( t=t

) 3( t=t

1A 1C 2C 3C

1B 2B 3B

2A 3A

/http://sahand.kntu.ac.ir/~soltanpour

C

B

A

2 t=t 3 t=t . B A C ) ( . . )1 P(x1,y1,z . 0= t )0 (x0,y0,z :

) x = f ( x0 , y0 , z0 , t ) y = g ( x0 , y0 , z0 , t

)(I

)1 P(x1,y1,z ) 0= t L K M P (:

) z = h( x0 , y0 , z0 , t

) x1 = f ( x0 , y0 , z0 , ) y1 = g ( x0 , y0 , z0 ,

)(II

) z1 = h( x0 , y0 , z0 , t P . 0 x0,y0,z ) (I ) (II t t ) t( P ) t( . t t P ) B A .(C t (t>t) t P t ) 1 t=t2 t=t 3.(t=t

/http://sahand.kntu.ac.ir/~soltanpour

: )(Viewpoints 1 x1, y1, z ) v(x,y,z,t . .

) v x = f ( x, y , z , t ) v y = g ( x, y , z , t ) v z = h ( x, y , z , t . ) y(t) x(t ) z(t . )0( y(0) x )0( z 0= t . :

) v x = f (t ) v y = g (t

) v z = h(t/http://sahand.kntu.ac.ir/~soltanpour

t.

) .(a *. ./http://sahand.kntu.ac.ir/~soltanpour

: )(Acceleration of a flow particle . . :

zp

rp = x p (t )i + y p (t ) j + z p (t )k vp rp

= vp

drp

O

xy

= ap

dt dv p

= u p (t )i + v p (t ) j + w p (t )k

dt

=

d rp2

2 dt

= a xp (t )i + a yp (t ) j + a zp (t )k

) (rp . *./http://sahand.kntu.ac.ir/~soltanpour

) t y x z :

) v ( x, y , z , t

v v v v dx + dy + dz + dt = dv x y z t

.

dv Dv )(total derivative ) ( =a dt dt v dx v dy v dz v = + + + x dt y dt z dt t

dx , dy , dz v x , v y , v z . :

dt dt dt

v v v v v a = vx + vy + vz + + = v .v x y z t t )(acceleration of transport )(convective acceleration/http://sahand.kntu.ac.ir/~soltanpour

)(local acceleration

ax = vx

v x v v v + v y x + vz x + x x y z t v y v y v y v y a y = vx + vy + vz + x y z t v v v v az = vx z + v y z + vz z + z x y z t

:

. . zxQ 1v 2v

a

) (Q=cte x .

/http://sahand.kntu.ac.ir/~soltanpour

1v2 > v v v v v v + vy + vz + 0 > = vx x a = vx y z t x x

) s (: v = v ( s, t ) = v( s, t )et dv v ds v s =a + . = dt s dt t v v v + =v s t

v = vet

) (normal and tangential coordinates :

v2 a = vet + en

dv dv ds 2 dv 1 dv = . =v = = at = v 2 ds dt ds dt ds 2v = an ) (osculari .

/http://sahand.kntu.ac.ir/~soltanpour

( adjacent flowparticle) . dr = dxi + dyj + dzk t B A ( rotation rate) ( deformation rate) : B A B z dr dr dx dy dz y v= = i+ j+ k Ax

(Irrotational flow) :

v z dz z

v y

dt

v x dz z v z dx x v x dx xhttp://sahand.kntu.ac.ir/~soltanpour/

E z

dz

dt dt dt = vx i + v y j + vz k

B

dzA dxv y x dx

drdy

v z dy y

Dv x dy y

v y y

dy

C

A C

v vC = v A + dx x v x v y v z v = vC v A = dx + dxi + dxj dxk x x x x D E A ) (. ) (normal strain xx : AC

v x dx v x x = xx = dx x

= yy

v y y

. ) (dot ) ( . : = zz

v z z

) (normal strain rate 1/s. ii . AC z C : vy

x dx

dx

=

v y x

/http://sahand.kntu.ac.ir/~soltanpour

v x dy v x y = dy y

AD :

(time rate of change of the shear angle) xy ) CAD t ( z :

v x ) ( = xy = yx + x yv v ) xz = zx = ( x + z z x

v y

CAE DAE :

v z ) ( = yz = zy + z y

v y

xx yx 2 zx 2

xy2 yy

zy2

2 yz 1 vi v j ( = ) + 2 2 x j xi zz

xz

) (strain rate tensor :

/http://sahand.kntu.ac.ir/~soltanpour

) (rate of angular change of the sides . AC z C : vy

x dx

dx

=

v y x

AD z ) z( D :

v x dy v x y = dy y

CAD z ) AC (AD t : v

v 1 y [ ]) + ( x 2 x y

AC AD z )(z :

1 v y v x ) ( = z 2 x y

/http://sahand.kntu.ac.ir/~soltanpour

x y :

1 v z v y ) ( = x 2 y z

1 v x v z ) ( = y 2 z x :

1 v z v y 1 v x v z 1 v y v x ( + )i ( +)j )k ( = 2 y z 2 z x 2 x y

i 1 = 2 x vx

) (vorticity vector curlv = rotv = v *: j k 1 1 ) = curlv = ( v 2 y z 2 v y vz

curl . 0 = ) (irrotational flow . 0 .**

)(rotational flow

/http://sahand.kntu.ac.ir/~soltanpour

v y

0 = = curlv

x v z y v x z

v x 0= y v y 0= z v 0= z x

:

. . . ) (boundary layer .

/http://sahand.kntu.ac.ir/~soltanpour