5. hip hop physics 2 - illuminati

44
Music and Mathematics ‘Music theorists sometimes use mathematics to understand music, but music has no axiomatic foundation in modern mathematics.’ Mathematics is the ‘basis for sound’ and sound itself ‘in its musical aspects. Exhibits a remarkable array of number properties’, simply because nature itself ‘is amazingly

Upload: rob-graham

Post on 07-Aug-2015

56 views

Category:

Documents


0 download

TRANSCRIPT

 

       

     

   Music  and  Mathematics    ‘Music  theorists  sometimes  use  mathematics  to  understand  music,  but  music  has  no  axiomatic  foundation  in  modern  mathematics.’    Mathematics  is  the  ‘basis  for  sound’  and  sound  itself    ‘in  its  musical  aspects.  Exhibits  a  remarkable  array  of  number  properties’,  simply  because  nature  itself  ‘is  amazingly  

mathematical.’  Through  ancient  Chinese,  Egyptians  and  Mesopotamians  are  known  to  have  studied  the  mathematical  principals  of  sound,  the  Pythagoreans  of  ancient  Greece  are  the  first  researchers  known  to  have  investigated  the  expression  of  musical  scales  in  terms  of  numerical  ratios,  particularly  the  ratio  of  small  integers.    Their  central  doctrine  was  that  ‘all  nature  consists  of  harmony  arising  out  of  numbers.’    From  the  time  Plato,  harmony  was  considered  a  fundamental  branch  of  physics,  now  known  as  musical  acoustics,  early  Indian  and  Chinese  theorists  show  similar  approaches;  all  sought  to  show  that  the  mathematical  laws  of  harmonics  and  rhythms  were  fundamental  not  only  to  our  understanding  of  the  world  but  to  human  well  being.    Confucius,  like  Pythagoras,  regarded  the  small  numbers  1,2,3,4  as  the  source  of  all  perfection.    To  this  day  mathematics  has  more  to  do  with  acoustics  than  with  composition  and  the  use  of  mathematics  in  compositions  is  historically  limited  to  the  simplest  operations  of  counting  and  measuring.    The  attempt  to  structure  and  communicate  new  ideas  of  composing  and  hearing  music  has  led  to  musical  applications  of  set  theory,  abstract  algebra  and  number  theory.    Some  composers  have  incorporated  the  golden  ratio  and  Fibonacci  numbers  to  their  music.    The  term  musical  intervals  refer  to  a  step  up  or  down  in  pitch,  which  is  specified  by  the  ratio  of  the  frequencies,  involved.  For  example  and  octave  is  a  music  interval  defined  by  the  ration  2:1  regardless  of  the  starting  frequency.    

 From  100hz  to  200hz  is  an  octave,  as  is  the  interval  from  2000hz  to  4000hz.    The  intervals,  which  are  generally,  the  most  consonant  to  the  human  ear  intervals  represented  by  small  integer  ratios.    The  octave  (2:1),  fifth  (3:2)  and  fourth  (4:3)  are  the  intervals  which  have  been  considered  to  be  consonant  throughout  all  history  by  all  cultures,  so  they  form  a  logical  base  for  the  building  of  musical  scales.  

   Superstring  theory      All  fundamental  particles,  formerly  thought  of  as  point-­‐like  entities,  are  now  considered  teeny,  tiny  one-­‐dimensional  objects  called  strings.      Just  as  a  violin  string  can  be  made  to  vibrate  in  multiple  modes  (fundamental  and  overtones  in  a  harmonic  series)  so  too  can  these  strings.      But  the  modes  available  to  a  superstring  are  far  richer  and  more  complex  than  those  of  a  simple  violin  string  (which  is  itself  pretty  rich  when  you  think  about  it).  The  reason  for  this  is  that  superstrings  live  in  a  space  quite  unfamiliar  to  us  all.  A  space  beyond  the  familiar  up-­‐down,  left-­‐right,  forward-­‐backward,  three-­‐dimensional  realm  we're  all  so  familiar  with.    The  name  M  Theory  most  likely  comes  from  the  clever  use  of  the  word  "membrane"  to  describe  any  object  used  to  separate  one  part  of  space  from  another.    

 Think  of  your  diaphragm  for  a  moment.  This  is  an  obvious  two-­‐dimensional  membrane  that  separates  the  three-­‐dimensional  abdominal  cavity  into  two  regions  —  the  heart  and  lungs  above;  and  the  liver,  spleen,  and  digestive  tract  below.      What  would  you  call  the  objects  that  divide  a  higher  dimensional  space  in  two?  I  have  seen  the  terms  "d-­‐branes",  "m-­‐branes",  and  "p-­‐branes"  all  used.  "D-­‐branes"  do  nothing  for  me,  "m-­‐branes"  are  a  very  clever  alliteration  to  the  biological  term  "membranes",  but  "p-­‐branes"  are  probably  too  silly  to  gain  much  popularity  for  a  potential  Theory  of  Everything.  (In  North  America,  the  term  "pea  brain"  is  slang  for  a  stupid  person.      Somebody  with  a  brain  the  size  of  a  pea  couldn't  be  very  smart  now  could  they?  It  makes  for  a  somewhat  clever  joke,  but  a  theory  of  "p  branes"  is  likely  to  attract  more  chuckles  than  grant  money.)    From  symmetry  (matter-­‐antimatter)  to  super  symmetry  (fermions-­‐bosons).      Say  them  as  one  word:  "s-­‐particles"  and  "particle-­‐ions".      I  believe  that  there  is  a  simple  theory  that  governs  everything  —  the  four  forces  we  know  about,  perhaps  other  forces  as  well.  It  may  be  that  nature  is  irreducibly  messy.      But  even  so,  we're  not  guaranteed  that  we'll  find  it.  We  may  not  be  smart  enough.  Dogs  are  not  smart  enough  to  understand  quantum  mechanics.      I'm  not  sure  that  people  are  smart  enough  to  understand  the  whatever-­‐it-­‐is  that  unifies  everything.  I  think  we  probably  are,  because  of  our  ability  to  link  our  minds  through  

language,  but  I'm  certain.    There  was  a  marvelous  period  from,  I'd  say,  the  mid-­‐'60s  until  the  late  '70s  when  theoretical  physicists  actually  had  something  to  say  that  experimentalists  were  interested  in.    Experimentalists  made  discoveries  that  theoretical  physicists  were  interested  in.  Everything  was  converging  toward  a  simple  picture  of  the  known  particles  and  forces,  a  picture  that  eventually  became  known  as  the  standard  model.  I  think  I  gave  it  that  name.      And  it  was  a  time  when  graduate  students  would  run  through  the  halls  of  a  physics  building  saying  they  had  discovered  another  particle  and  it  fit  the  theories,  and  it  was  all  so  exciting.    Since  the  late  '70s,  I'd  say,  particle  physics  has  been  in  somewhat  of  a  doldrums.  Partly  it's  just  the  price  we're  paying  for  the  great  success  we  had  in  that  wonderful  time  then.  I  think  cosmology  now,  for  example,  is  much  more  exciting  than  particle  physics.      The  string  theorists  are  trying  to  push  ahead  without  much  support  from  relevant  experiments,  because  there  aren't  any  relevant  experiments  that  can  be  done  at  the  kind  of  scales  that  the  string  theorists  are  interested  in.    They're  trying  to  take  the  next  big  step  by  pure  mathematical  reasoning,  and  it's  extraordinarily  difficult.  I  hope  they  succeed.  I  think  they're  doing  the  right  thing  in  pursuing  this,  because  right  now  string  theory  offers  the  only  hope  of  a  really  unified  view  of  nature.      They  have  to  pursue  it,  but  the  progress  is  glacially  slow.  I'd  rather  study  continental  drift  in  real  time  than  is  a  string  theorist  today.    

 But  I  admire  them  for  trying,  because  they  are  our  best  hope  of  making  a  great  step  toward  the  next  big  unified  theory.  Steven  Weinberg,  2003    Interviewer:   Can  we   understand   how   these   extra   dimensions  have  curled  themselves  up  into  such  a  small  size?    We  can  try  to  understand  it  and  we  can  see  that  by  making  some  simple  assumptions  about  how  the  extra  dimensions  would  curl  up,  we  can  get  plausible  and  interesting  rough  models  of  particle  physics.      I  don't  think  we  can  expect  to  understand  definitively  how  the  extra  dimensions  curl  themselves  up  without  understanding  a  little  better  what  string  theory  is  really  all  about,  We  are  handicapped  by  having  an  extremely  primitive  and  crude  view  of  what  the  subject  really  is.    Einstein  developed  general  relativity  at  a  time  when  the  basic  ideas  in  geometry  that  he  needed  had  already  been  developed  in  the  nineteenth  century.      It's  been  said  that  string  theory  is  part  of  the  physics  of  the  twenty-­‐first  century  that  fell  by  chance  into  the  twentieth  century.  That's  a  remark  that  was  made  by  a  leading  physicist  about  fifteen  years  ago.  What  he  meant  was  that  humans  on  planet  earth  never  had  the  conceptual  framework  that  would  lead  them  to  invent  string  theory  on  purpose.      String  theory  was  invented  essentially  by  accident  in  a  long  sequence  of  events,  starting  with  the  Venetian  model  that  was  formulated  in  1968.  No  one  invented  it  on  purpose;  it  was  invented  in  a  lucky  accident.    By  rights,  twentieth  century  physicists  shouldn't  have  had  

the  privilege  of  studying  this  theory.  By  rights,  string  theory  shouldn't  have  been  invented  until  our  knowledge  of  some  of  the  areas  that  are  prerequisite  for  string  theory  had  developed  to  the  point  that  it  was  possible  for  us  to  have  the  right  concept  of  what  it  was  all  about.      Interviewer:  We  need  twenty-­‐first  century  mathematics?  Probably.      What  should  have  happened,  by  rights,  is  that  the  correct  mathematical  structures  should  have  been  developed  in  the  twenty-­‐first  or  twenty-­‐second  century,  and  then  finally  physicists  should  have  invented  string  theory  as  a  physical  theory  that  is  made  possible  by  those  structures.  If  that  had  happened,  then  the  first  physicists  working  with  string  theory  would  have  known  what  they  were  doing  perhaps.    Einstein  knew  what  he  was  doing  when  he  invented  general  relativity.  That  would  perhaps  have  been  a  normal  way  for  things  to  happen  but  it  wouldn't  have  given  twentieth  century  physicists  the  chance  to  work  on  this  fascinating  theory.      As  it  is  we  have  had  the  stroke  of  good  luck  that  string  theory  was  invented  in  a  sense  without  human  beings  on  planet  Earth  really  deserving  it.      ‘But  anyway  we  have  this  stroke  of  good  luck  and  we  are  trying  to  make  the  best  of  it.  But  we  are  paying  the  price  for  the  fact  that  we  didn't  come  by  this  thing  in  the  usual  way.’  Edward  Witten,  1988    It  seems  immensely  difficult  because  we  haven't  finished  solving  it  yet.      Someone  had  to  invent  writing.    

 Someone  had  to  invent  reading  without  speaking  aloud.      Someone  had  to  discover  electromagnetic  induction.      Someone  had  to  discover  zero.      Someone  had  to  be  the  first  to  look  at  the  heavens  through  a  telescope.      Someone  had  to  be  the  first  to  eat  with  a  fork!    Currently,  no  one  has  solved  the  mathematical  problem  of  a  complete  "theory  of  everything".      It  hasn't  been  invented,  it  hasn't  been  discovered,  and  it  has  never  been  seen  or  used.  But  it  will  be.      This  will  be  followed  by  a  short  period  (two  to  two  hundred  years,  say)  when  the  theory  will  be  discussed  and  tested  and  advanced  and  learned  by  tens  then  hundreds  then  thousands  then  millions  of  people.      And  then  it  won't  seem  like  such  a  big  deal  anymore.      And  few  will  remember  the  time  when  it  was  considered  unobtainable.      And  students  learning  it  will  find  it  a  chore  to  learn  for  the  first  time  and  then  be  astounded  at  how  easy  it  all  was  in  retrospect.    ‘Science  is  beautiful  when  it  makes  simple  explanations  of  phenomena  or  connections  between  different  observations.      Examples  include  the  double  helix  in  biology  and  the  fundamental  equations  of  physics.’  Stephen  Hawking  

     

   Euler’s  Formula  gives  rise  to  space,  time  and  the  material  world.    Euler’s  Formula  gives  rise  to  Fourier  series,  the  quantum  universe  and  holography.    Euler’s  Formula  gives  rise  to  the  brain  itself,  mind,  the  soul  and  even  God.    Euler’s  Formula,  ontologically,  is  all  about  energy,  motion  and  Information.    Euler’s  Formula  has  two  completely  different  aspects:  Dimensionless  (frequency)  and  Dimensional  (space  and  time).    Euler’s  formula  always  involves  the  motion  of  a  one-­‐dimensional  point  –  the  flowing  point  that  goes  right  around  the  circumference  of  the  Euler  circle  and  passes  through:  

-­‐ Positive  numbers  -­‐ Negative  numbers.  -­‐ Real  numbers.  -­‐ Imaginary  numbers.  -­‐ All  numbers  are  equally  balanced  and  none  privileged  over  some  of  the  others.    

   The  net  outcome  is  a  system  of  some  things,  that  automatically  balance  to  zero,  leaving  a  resultant  of  nothing,  I.e.  Dimensionless  existence.  

 

   The  generalized  Euler  Formula  generates  all  ontologically  possible  frequencies.  These  frequencies  are  associated  with  perfect  sine  and  cosine  waves.    Sine  functions  are  odd,  while  cosine  functions  are  even.    Sine  and  Cosine  functions  are  orthogonal  to  each  other.    Sine  waves  are  associated  with  imaginary  numbers  (time=  imaginary  space).    Cosine  waves  are  associated  with  real  numbers  (Space).    There  are  also  negative  sine  and  cosine  frequencies,  ensuring  that  all  frequencies,  both  positive  and  negative  balance  to  zero.    Sine  and  Cosines  provide  a  perfect  set  of  Fourier  basis  frequencies.  Using  these,  Fourier  mathematics  allows  us  to  construct  extended  functions  in  space  and  time,  the  functions  associated  with  the  material  rather  than  the  mental  world.    Perfect  Cosine  waves  are  none  other  than  photons:  Light  or  space  particles  for  which  no  time,  or  alternatively  imaginary  space  passes.    Perfect  Sine  waves  are  chronons:  time  or  imaginary  space  particles  for  which  no  real  space  passes.      

 

 

     Essential  physics  formulas:            

       Dynamics:    Dynamics  is  the  name  give  to  the  rules  of  motion.  It’s  something  that  you  would  think  would  be  one  of  the  first  things  to  be  figured  out,  but  wasn’t  fully  locked  down  until  fairly  recently.      1. A  particle  will  remain  at  rest  or  continue  with  its  motion,  unless  acted  upon  by  an  external  force.    

 2. The   force  on  an  object   is  equal   to   its  mass  multiplied  by  its  acceleration.  

 3. Every  action  has  an  equal  and  opposite  reaction.        Thermodynamics:  

Zeroth  law  of  thermodynamics  –  If  two  thermodynamic  systems  are  each  in  thermal  equilibrium  with  a  third,  then  they  are  in  thermal  equilibrium  with  each  other.    First  law  of  thermodynamics  –  Energy  can  neither  be  created  nor  destroyed.  It  can  only  change  forms.  In  any  process,  the  total  energy  of  the  universe  remains  the  same.  For  a  thermodynamic  cycle  the  net  heat  supplied  to  the  system  equals  the  network  done  by  the  system.    Second  law  of  thermodynamics  –  The  entropy  of  an  isolated  system  not  in  equilibrium  will  tend  to  increase  over  time,  approaching  a  maximum  value  at  equilibrium.    Third  law  of  thermodynamics  –  As  temperature  approaches  absolute  zero;  the  entropy  of  a  system  approaches  a  constant  minimum.    Entropy  is  a  very  important  thing  in  the  realm  of  thermodynamics.  It’s  the  core  idea  behind  the  second  and  third  laws  and  shows  up  all  over  the  place.  Essentially  entropy  is  the  measure  of  disorder  and  randomness  in  a  system.

S= Change in entropy Q= Energy or level of heat T= A constant temperature. Some  Definitions:  Can  you  see  where  they  went  wrong?    Science  is  a  systematic  enterprise  that  builds  and  organizes  knowledge  in  the  form  of  testable  explanations  and  predictions  about  the  universe.    An  older  and  closely  related  meaning,  "science"  also  refers  to  this  body  of  knowledge  itself,  of  the  type  that  can  be  rationally  explained  and  reliably  applied.      

Ever  since  classical  antiquity,  science  as  a  type  of  knowledge  has  been  closely  linked  to  philosophy.      In  the  West  during  the  early  modern  period  the  words  "science"  and  "philosophy  of  nature"  were  sometimes  used  interchangeably,  and  until  the  19th  century  natural  philosophy  (which  is  today  called  "natural  science")  was  considered  a  branch  of  philosophy.    In  modern  usage  however,  "science"  most  often  refers  to  a  way  of  pursuing  knowledge,  not  only  the  knowledge  itself.      It  is  also  often  restricted  to  those  branches  of  study  that  seek  to  explain  the  phenomena  of  the  material  universe.      In  the  17th  and  18th  centuries  scientists  increasingly  sought  to  formulate  knowledge  in  terms  of  laws  of  nature.      Over  the  course  of  the  19th  century,  the  word  "science"  became  increasingly  associated  with  the  scientific  method  itself,  as  a  disciplined  way  to  study  the  natural  world,  including  physics,  chemistry,  geology  and  biology.      It  is  in  the  19th  century  also  that  the  term  scientist  began  to  be  applied  to  those  who  sought  knowledge  and  understanding  of  nature.      However,  "science"  has  also  continued  to  be  used  in  a  broad  sense  to  denote  reliable  and  teachable  knowledge  about  a  topic,  as  reflected  in  modern  terms  like  library  science  or  computer  science.      This  is  also  reflected  in  the  names  of  some  areas  of  academic  study  such  as  social  science  and  political  science.    The  natural  sciences  and  social  sciences  are  empirical  sciences,  meaning  that  the  knowledge  must  be  based  on  observable  phenomena  and  must  be  capable  of  being  verified  by  other  researchers  working  under  the  same  conditions.      Physical  Science  is  an  encompassing  term  for  the  branches  of  natural  science  and  science  that  study  non-­‐living  systems,  in  contrast  to  the  life  sciences.  However,  the  term  "physical"  creates  an  unintended,  somewhat  arbitrary  distinction,  since  many  branches  of  physical  science  also  study  biological  phenomena.  There  is  a  difference  

between  physical  science  and  physics.    Physics  is  the  natural  science  that  involves  the  study  of  matter  and  its  motion  through  space  and  time,  along  with  related  concepts  such  as  energy  and  force.      

More  broadly,  it  is  the  general  analysis  of  nature,  conducted  in  order  to  understand  how  the  universe  behaves.    Astronomy  is  the  oldest  of  the  natural  sciences.  The  earliest  civilizations  dating  back  to  beyond  3000  BCE,  such  as  the  Sumerians,  ancient  Egyptians,  and  the  Indus  Valley  Civilization,  all  had  a  predictive  knowledge  and  a  basic  understanding  of  the  motions  of  the  Sun,  Moon,  and  stars.    Natural  philosophy  has  its  origins  in  Greece  during  the  Archaic  period,  (650  BC  –  480  BC),  when  Pre-­‐Socratic  philosophers  like  Thales  rejected  non-­‐naturalistic  explanations  for  natural  phenomena  and  proclaimed  that  every  event  had  a  natural  cause.      They  proposed  ideas  verified  by  reason  and  observation,  and  many  of  their  hypotheses  proved  successful  in  experiment;      Atomism  was  found  to  be  correct  approximately  2000  years  after  it  was  first  proposed  by  Leucippus  and  his  pupil  Democritus.    Physics  became  a  separate  science  when  early  modern  Europeans  used  experimental  and  quantitative  methods  to  discover  what  are  now  considered  to  be  the  laws  of  physics.    Modern  physics  began  in  the  early  20th  century  with  the  work  of  Max  Planck  in  quantum  theory  and  Albert  Einstein's  theory  of  relativity.      Both  of  these  theories  came  about  due  to  inaccuracies  in  classical  mechanics  in  certain  situations.      Classical  mechanics  predicted  a  varying  speed  of  light,  which  could  not  be  resolved  with  the  constant  speed  predicted  by  Maxwell's  equations  of  electromagnetism;      This  discrepancy  was  corrected  by  Einstein's  theory  of  special  

relativity,  which  replaced  classical  mechanics  for  fast-­‐moving  bodies  and  allowed  for  a  constant  speed  of  light.    Chemistry  is  a  branch  of  physical  science  that  studies  the  composition,  structure,  properties  and  change  of  matter.      Chemistry  is  chiefly  concerned  with  atoms  and  molecules  and  their  interactions  and  transformations,  for  example,  the  properties  of  the  chemical  bonds  formed  between  atoms  to  create  chemical  compounds.    Early  civilizations,  such  as  the  Egyptians,  Babylonians,  and  Indians  amassed  practical  knowledge  concerning  the  arts  of  metallurgy,  pottery  and  dyes,  but  didn't  develop  a  systematic  theory.    A  basic  chemical  hypothesis  first  emerged  in  Classical  Greece  with  the  theory  of  four  elements  as  propounded  definitively  by  Aristotle  stating  that  that  fire,  air,  earth  and  water  were  the  fundamental  elements  from  which  everything  is  formed  as  a  combination.      Greek  atomism  dates  back  to  440  BC,  arising  in  works  by  philosophers  such  as  Democritus  and  Epicurus.      In  50  BC,  the  Roman  philosopher  Lucretius  expanded  upon  the  theory  in  his  book  De  rerum  natura  (On  The  Nature  of  Things)    Unlike  modern  concepts  of  science,  Greek  atomism  was  purely  philosophical  in  nature,  with  little  concern  for  empirical  observations  and  no  concern  for  chemical  experiments.    In  the  Hellenistic  world  the  art  of  alchemy  first  proliferated,  mingling  magic  and  occultism  into  the  study  of  natural  substances  with  the  ultimate  goal  of  transmuting  elements  into  gold  and  discovering  the  elixir  of  eternal  life.    

Alchemy  was  discovered  and  practiced  widely  throughout  the  Arab  world  after  the  Muslim  conquests,  and  from  there,  diffused  into  medieval  and  Renaissance  Europe  through  Latin  translations.    Under  the  influence  of  the  new  empirical  methods  propounded  by  Sir  Francis  Bacon  and  others,  a  group  of  chemists  at  Oxford,  Robert  Boyle,  Robert  Hooke  and  John  Mayow  began  to  reshape  the  old  

alchemical  traditions  into  a  scientific  discipline.      Boyle  in  particular  is  regarded  as  the  founding  father  of  chemistry  due  to  his  most  important  work,  the  classic  chemistry  text  The  Sceptical  Chymist  where  the  differentiation  is  made  between  the  claims  of  alchemy  and  the  empirical  scientific  discoveries  of  the  new  chemistry.      He  formulated  Boyle's  law,  rejected  the  classical  "four  elements"  and  proposed  a  mechanistic  alternative  of  atoms  and  chemical  reactions  that  could  be  subject  to  rigorous  experiment.    The  theory  of  phlogiston  (a  substance  at  the  root  of  all  combustion)  was  propounded  by  the  German  Georg  Ernst  Stahl  in  the  early  18th  century  and  was  only  overturned  by  the  end  of  the  century  by  the  French  chemist  Antoine  Lavoisier,  the  chemical  analogue  of  Newton  in  physics;  who  did  more  than  any  other  to  establish  the  new  science  on  proper  theoretical  footing,  by  elucidating  the  principle  of  conservation  of  mass  and  developing  a  new  system  of  chemical  nomenclature  used  to  this  day.    The  greatest  catastrophe  in  intellectual  history  was  to  regard  physics  as  real  and  mathematics  as  an  unreal  abstraction.    In  fact,  mathematics  is  noumenal  (true)  reality,  and  physics  is  phenomenal  (illusory)  reality.      Mathematics  tells  you  what  things  are  in  themselves,  and  physics  tells  you  how  they  appear  to  us.      Mathematics  is  the  perfect  ground  of  existence,  defined  by  the  God  Equation.          Mathematics  is  the  source  of  causation,  determinism  and  objective  reality;  all  of  the  things  now  formally  denied  by  physics,  which  claims  that  observable  reality  is  in-­‐deterministically  born  of  unreal,  probabilistic  wave  functions.      It’s  time  to  replace  the  scientific  method  with  the  mathematical  method.    

 It’s  time  to  recognize  that  true  reality  is  intelligible,  not  sensible;  noumenal,  not  phenomenal;  unobservable,  not  observable;  metaphysical,  not  physical;  hidden,  not  manifest;  rationalist,  not  empiricist;  necessary,  not  contingent.      Physics  is  literally  incapable  of  detecting  true  reality  since  true  reality  is  an  eternal,  indestructible,  dimensionless  mathematical  Singularity,  outside  space  and  time.      The  Singularity  is  a  precisely  defined  Fourier  frequency  domain.  There’s  nothing  “woo  woo”  about  it.  It's  pure  math.      Physicists  suffer  from  a  disorder  of  the  mind  that  causes  them  to  believe  that  sensible,  temporal  objects  have  more  reality  than  eternal,  immutable  Platonic  mathematical  objects,  and  to  place  more  trust  in  their  senses  than  in  their  reason,  more  trust  in  the  scientific  method  of  “evidence”  than  the  mathematical  method  of  eternal  proof.      Never  forget  that  sensory  objects  are  just  ideas  in  the  mind.  According  to  quantum  physics,  objects  are  just  the  observable  entities  produced  by  the  collapse  of  unreal  wave  functions,  and  don’t  formally  exist  when  they  are  not  being  observed.      Niels  Bohr,  in  response  to  Einstein,  literally  denied  that  the  moon  existed  when  it  wasn’t  being  observed.      The  subject  that  comes  after  physics  is  metaphysics,  and  the  true  language  of  metaphysics  is  ontological  mathematics.  Physics  is  the  phenomenal  expression  of  noumenal  mathematics.      Mathematics  has  one  final  wonder  to  confer  on  us.      It  provides  a  complete  definition  of  the  human  soul,  which  is,  like  the  universe  in  itself,  just  an  immaterial,  dimensionless  mathematical  singularity  defined  by  the  God  Equation.      As  above  so  below.  The  soul  is  the  microcosm  and  the  universe  the  macrocosm. Can you see the pattern below?

Pythagoras: 500bc approx. Pythagoras was an Ionian Greek philosopher, mathematician, and founder of the religious movement called Pythagoreanism. What did he help explain to humanity that is now realized, immutable and un-arguable? Pythagoras theorem: a ² + b ² = c ² What was his philosophy? Plato: 500bc approx. Plato was a philosopher, as well as mathematician, in Classical Greece. He is considered an essential figure in the development of philosophy, especially the Western tradition. What did he help explain to humanity that is now realized, immutable and un-arguable? Recurrent themes, Metaphysics, Theory of Forms, Epistemology, The state, Unwritten Doctrines. What was he’s philosophy? Platonic love is a type of love that is chaste and non-sexual. The term is named after Plato, who was the first to describe this kind of love. Euclid: 500bc Approx. Euclid was a Greek mathematician, often referred to as the "Father of Geometry". His Elements is one of the most influential works in the history of mathematics, serving as the main textbook for teaching mathematics (especially geometry) from the time of its publication until the late 19th or early 20th century.

What did he help explain to humanity that is now realized, immutable and un-arguable? Geometry, axioms, perspective, conic sections, spherical geometry, number theory and rigor, number theory, perfect numbers, infitude of prime numbers, fundamental theorem of arithmetic, data, catropics, spherical astronomy, optics, conic sections, mechanics, quadratic surfaces. Galileo: 1564 - 1642 Galileo Galilei, often known mononymously as Galileo, was an Italian physicist, mathematician, engineer, astronomer, and philosopher who played a major role in the scientific revolution during the Renaissance. What did he help explain to humanity that is now realized, immutable and un-arguable? Kinematics, strength of materials, telescopic confirmation of the phases of Venus, four largest satellites of Jupiter, military compass, inverse proportion of the square root, Galileo’s compass. What was his philosophy? ‘Philosophy [i.e. physics] is written in this grand book — I mean the universe — which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth.’ Leibniz: 1646 – 1747 Gottfried Wilhelm von Leibniz was a German polymath and philosopher. He occupies a prominent place in the history of mathematics and the history of philosophy. Most scholars believe Leibniz developed calculus independently of Isaac Newton, and Leibniz's notation has been widely used ever since it was published. What did he help to explain to humanity that is now realized, immutable and un-arguable?

Calculus, monads, Leibniz formula for π, harmonic triangle, integral rule, principal of scientific reasoning, notation of differentiation, proof of formats, little theorem, kinetic energy, law of continuity, transcendental law of homogeneity. What was his philosophy? "God assuredly always chooses the best." ‘There must be a sufficient reason for anything to exist, for any event to occur, for any truth to obtain.’ "The appropriate nature of each substance brings it about that what happens to one corresponds to what happens to all the others, without, however, their acting upon one another directly.’ ‘Leibniz believed that the best of all possible worlds would actualize every genuine possibility, and argued in Théodicée that this best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection.’ The only way to rectify our reasoning is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right. Newton: 1642 – 1726 Sir Isaac Newton was an English physicist and mathematician (described in his own day as a "natural philosopher") who are widely recognized as one of the most influential scientists of all time and as a key figure in the scientific revolution. His book Philosophiæ Naturalis Principia Mathematical ("Mathematical Principles of Natural Philosophy"), first published in 1687, laid -the foundations for classical mechanics. What did he help to explain to humanity that is now realized, immutable and un-arguable? Calculus, binomial theorem, cubic plane curves, finite differences, coordinate geometry, harmonic series, power series, prisms, refraction of light, dispersion, Newtonian telescope, law of gravitation, classical mechanics, gravity, motion of the moon. What was his philosophy?

‘I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.’ There is another, more mysterious side to Newton that is imperfectly known, a realm of activity that spanned some thirty years of his life, although he kept it largely hidden from his contemporaries and colleagues. We refer to Newton's involvement in the discipline of alchemy, or as it was often called in seventeenth-century England, "chymistry." Newton wrote and transcribed about a million words on the subject of alchemy. It was Newton's conception of the Universe based upon Natural and rationally understandable laws that became one of the seeds for Enlightenment. Einstein: 1879 - 1955 Albert Einstein was a German-born theoretical physicist. Einstein's work is also known for its influence on the philosophy of science. He developed the general theory of relativity, one of the two pillars of modern physics (alongside quantum mechanics. Einstein is best known in popular culture for his mass–energy equivalence formula E = mc2 (which has been dubbed "the world's most famous equation"). What did he help to explain to humanity that is now realized, immutable and un-arguable? General theory of relativity, photoelectric effect, classical mechanics, electromagnetic fields, gravitational forces. What was his philosophy? Einstein's political view was in favor of socialism and critical of capitalism, which he detailed in his essays such as "Why Socialism?". Einstein offered and was called on to give judgments and opinions on matters often unrelated to theoretical physics or mathematics. He called himself an agnostic, while disassociating himself from the label atheist. He said he believed in the "pantheistic" God of Baruch Spinoza, but not in a personal god, a belief he criticized. Einstein once wrote: I do not believe in a personal God and I have never denied this but expressed it clearly. Hawking:

1942 – Stephen William Hawking is an English theoretical physicist, cosmologist, author and director of research at the Centre for Theoretical Cosmology within the University of Cambridge.

His scientific works include a collaboration with Roger Penrose on gravitational singularity theorems in the framework of general relativity, and the theoretical prediction that black holes emit radiation, often called Hawking radiation. Hawking was the first to set forth a cosmology explained by a union of the general theory of relativity and quantum mechanics. He is a vigorous supporter of the many-worlds interpretation of quantum mechanics. What was his philosophy? Watch the ‘Theory of everything’ motion picture very closely.   1.  Great  Unanswered  Questions  of  Physics  Resolution  of  these  profound  questions  could  unlock  the  secrets  of  existence  and  deliver  a  new  age  of  science  within  several  decades.    2.  Here's  a  tale  of  modern  physics:      Two  scientists  work  at  the  same  university  in  different  fields.  One  studies  huge  objects  far  from  Earth.  The  other  is  fascinated  by  the  tiny  stuff  right  in  front  of  him.      To  satisfy  their  curiosities,  one  builds  the  world's  most  powerful  telescope,  and  the  other  builds  the  world's  best  microscope.      As  they  focus  their  instruments  on  ever  more  distant  and  ever  more  minuscule  objects,  they  begin  to  observe  structures  and  behavior’s  never  before  seen—or  imagined.      They  are  excited  but  frustrated  because  their  observations  don't  fit  existing  theories.      

One  day  they  leave  their  instruments  for  a  caffeine  break  and  happen  to  meet  in  the  faculty  lounge,  where  they  begin  to  commiserate  about  what  to  make  of  their  observations.      Suddenly  it  becomes  clear  to  both  of  them  that  although  they  seem  to  be  looking  at  opposite  ends  of  the  universe,  they  are  seeing  the  same  phenomena.      Like  blind  men  groping  a  beast,  one  scientist  has  grasped  its  thrashing  tail  and  the  other  its  chomping  snout.      Comparing  notes,  they  realize  it's  the  same  alligator.      This  is  precisely  the  situation  particle  physicist  and  astronomers  find  themselves  in  today.      Physicists,  using  linear  and  circular  particle  accelerators  as  their  high-­‐resolution  "microscopes,"  study  pieces  of  atoms  so  small  they  can't  be  seen.      Astronomers,  using  a  dozen  or  so  new  supersize  telescopes,  also  study  the  same  tiny  particles,  but  theirs  are  waiting  for  them  in  space.      This  strange  collision  of  information  means  that  the  holy  grail  of  particle  physics—understanding  the  unification  of  all  four  forces  of  nature  (electromagnetism,  weak  force,  strong  force,  and  gravity)—will  be  achieved  in  part  by  astronomers.    The  implications  are  exciting  to  scientists  because  bizarre  marriages  of  unrelated  phenomena  have  created  leaps  of  understanding  in  the  past.      Pythagoras,  for  example,  set  science  spinning  when  he  proved  that  abstract  mathematics  could  be  applied  to  the  real  world.  A  similar  leap  occurred  when  Newton  discovered  that  the  motions  of  planets  and  falling  apples  are  both  due  to  gravity.      Maxwell  created  a  new  era  of  physics  when  he  unified  magnetism  and  electricity.  Einstein,  the  greatest  unifier  of  them  all,  wove  together  matter,  energy,  space,  and  time.      

But  nobody  has  woven  together  the  tiny  world  of  quantum  mechanics  and  the  big  world  we  see  when  we  look  through  a  telescope.      As  these  come  together,  physicists  realize  they  are  getting  very  close  to  a  single  "theory  of  everything"  that  accounts  for  the  fundamental  workings  of  nature,  the  long-­‐sought  unified  field  theory.        A  Music  Lovers  Perspective    Before  we  begin  to  examine  or  attempt  to  address  the  most  important  unanswered  mysteries  in  physics,  it  is  extremely  important  to  understand  that  somewhere  along  the  line,  the  methodology  and  the  resources  used  to  build  scientific  knowledge  changed  dramatically.            “Wisdom  is  sold  in  the  desolate  market  where  none  come  to  buy.”  –  William  Blake      “Logic  will  get  you  from  A  to  B.  Imagination  will  take  you  everywhere”  Einstein  “When  dealing  with  people,  remember  you  are  not  dealing  with  creatures  of  logic,  but  creatures  of  emotion”  Dale  Carnegie    Logic:  The  art  of  thinking  and  reasoning  in  strict  accordance  with  the  limitations  and  incapacities  of  human  understanding.  Ambrose  Bierce    The  human  brain  works  as  a  binary  computer  and  can  only  analyze  the  exact  information  based  on  zeros  and  ones.  Edward  de  Bono    

1. Alexandre Grothendieck 2. Pierre de Fermat 3. Évariste Galois 4. John von Neumann 5. Niels Abel

1. Emma Noether 2. Pythagoras of Samos 3. Leonardo `Fibonacci' 4. William R. Hamilton 5. Aryabhata

     Question  1:  What  is  dark  matter?    Current  Perspective    All  the  ordinary  matter  we  can  find  accounts  for  only  about  4  %  of  the  universe.      We  know  this  by  calculating  how  much  mass  would  be  needed  to  hold  galaxies  together  and  cause  them  to  move  about  the  way  they  do  when  they  gather  in  large  clusters.      Another  way  to  weigh  the  unseen  matter  is  to  look  at  how  gravity  bends  the  light  from  distant  objects.      Every  measure  tells  astronomers  that  most  of  the  universe  is  invisible.      

It's  tempting  to  say  that  the  universe  must  be  full  of  dark  clouds  of  dust  or  dead  stars  and  be  done  with  it,  but  there  are  persuasive  arguments  that  this  is  not  the  case.      First,  although  there  are  ways  to  spot  even  the  darkest  forms  of  matter,  almost  every  attempt  to  find  missing  clouds  and  stars  has  failed.      Second,  and  more  convincing,  cosmologists  can  make  very  precise  calculations  of  the  nuclear  reactions  that  occurred  right  after  the  Big  Bang  and  compare  the  expected  results  with  the  actual  composition  of  the  universe.  Those  calculations  show  that  the  total  amount  of  ordinary  matter,  composed  of  familiar  protons  and  neutrons,  is  much  less  than  the  total  mass  of  the  universe.      Whatever  the  rest  is,  it  isn't  like  the  stuff  of  which  we're  made.      The  quest  to  find  the  missing  universe  is  one  of  the  key  efforts  that  have  brought  cosmologists  and  particle  physicists  together.      The  leading  dark-­‐matter  candidates  are  neutrinos  or  two  other  kinds  of  particles:  neutralinos  and  axioms  predicted  by  some  physics  theories  but  never  detected.  All  three  of  these  particles  are  thought  to  be  electrically  neutral,  thus  unable  to  absorb  or  reflect  light,  yet  stable  enough  to  have  survived  from  the  earliest  moments  after  the  Big  Bang.      A  music  lover’s  potential  solution?    Physics  believes  itself  to  reflect  mathematics  of  what  actually  exists.  Being  materialists  and  empiricists,  physicists  believe  that  the  sensory,  material  world  of  time  of  space  is  all  that  exists.    Any  mathematics  that  deals  with  the  immaterial  and  non-­‐sensory  is  regarded  as  unreal.    For  physicists,  physics  is  the  mathematics  of  reality  while  mathematics  itself  is  solely  about  hypothetical  things,  many  of  which  cannot  be  realized  because  they  are  not  compatible  with  reality.    The  quantum  mechanical  wave  function  is  said  to  be  unreal  because  it  involves  imaginary  numbers  and  various  operations  have  to  be  applied  to  make  it  real.    So,  the  wave  function  per  se  is  an  abstract  mathematical  entity  and  the  probabilistic  wave  function  derived  from  it  is  treated  as  physical.    However,  here  we  have  a  serious  philosophical  problem  akin  to  mind-­‐matter  Cartesian  dualism.    How  can  unreal,  abstract  mathematics  be  the  underpinning  for  real,  concrete  physical  mathematics,  and  is  a  probability  cloud  real  anyway?  How  is  reality  

determined?  How  can  the  real  emerge  from  unreality?  What’s  the  rational  cause  of  this  miracle,  this  magic?    Physics  actually  abandons  cause  and  effect  at  this  level  and  refers  to  randomness,  probability,  indeterminacy  and  statistics.  Determinism  is  completely  rejected.    Physical  mathematics  is  dynamic  while  abstract  mathematics  is  static.  Physical  mathematics  is  constrained  by  physical  constant  while  abstract  mathematics  is  not.    Ontological  mathematics  is  the  dialectical  synthesis  of  physical  mathematics  and  abstract  mathematics:    1. Thesis:  Physical  mathematics:  Dynamic,  always  observable  and  

constrained  by  ontological  constants  such  as  the  speed  of  light,  gravitational  constant  and  Planck’s  constant.  

2. Anti-­‐thesis:  Abstract  mathematics:  Static,  can  be  wholly  unobservable  and  is  unrestrained  by  ontological  constants.  

3. Synthesis:  Ontological  mathematics:  Dynamic,  both  observable  and  unobservable,  constrained  by  ontological  constants.  

 With  3.  The  speed  of  light,  gravitational  constant  are  no  longer  constants  of  physics  but  mathematical  ontological  constants  i.e.  they  are  built  into  ontological  mathematics  (Which  they  are  not  in  relation  into  abstract  mathematics).    Physical  and  abstract  mathematics  are  both  wrong,  they  are  approximations  to  the  truth  of  mathematics:  ontological  mathematics,  the  mathematics  of  actual  existence.  They  get  many  things  right  because  they  partake  of  several  features  of  ontological  mathematics  but  they  also  get  many  things  wrong  because  they  do  not  do  so  completely  and  consistently.    In  ontological  mathematics  there’s  a  cosmic  speed  limit  and  anything  that  does  not  reflect  this  is  ontologically  absurd.    Abstract  mathematics  can  easily  cater  for  tachyons  (Imaginary  mass  particles  that  exceed  the  cosmic  speed  limit),  but  no  such  thing  could  exist.  So,  abstract  mathematics  allows  ontologically  impossible  (forbidden)  situations  to  be  reflected  discussed  because  it  does  not  obey  the  restrictions  that  define  ontology.    Physics  dismisses  permissible  ontological  things  that  cannot  be  observed,  and  abstract  mathematics  accepts  impermissible  ontological  things.  Ontological  mathematics  sits  in  the  middle.  It  caters  for  the  unobservable  but  not  the  impossible.    Physics  is  mathematics  that  is  too  constrained  (to  accommodate  the  sensory  world)  and  abstract  mathematics  is  not  constrained  enough,  hence  can  deal  with  ontologically  impossible  situations.    

Physical  mathematics:  Dimensional  mathematics  only:  constrained  by  physical  constant:  dynamic.    Abstract  mathematics:  dimensional  mathematics  (uncertain  towards  dimensionless  mathematics);  not  constrained  by  physical  or  ontological  constant;  static.    Ontological  mathematics:  dimensional  (space-­‐time)  mathematics  and  dimensionless  (frequency)  mathematics:  constrained  by  physical  and  ontological  constants:  permanently  dynamic  (everything  is  always  in  motion:  there  can  be  static  state  for  anything  that  exists).    It  might  be  said  that  the  equations  that  control  motion  are  static,  but,  on  the  other  hand,  they  are  directing  permanent  motion,  so  they  are  always  put  into  effect  through  motion,  hence  are  not  static.    Thesis:  Frequency  mathematics:  dimensionless.    Antithesis:  Space  mathematics:  dimensional.    Synthesis:  ontological  mathematics:  dimensional  and  dimensionless,  with  the  interaction  between  dimensional  and  dimensionless  mathematics  being  enacted  by  Fourier  mathematics,  the  core  of  ontological.          Question  2.  What  is  dark  energy?    Current  Perspective    Two  recent  discoveries  from  cosmology  prove  that  ordinary  matter  and  dark  matter  are  still  not  enough  to  explain  the  structure  of  the  universe.      There's  a  third  component  out  there,  and  it's  not  matter  but  some  form  of  dark  energy.    The  first  line  of  evidence  for  this  mystery  component  comes  from  measurements  of  the  geometry  of  the  universe.      Einstein  theorized  that  all  matter  alters  the  shape  of  space  and  time  around  it.      Therefore,  the  overall  shape  of  the  universe  is  governed  by  the  total  mass  and  energy  within  it.    

 Recent  studies  of  radiation  left  over  from  the  Big  Bang  show  that  the  universe  has  the  simplest  shape—it's  flat.      That,  in  turn,  reveals  the  total  mass  density  of  the  universe.  But  after  adding  up  all  the  potential  sources  of  dark  matter  and  ordinary  matter,  astronomers  still  come  up  two-­‐thirds  short.      The  second  line  of  evidence  suggests  that  the  mystery  component  must  be  energy.      Observations  of  distant  supernovas  show  that  the  rate  of  expansion  of  the  universe  isn't  slowing  as  scientists  had  once  assumed;  in  fact,  the  pace  of  the  expansion  is  increasing.      This  cosmic  acceleration  is  difficult  to  explain  unless  a  pervasive  repulsive  force  constantly  pushes  outward  on  the  fabric  of  space  and  time.      Why  dark  energy  produces  a  repulsive  force  field  is  a  bit  complicated.      Quantum  theory  says  virtual  particles  can  pop  into  existence  for  the  briefest  of  moments  before  returning  to  nothingness.      That  means  the  vacuum  of  space  is  not  a  true  void.  Rather,  space  is  filled  with  low-­‐grade  energy  created  when  virtual  particles  and  their  antimatter  partners  momentarily  pop  into  and  out  of  existence,  leaving  behind  a  very  small  field  called  vacuum  energy.      That  energy  should  produce  a  kind  of  negative  pressure,  or  repulsion,  thereby  explaining  why  the  universe's  expansion  is  accelerating.      Consider  a  simple  analogy:  If  you  pull  back  on  a  sealed  plunger  in  an  empty,  airtight  vessel,  you'll  create  a  near  vacuum.      At  first,  the  plunger  will  offer  little  resistance,  but  the  farther  you  pull,  the  greater  the  vacuum  and  the  more  the  plunger  will  pull  back  against  you.      Although  vacuum  energy  in  outer  space  was  pumped  into  it  by  the  weird  rules  of  quantum  mechanics,  not  by  someone  pulling  on  a  

plunger,  this  example  illustrates  how  a  negative  pressure  can  create  repulsion.      A  Music  lover’s  potential  solution?    A  word  that  can  be  used  for  living  mathematics  is  energy.  Existence  consists  of  nothing  but  mathematical  energy  seeking  to  optimize  itself,  which,  since  it  comes  in  monadic  collections  of  energy  rather  one  vast,  unitary  block  of  energy,  means  that  each  individual  energy  collection  (monad)  is  striving  to  optimize  itself.    This  leads  to  a  competitive  dialectic,  and  to  all  the  conflict,  binary  oppositions  and  ‘evil’  that  we  encounter  in  the  world.    Schopenhauer  conceived  of  ultimate  reality  as  a  single  mental  entity  outside  time  and  space.  This  view  was  derived  from  the  living  oneness  that  underpins  Buddhism.      Peter  Higgs  was  awarded  a  Nobel  Prize  when  the  CERN  Large  Hadron  Collider  confirmed  the  existence  of  the  Higgs  Boson.  This  is  utterly  inconsequential  in  relation  to  the  biggest  question  of  all  –      ‘Is  mathematical  idealism,  rationalism  and  metaphysics  correct,  or  mathematical  materialism,  empiricism  and  physics?’    The  ultimate  nature  of  existence,  and  the  possibility  of  a  grand  unifying  equation  hinges  exactly  on  this  question.      Metaphysics  (What  comes  after  physics?)  is  about  an  unobservable  mathematical  domain  –  a  frequency  singularity  defined  by  the  GOD  equation.  Physics  demands  that  everything  be  observable.      Question  3.  Where  do  ultra  high-­‐energy  particles  come  from?    Current  Perspective    The  most  energetic  particles  that  strike  us  from  space,  which  include  neutrinos  as  well  as  gamma-­‐ray  photons  and  various  other  bits  of  subatomic  shrapnel,  are  called  cosmic  rays.    

 They  bombard  Earth  all  the  time;  a  few  are  zipping  through  you  as  you  read  this  article.      Cosmic  rays  are  sometimes  so  energetic;  they  must  be  born  in  cosmic  accelerators  fuelled  by  cataclysms  of  staggering  proportions.      Scientists  suspect  some  sources:  the  Big  Bang  itself,  shock  waves  from  supernovas  collapsing  into  black  holes,  and  matter  accelerated  as  it  is  sucked  into  massive  black  holes  at  the  centers  of  galaxies.      Knowing  where  these  particles  originate  and  how  they  attain  such  colossal  energies  will  help  us  understand  how  these  violent  objects  operate.    Question  4.  Is  a  new  theory  of  light  and  matter  needed  to  explain  what  happens  at  very  high  energies  and  temperatures?    Current  View    Astronomers  have  known  for  three  decades  that  brilliant  flashes  of  these  rays,  called  gamma-­‐ray  bursts,  arrive  daily  from  random  directions  in  the  sky.      Recently  astronomers  have  pinned  down  the  location  of  the  bursts  and  tentatively  identified  them  as  massive  supernova  explosions  and  neutron  stars  colliding  both  with  themselves  and  black  holes.      But  even  now  nobody  knows  much  about  what  goes  on  when  so  much  energy  is  flying  around.      Matter  grows  so  hot  that  it  interacts  with  radiation  in  unfamiliar  ways,  and  photons  of  radiation  can  crash  into  each  other  and  create  new  matter.      The  distinction  between  matter  and  energy  grows  blurry.      Throw  in  the  added  factor  of  magnetism,  and  physicists  can  make  only  rough  guesses  about  what  happens  in  these  hellish  settings.    Perhaps  current  theories  simply  aren't  adequate  to  explain  them.  

 A  Music  lover’s  potential  solution?    Einstein  won  the  Nobel  Prize  for  physics  for  explain  the  photoelectric  effect.    The  photoelectric  effect  involves  shinning  light  (of  high  enough  energy)  on  to  a  metal,  causing  electrons  to  be  emitted  from  the  metal  and  thereby  generating  an  electric  current.    It  was  observed  that  below  a  threshold  frequency  would  lead  to  no  emission,  no  matter  how  intense  the  light  was  (with  intensity  being  the  number  of  photons  per  second  for  a  specified  area).    On  the  other  hand,  low  intensity  light  above  the  threshold  frequency  would  succeed  in  releasing  electrons.    The  means  that  the  total  amount  of  energy  (the  intensity  of  light)  is  what’s  important  but  rather  the  specific  energy  per  light  photon.    You  could  use  a  massively  intense  light  beam,  and  keep  increasing  it,  and  it  would  have  no  photoelectric  effects  whatsoever  if  the  photons  were  of  insufficient  frequency.    However,  if  the  photons  were  of  the  right  frequency  then  increased  frequency  would  lead  to  and  increased  photoelectric  effect.    It  is  often  said  that  the  photoelectric  effect  provides  convincing  evidence  for  the  particle  nature  of  light  in  certain  circumstances.    However,  it  could  be  said  it  could  be  said  that  what  the  photoelectric  really  demonstrates  is  a  profound  difference  in  the  energy  of  a  light  beam  judged  in  terms  of  amplitude  of  the  one  hand,  frequency  on  the  other.    The  photoelectric  effect  was  a  conundrum  because  classical  physics  said  that  the  emitted  electrons  must  acquire  their  kinetic  energy  from  the  light  beam  shinning  on  the  metal  surface.    If  light,  were  envisioned  in  terms  of  ocean  waves,  and  the  electrons  in  terms  of  pebbles  on  the  beach,  then,  obviously,  the  more  intense  the  ocean  activity,  the  more  pebbles  should  be  displaced  on  the  beach.  

The  problem  with  this  view  is  that  it  likens  light  to  water  and  says  that  the  only  way  of  changing  the  energy  of  the  ocean  is  via  changing  the  amplitude  of  the  waves.    What  is  a  wave?  What  is  a  particle?      Bizarrely,  these  have  never  been  analytically  defined  by  modern  science.    Historically,  a  wave  was  regarded  as  something  spread  out,  and  a  particle  as  something  concentrated.      What  is  it  that’s  spread  out  and  what  is  it  that’s  concentrated.    A  wave  is  actually  a  flowing  point  tracing  out  the  trajectory  dictated  by  the  generalized  Euler  Formula.  It’s  this  trajectory  that  constitutes  the  wave.  The  ‘active’  part  of  the  wave  is  the  flowing  point  at  its  current  location  on  the  wave  trajectory.  It’s  the  following  point  that  constitutes  the  ‘particle.’    The  scientific  claim  that  entities  are  sometimes  waves  and  sometimes  particles  is  irrational,  ridiculous  and  almost  insane.    Science  actually  claims  that  something  can  be  both  spread  out  and  concentrated  at  the  same  time,  depending  on  how  you’re  observing  it.    Einstein  Ian  relativity  claims  that  something  can  be  simultaneously  contracted  and  not  contracted  depending  on  whom  observing  it.    Quantum  mechanics,  in  the  standard  interpretation,  claims  that  observable  relativity  is  based  on  an  observable,  unreal  wave  function        Question  5.  Are  there  additional  dimensions?    Current  View    Wondering  about  the  real  nature  of  gravity  leads  eventually  to  wondering  whether  there  are  more  than  the  four  dimensions  we  can  easily  observe.      

To  get  to  that  place,  we  might  first  wonder  if  nature  is,  in  fact,  schizophrenic:      Should  we  accept  that  there  are  two  kinds  of  forces  that  operate  over  two  different  scales—gravity  for  big  scales  like  galaxies,  the  other  three  forces  for  the  tiny  world  of  atoms?    Poppycock,  say  unified  theory  proponents—there  must  be  a  way  to  connect  the  three  atomic-­‐scale  forces  with  gravity.      Maybe,  but  it  won't  be  easy.    In  the  first  place,  gravity  is  odd.  Einstein's  general  theory  of  relativity  says  gravity  isn't  so  much  a  force  as  it  is  an  inherent  property  of  space  and  time.    Accordingly,  Earth  orbits  the  sun  not  because  it  is  attracted  by  gravity  but  because  it  has  been  caught  in  a  big  dimple  in  space-­‐time  caused  by  the  sun  and  spins  around  inside  this  dimple  like  a  fast-­‐moving  marble  caught  in  a  large  bowl.      Second,  gravity,  as  far  as  we  have  been  able  to  detect,  is  a  continuous  phenomenon,  whereas  all  the  other  forces  of  nature  come  in  discrete  packets.    All  this  leads  us  to  the  string  theorists  and  their  explanation  for  gravity,  which  includes  other  dimensions.      The  original  string-­‐theory  model  of  the  universe  combines  gravity  with  the  other  three  forces  in  a  complex  11-­‐dimensional  world.      In  that  world—our  world—seven  of  the  dimensions  are  wrapped  up  on  themselves  in  unimaginably  small  regions  that  escape  our  notice.      One  way  to  get  your  mind  around  these  extra  dimensions  is  to  visualize  a  single  strand  of  a  spider  web.      To  the  naked  eye,  the  filament  appears  to  be  one  dimensional,  but  at  high  magnification  it  resolves  into  an  object  with  considerable  width,  breadth,  and  depth.      String  theorists  argue  that  we  can't  see  extra  dimensions  because  we  lack  instruments  powerful  enough  to  resolve  them.    

 We  may  never  see  these  extra  dimensions  directly,  but  we  may  be  able  to  detect  evidence  of  their  existence  with  the  instruments  of  astronomers  and  particle  physicists.      A  Music  lover’s  potential  solution?    In  mathematics,  the  dimension  of  an  object  is  an  intrinsic  property  independent  of  the  space  in  which  the  object  is  embedded.    For  example,  a  point  on  the  unit  circle  in  the  plane  can  be  specified  by  two  Cartesian  coordinates,  but  one  can  make  do  with  a  single  coordinate  (the  polar  coordinate  angle),  so  the  circle  is  1  dimensional  even  though  it  exists  in  the  2  dimensional  plane.    The  intrinsic  notion  of  dimension  is  one  of  the  chief  ways  the  mathematical  notion  of  dimensions  differs  from  its  common  usages.    Question  6.  How  did  the  universe  begin?    Current  View    If  all  four  forces  of  nature  are  really  a  single  force  that  takes  on  different  complexions  at  temperatures  below  several  million  degrees,  then  the  unimaginably  hot  and  dense  universe  that  existed  at  the  Big  Bang  must  have  been  a  place  where  distinctions  between  gravity,  strong  force,  particles,  and  antiparticles  had  no  meaning.      Einstein's  theories  of  matter  and  space-­‐time,  which  depend  upon  more  familiar  benchmarks,  cannot  explain  what  caused  the  hot  primordial  pinpoint  of  the  universe  to  inflate  into  the  universe  we  see  today.      We  don't  even  know  why  the  universe  is  full  of  matter.  According  to  current  physics  ideas,  energy  in  the  early  universe  should  have  produced  an  equal  mix  of  matter  and  antimatter,  which  would  later  annihilate  each  other.      Some  mysterious  and  very  helpful  mechanism  tipped  the  scales  in  favor  of  matter,  leaving  enough  to  produce  galaxies  full  of  stars.  Fortunately,  the  primordial  universe  left  behind  a  few  clues.    

 One  is  the  cosmic  microwave  background  radiation,  the  afterglow  of  the  Big  Bang.  For  several  decades  now,  that  weak  radiation  measured  the  same  wherever  astronomers  looked  at  the  edges  of  the  universe.      Astronomers  believed  such  uniformity  meant  that  the  Big  Bang  commenced  with  an  inflation  of  space-­‐time  that  unfolded  faster  than  the  speed  of  light.      More  recent  careful  observation,  however,  shows  that  the  cosmic  background  radiation  is  not  perfectly  uniform.      There  are  minuscule  variations  from  one  small  patch  of  space  to  another  that  are  randomly  distributed.      Could  random  quantum  fluctuations  in  the  density  of  the  early  universe  have  left  this  fingerprint?      Very  possibly,  says  Michael  Turner,  chairman  of  the  astrophysics  department  at  the  University  of  Chicago  and  chairman  of  the  committee  that  came  up  with  these  11  questions.      Turner  and  many  other  cosmologists  now  believe  the  lumps  of  the  universe—vast  stretches  of  void  punctuated  by  galaxies  and  galactic  clusters—are  probably  vastly  magnified  versions  of  quantum  fluctuations  of  the  original,  subatomic-­‐size  universe.      And  that  is  just  the  sort  of  marriage  of  the  infinite  and  the  infinitesimal  that  has  particle  physicists  cozying  up  to  astronomers  these  days,  and  why  all  of  these  mysteries  might  soon  be  explained  by  one  idea.      A  Music  lover’s  potential  solution?    Existence is simply an infinitely complex singularity; an immaterial, dimensionless nothing composed of countless individual nothings (Monads). If the universe is rational, it must be made of eternal reason (ontological mathematics). If the universe isn’t rational, who cares what anybody says about it because one irrational opinion is as good as another.

The method for discovering and building scientific knowledge has become irrational and it is only interested in understanding observable and physical aspects of our collective existence. We can call any abstraction (or concept) a ‘form’ and its (perceptual or intuitive) concretes the ‘content.’ Formalization, then, is just a way to freely study the logical properties of propositional forms, without regard to their content. A ‘form’ is simply a shorthand expression for any number of particular propositions or contents. The mathematical monad, the fundamental unit on ontological mathematics, is a logical container for a complete and consistent set of analytical sinusoids, which constitute the fundamental component of mind. Sinusoids are individual thoughts. They are simple, ‘atomic’ thoughts that can be combined into a complex ‘molecule’. When an individual thought in manifested through ones on thought, this activity takes place within the private world through an individual monad. The monad is the agent that does the thinking, via its constituent sinusoids. When collective thoughts are thought, this actively takes place in the public domain, all monads united together (the monad collective). Collective thoughts are what we know as ‘matter’. Matter, therefore is a sinusoidal mental monad that exists collectively rather than individually. Monads and their constituent sinusoids are all that exist. There isn’t anything else. The mathematical monad is the fundamental unit of ontological mathematics.

Monads are the containers (form) for sinusoids (contests), but sinusoids are also the containers (forms) for thoughts (contents). Every individual sinusoid has an individual basis thought. These individual thoughts are like the letter of the alphabet. The mathematical monad is the fundamental unit of ontological mathematics. Is a logical container for a complete and consistent set of analytic sinusoids, which constitute the fundamental components of the mind? Sinusoids are individual thoughts. They are simple, ‘atomic” thoughts that can be combined into complex ‘molecular” structures. However, when they are combined, then, just as letters can be combined into words. Words into sentences and sentences into books expressing myriad ideas, basic thought can be combined into all possible complex thoughts. Letters (atoms) and works (molecules) can be combined into sentences, paragraphs, chapters and books (contents, objects). Letters and words are forms (together with spelling, syntax and grammar i.e. the proper, valid relations between them and ways of ordering them and combining them). Letters (atoms) and words (molecules) can be combined into sentences, paragraphs, chapter and books (content, object). Letters and words are forms (together with spelling and grammar i.e. the proper, valid relations between them and ways of ordering them and combining them). In chemistry, the periodic table of elements provides (atoms) from which all molecules are generated. We might think that molecules as the contingent content as necessary atoms ‘molecules’ themselves can then be combined to form, for example, human bodies. DNA is a molecule from that gives to bodies (content).

For Aristotle, the world consisted partly of form and matter, which combined to produce substance. At the bottom of Aristotle’s great chain at being was formless matter (chaos), and at the top matter less form (GOD). When form is applied to matter, it gives it shape, order, organization and even purpose to life. For Aristotle, each level at his great chain of being acted as the matter per the level above and for the before level below. Chaotic matter had nothing below it and God had nothing above him. God was pure mind (pure reason). All the substances below him constituted his body = the cosmos. In illuminism ‘GOD’ is replaced with monads, which are eternal mathematical entities that enshrine the laws of ontological mathematics. Reflect upon the principle of sufficient reason and thus constitute reason itself; reason as it’s manifested onto logically. The wider the form, the broader the range or possible behavior, and, the fewer rules there are for it. The widest form at all is the single cosmic formula known as the GOD equation (the generalized Euler formula) in its supreme form, the form that defines all other forms and all of their contents. The God equation defines sinusoids, monads and all their relations. It defines Fourier mathematics, quantum mechanics, holography and is the true (not relative) basis of Einstein’s theories. When Einstein’s theories are properly expressed, in a manner consistent with quantum mechanics, his bizarre and impossible principal of relativity (which contradicts the reality principal by allowing something to be considered both stationary and in motion at the same time, depending on subject perspectives) vanishes.

We live in an absolute, defined, mathematical universe, not one that is relativistic and undefined. “A ‘form’ is simple a shorthand expression for any number of particular propositions or ‘contents’. What we say about the form applies to all the contents” Avi sion Every applicant for a job is asked to fill in a form. Each applicant fills in the form uniquely, i.e. the form is identical in all cases, while the content differs in all cases. There is one to many relationships between form and content. If we regard the periodic table of elements as the set of basis forms for the material works then we can combine these forms in a myriad of different ways to produce all of the different molecules and compounds of the world. The ultimate form is the generalized Euler formula = God Equation Each monad fill in this form uniquely, via what it does with it set of basis sinusoids (thoughts). In logic, a syllogism is a formal deductive argument consisting of a major and minor premise and conclusion. This is a logical form into which all manner of contents can be inserted. If the contents are valid, the conclusion will be logically valid. To say, using the classical syllogism, that all men are mortal (major premise), Socrates is a mortal (minor premise); there fore Socrates is a mortal (conclusion). This seems unarguable, until we introduce the concept of the immortal soul. It is critical to grasp that perfect form does not automatically lead to perfect content. All sinusoidal forms are perfect. Ultimate form I.E. the God equation is parmidean, platonic, eternal, immutable and perfect. Content i.e. everything dynamically generated by the GOD equation, is, on the other hand, Heraclitean. It is pure change and becoming, mutable and imperfect, dialectical and teleological.

The GOD equation is the platonic form of thought. As soon as a cosmic age begins, (when perfect and divine symmetry is broken), all monads become pure potential (empty content) and are in need of being perfectly actualized. (Enlightenment). This is the point where the metaphorical quest for truth began. This is where the Hegelian dialectic kicks in. It drives imperfection (potential) to perfection (actualization). Viewed in other terms, it converts fallible content into perfect, infallible form (matter less form/4th dimension). The end of a cosmic cycle/age occurs when form and content become perfectly mathematically and cosmically aligned. A cosmic age relies on pure mathematical wave frequencies. A perpetual system of energy. The universe was created based on mathematical design. Music is the mathematical representation of the soul. The method/process of experiencing or being chosen for this incredible impart knowledge will be revealed at a later date. If you imagined the perfect from for delivering content, what could it be? When considered ontologically: Form and delivery are perfect and never change: What is it? ‘Faith no more’ Analytical mathematical sinusoids, organized into complete and consistent units (monads), constitute the perfect form and perfect delivery mechanisms for content (information). However, it must be remembered that although Form is perfect, content is not. Content is dialectical. It is improving all the time and becomes perfect only at the Omega point, where form and content become perfectly aligned. To make science consistent, it must be predicted on from rather than content.

It must switch from empiricism to rationalism, from science (physics) to mathematics (metaphysics). Physics, with its scientific method, then becomes the phenomenal application of metaphysics, with its mathematical method. As Leibniz advocated, “we must start with metaphysics and work our way to physics, start with the phenomena and then understand the phenomena that result from them.” “We must not do what science does and start with physics and deny the existence of metaphysics, to start with phenomena and deny that they are representations of mathematical noumea.”    Question  7.    How  Did  We  Get  Here?    Current  View    Astronomers  cannot  see  all  the  way  back  in  time  to  the  origin  of  the  universe,  but  by  drawing  on  lots  of  clues  and  theory,  they  can  imagine  how  everything  began.      Their  model  starts  with  the  entire  universe  as  a  very  hot  dot,  much  smaller  than  the  diameter  of  an  atom.      The  dot  began  to  expand  faster  than  the  speed  of  light,  an  expansion  called  the  Big  Bang.      Cosmologists  are  still  arguing  about  the  exact  mechanism  that  may  have  set  this  event  in  motion.      From  there  on  out,  however,  they  are  in  remarkable  agreement  about  what  happened.  As  the  baby  universe  expanded,  it  cooled  the  various  forms  of  matter  and  antimatter  it  contained,  such  as  quarks  and  leptons,  along  with  their  antimatter  twins,  antiquarks  and  antileptons.      These  particles  promptly  smashed  into  and  annihilated  one  another,  leaving  behind  a  small  residue  of  matter  and  a  lot  of  energy.      

The  universe  continued  to  cool  down  until  the  few  quarks  that  survived  could  latch  together  into  protons  and  neutrons,  which  in  turn  formed  the  nuclei  of  hydrogen,  helium,  deuterium,  and  lithium.  For  300,000  years,  this  soup  stayed  too  hot  for  electrons  to  bind  to  the  nuclei  and  form  complete  atoms.    But  once  temperatures  dropped  enough,  the  same  hydrogen,  helium,  deuterium,  and  lithium  atoms  that  are  around  today  formed,  ready  to  start  a  long  journey  into  becoming  dust,  planets,  stars,  galaxies,  and  lawyers.      Gravity—the  weakest  of  the  forces  but  the  only  one  that  acts  cumulatively  across  long  distances—gradually  took  control,  gathering  gas  and  dust  into  massive  globs  that  collapsed  in  on  themselves  until  fusion  reactions  were  ignited  and  the  first  stars  were  born.      At  much  larger  scales,  gravity  pulled  together  huge  regions  of  denser-­‐than-­‐average  gas.  These  evolved  into  clusters  of  galaxies,  each  one  brimming  with  billions  of  stars.      Over  the  eons  fusion  reactions  inside  stars  transformed  hydrogen  and  helium  into  other  atomic  nuclei,  including  carbon,  the  basis  for  all  life  on  Earth.      The  most  massive  stars  sometimes  exploded  in  energetic  supernovas  that  produced  even  heavier  elements,  up  to  and  including  iron.  Where  the  heaviest  elements,  such  as  uranium  and  lead,  came  from  still  remains  something  of  a  mystery.      The  Illuminati    The  illuminati  is  an  ancient  secret  society  that  seeks  to  bring  to  bring  about  a  new  world  order  based  on  the  principal  that  everyone  has  the  potential  with  in  them  to  become  God.    Illuminati’s  radical  vision  for  a  new  humanity  provides  a  full  account  of  the  inner  divinity  of  the  human  race.    The  ten  most  influential  Grand  Masters  of  the  Illuminati  are:  King  Solomon  the  apostate,  Pythagoras,  Heraclitus,  Empedocles,  Simon  Magus,  Hypatia,  Leibniz,  Weishaupt,  Goethe  and  Hegel.    

Our  aim,  as  it  always  has  been,  is  to  overthrow  the  network  of  elite,  dynastic  families  of  wealth  and  privilege  that  we  refer  to  as  the  ‘Old  world  order  that  have  run  this  world  this  the  dawn  of  the  civilization,  to  their  maximum  advantage  and  to  the  extreme  detriment  of  the  people.    We  are  radical  and  indeed  revolutionary  organization  that  seeks  nothing  less  that  to  assist  the  ordinary  man  and  women  to  ascend  to  the  next  stage  of  humanity’s  divine  evolution.  We  describe  this  higher  level  as  the  ‘community  of  Gods’  or  the  ‘society  of  the  divine.’    It  is  time  to  end  the  reign  of  false  prophets  of  religion,  the  fake  gods  of  capitalism