5.- mineral processing_introduction_mcu_2011_luis magne.pdf

Upload: anonymous-t8aah3jf

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    1/32

    Mill Circuit UniversityWeir Minerals

    Mill Circuit UniversityWeir Minerals

    Mineral Processingineral Processing

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    2/32

    Extractive Metallurgy:

    Crushing

    Metals Extraction:

    Example Copper

    Metals Extraction:

    Example Copper

    Process:

    Exploration (Geology) Extraction (Minning)

    Extractive Metallurgy:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Grinding

    Classification

    Concentration

    Dewatering

    Smelting Electro refinery

    rus n

    Leaching Solvent Extraction

    Electro winning

    Materials Process

    EarthEarth

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Elements in the Earth CrustElements in the Earth Crust

    Elements Quantity, %

    Oxygen (O) 46,6

    Silicon (Si) 27,7

    Aluminum (Al) 8,1

    Iron (Fe) 5,0

    Calcium (Ca) 3,6

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Sodium (Na) 2,8

    Potassium (K) 2,6

    Magnesium (Mg) 2,1

    Titanium (Ti) 0,5

    99,0

    Copper: 0,006%

    Molibdenum: 0,00025%

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    3/32

    Copper in the Earth CrustCopper in the Earth Crust

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    OreOre

    An ore is a type of rock that contains minerals with

    important elements including metals. The ore is formed

    through geological processes and it has a characteristicchemical composition.

    An economic definition is: Ore is a mineral that can be

    mined at a profit. For example:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    CalcopiritaCalcopirita

    CuFeS2

    GalenaGalena

    PbS

    EsfaleritaEsfalerita

    ZnS

    OreOre

    MoS2

    MolibdenitaMolibdenita

    Fe2O3

    HematitaHematita MagnetitaMagnetita

    Fe3O4

    Cu ritaCu rita

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    FeS2

    PiritaPirita AzuritaAzurita

    Cu23(CO3)2(OH)2

    Cu2O

    GoldGold

    Au

    SilverSilver

    Ag

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    4/32

    Ore DepositesOre Deposites

    An ore deposit is a portion of the earths crust from

    which some industrial raw material can be extracted at aprofit.

    The interest elements concentration is called grade. Copper: % (bigger than 0,4%)

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Molybdenum: % (bigger than 0,05%)

    Iron: % (bigger than 25%)

    Gold: g/t (bigger than 0,8 g/t or ppm)

    Silver: g/t (bigger than 15 g/t or ppm)

    Grade Variation of Copper in Main Chiles

    Plants

    Grade Variation of Copper in Main Chiles

    Plants

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    RecoveryRecovery

    Is the mass of element of interest obtained trough aconcentration process.

    Mineral Processin Plant

    Feed: 150 t/h

    GF: 1,2% feedininterestofelementofmass

    econcentratininterestofelementofmassR

    tph

    100

    1,2tphfeedininterestofelementofMass 8,1150

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Concentrate: 6,5 t/h

    GC: 25,0%

    Tails: 143,5 t/h

    GT: 0,122%

    tph100

    25,0tpheconcentratininterestofelementofMass 625,15,6

    %3,908,1

    625,1100

    tph

    tphR

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    5/32

    Copper Production in ChileCopper Production in Chile

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Mineral processing parameters for sulphur (concentration):

    Copper Production in ChileCopper Production in Chile

    2007 2008 2009 2010 2011

    CopperGrade,% 1,09 1,10 1,05 0,97 0,94Recovery,% 87,9 87,7 88,1 87,6 87,8

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Mineral processing parameters for oxides (leaching):

    2007 2008 2009 2010 2011

    Copper Grade,% 0,69 0,67 0,66 0,61 0,60Recovery,% 63,67 63,43 63,35 59,09 58,90

    Total Mineral for ProcessTotal Mineral for Process

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    6/32

    Mine Material RemoveMine Material Remove

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Minning Proyects in ChileMinning Proyects in Chile

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Mineral ProcessingMineral Processing

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    7/32

    Mineral ProcessingMineral Processing

    Unit process:

    Size reduction process

    Size classification

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Ore Concentration

    Dewatering

    Minerals ConminutionMinerals Conminution

    Size reduction process:

    Blast

    Crushing

    Conventional grinding

    Autogenous grinding

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Size classification:

    Screens

    Hydrocyclones

    Minerals ConcentrationMinerals Concentration

    Ore concentration:

    Gravitational concentration

    Magnetic concentration

    Flotation

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Dewatering:

    Thickening

    Filtration

    Drying

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    8/32

    Minerals ProcessingMinerals Processing

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Minerals ProcessingMinerals Processing

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Slurry or PulpSlurry or Pulp

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    9/32

    Slurry or PulpsSlurry or Pulps

    Homogenous mixture between solidsparticles and a liquid

    A slurry can be described as a two phase

    medium (liquid/solid). In mineral processing, the solid particles are

    ores and the liquid is industrial water.

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Pulpvolume =Solidvolume + Liquidvolume

    Vp = Vs + Vl

    PulpMass =Solid mass + Liquidmass

    Mp = Ms + Ml

    Mineral PulpsMineral Pulps

    Pulp in movement: if is the resident time ofthe pulp in a control volume

    Volumetric flow rate: is the volume of fluidwhich passes through the control volume inthe resident time, .

    V

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    pp

    lslsp

    ll

    ss

    VQ

    VVQQQ

    VQ

    Q

    Solids:

    Liquid:

    Pulp:

    Mineral PulpsMineral Pulps

    Mass flow rate: is the mass of fluid whichpasses through the control volume in theresident time, .

    ss

    MG Solids:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    pp

    lslsp

    ll

    MG

    MMGGG

    MG

    Liquid:

    Pulp:

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    10/32

    Mineral PulpsMineral Pulps

    Pulp density :

    ls

    lsp

    p

    pp

    VV

    MM

    V

    M

    In a static system:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    ls

    lsp

    p

    pp

    QQ

    GG

    Q

    G

    In a dynamic system:

    Solid Concentration in PulpsSolid Concentration in Pulps

    Solid concentration involume Cv: it is the fractionof volume of solid that there

    is in the total volume of

    pulp

    vs

    p

    s

    s l

    vs

    p

    s

    s l

    C =V

    V=

    V

    V +V

    C =Q

    Q=

    Q

    Q + Q

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Solid concentration inweight Cp: it is the fractionof mass of solid that there is

    in the total mass of pulp

    ps

    p

    s

    s l

    p

    s

    p

    s

    s l

    C =M

    M=

    M

    M +M

    C =G

    G=

    G

    G +G

    Solid Concentration in PulpsSolid Concentration in Pulps

    Cp in function of Cv:

    CC

    Cp

    v s

    l v s l

    100100

    ( )

    Cp

    in function ofp

    :

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Cps p l

    p s l

    100

    ( )

    ( )

    Cv in function ofp:

    Cvp l

    s l

    100

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    11/32

    Solid Concentration in PulpsSolid Concentration in Pulps

    p in function of Cv:

    lpps

    lpv

    CC

    CC

    )100(100

    Cv in function of Cp:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    100

    )( lsvlp

    C

    p in function of Cp:

    plps

    lsp

    CC

    )100(100

    Mineral PulpsMineral Pulps

    Example:

    A mineral process plant, processes 500 mtph of ore with

    density of 2,8 mt/m3. In the mill, the pulp has a Cp of

    80,0% and in the flotation the Cp is 32,0%. Determine:

    o How much water is necessary for grinding process

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    o How much additional water it should be added in the

    flotation process

    o Which is the pulp density in both cases?

    a) 125 m3/h; b) 937,5 m3/h; c) 2,06 t/m3; 1,26 t/m3

    Water in Mineral ProcessingWater in Mineral Processing

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    12/32

    Water in Mineral ProcessingWater in Mineral Processing

    CrushingPlant

    ROM

    (3 5%humidity)

    GrindingPlant

    Cp=80%

    ConcentrationPlant Tails ThickeningTailsde osit

    FreshWater RecycledWater

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    If 60% of water is recovered, then is necessary 1 m3 of water for 1t of ore.

    Cp=30%

    Concentrate

    Cp=62%

    Thickening

    Cp=60%

    Filtration

    Dryconcentrate(8 10%humidity)

    Recycled

    Water

    Size Reduction ProcessSize Reduction Process

    Size reduction is relevant in mineral

    processing, because it have:

    High capital cost (investment)

    Reduction SizeReduction Size

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    o Equipment process

    High operational cost

    o Energy

    o Steel consumption

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    13/32

    Why Size Reduction?Why Size Reduction?

    Why Mineral Size Reduction?Why Mineral Size Reduction?

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Mineral Size Reduction TargetMineral Size Reduction Target

    To liberate interest minerals of non interestmaterials or gangue (concentration)

    To promote fast chemical reactions by a big

    superficial area exposition (hydrometallurgy)

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Degree of Liberation:

    The degree of liberation of a certain mineral orphase is the percentage of that mineral orphase occurring as free particles in relation tothe total of that mineral occurring in the freeand locked forms

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    14/32

    Usually the first steps are doing in a mine for

    transport objective.

    The following steps, crushing and grinding, are

    doing made to separate the interest minerals of

    the gangue.

    Size Reduction StepsSize Reduction Steps

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    The final product have different types of

    particles:

    Fully liberated

    Partially liberated

    Non liberated or locked

    Fully liberated: more than 80%is mineral

    Partially liberated:oMixed: between 80 y 50% ismineral

    Asociaciones Mineralgicas y Grados de

    Liberacin

    Asociaciones Mineralgicas y Grados de

    Liberacin

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    oAssociate: between 50 y 15%is mineral

    Non liberated:oLess than 15% is mineraloOccluded: mineral is inside ofgangue

    Size Reduction MechanismSize Reduction Mechanism

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    15/32

    Size Reduction MechanismSize Reduction Mechanism

    Fracture

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Abrasion

    Fracture

    by compression

    Size Reduction MechanismSize Reduction Mechanism

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    by shearing

    by impact

    Size Reduction Mechanism and EquipmentSize Reduction Mechanism and Equipment

    MECHANISMMECHANISM

    COMPRESSIONCOMPRESSION IMPACTIMPACT COMPRESSIONCOMPRESSION--IMPACTIMPACT

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Jaw Crusher

    Giratory Crusher

    Cone Crusher

    Rolls Crusher

    Impact crusher

    Impact millBars mill

    Balls mill

    Autogenous mill

    Semiautogenous mill

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    16/32

    Size Reduction Processize Reduction Processize Reduction Processize Reduction Process

    Size Reduction ProcessSize Reduction Process

    Size reduction process depend of product target

    Product target depend of the next process:concentration (flotation, magnetic concentration,

    gravitational concentration), cyanuration, leaching,etc.

    If the target is fine product (150 to 300 m):

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    onven ona r n n c rcu : or crus ng

    steps and 2 grinding steps

    Unitary grinding circuit: 3 crushing steps and 1grinding step

    Semiautogenous grinding circuit: 1 crushing stepand 1 grinding step

    If the target is medium size (20 mm): 3 crushing steps.

    Conventional Grinding Circuit

    Crusher Plant

    Conventional Grinding Circuit

    Crusher Plant

    Primary crusher:

    Run of mine material (ROM), with sizes until 60 inch(1,5 m). Product of 6 to 8 inch (15 to 20 cm)

    Secondary crusher:

    Work with product of the primary crusher. Product of2 to 3 inch (5 to 8 cm)

    Tertiary crusher:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Work with product of the secondary crusher. Productminus of inch (12 mm) for mill circuit.

    Primary mill:

    The crusher plant product is grinding until 6 to 4 mm.

    Normally is wet.

    Secondary mill:

    The product of primary mill is grinding for produceparticles of 200 m (may be 100 to 300 m or more).

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    17/32

    Unitary Grinding Circuit

    Crusher Plant

    Unitary Grinding Circuit

    Crusher Plant

    Primary crusher:

    Run of mine material, with sizes until 60 inch (1,5m). Product of 6 to 8 inch (15 to 20 cm)

    Secondary crusher:Work with product of the primary crusher.Product of 2 to 3 inch (5 to 8 cm)

    Tertiary crusher:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Work with product of the secondary crusher.Product minus of inch (12 mm) for mill circuit.

    Milling:

    The crusher plant product is grinding for produce

    particles of 200 m (may be 100 to 300 m ormore).

    Semiautogenous Grinding CircuitSemiautogenous Grinding Circuit

    Primary crusher:

    Run of mine material, with sizes until60 inch (1,5 m). Product of 6 to 8 inch(15 to 20 cm)

    Semiautogenous mill:

    Work directl with the crusher roduct

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    and produce material with 12 mm.

    Normally is wet.

    Secondary mill:

    The product of primary mill is grinding

    for produce particles of 200 m (may be100 to 300 m or more).

    FAG o SAGFAG o SAG

    Size Controlize Controlize Controlize Control

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    18/32

    Size Distribution of Mineral Particlesize Distribution of Mineral Particles

    The sizes distribution of the mineralparticles can be represented by a set ofnumbers representing the cumulative weight

    fraction below size xi versus xi: F(xi) vs xi

    100

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    10 100 1000 10000 1000001

    10

    AcumuladoPasante,%

    Tamao de partcula, m

    Size Distribution of Mineral Particlesize Distribution of Mineral Particles

    Ro-Tap

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    SievesSieves

    Mesh number is the slots number by onelineal inch.

    Size Distribution of Mineral Particlesize Distribution of Mineral ParticlesAbertura Serie ASTM

    N de tamiz

    Serie Tyler

    N de tamiz

    107.6 mm101.6 mm

    90.5 mm76.1 mm

    64.0 mm

    4.24"4.00"

    31/2"3"

    21/2"

    53.8 mm50.8 mm45.3 mm38.1 mm32.0 mm26.9 mm

    2.12"2"

    13/4"11/2"11/4"1.06"

    25.4 mm 1"

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    22.6 mm19.0 mm16.0 mm13.5 mm

    7/8"3/4"5/8"

    0.530"

    0.883"0.742"0.624"0.525"

    12.7 mm11.2 mm9.51 mm8.0 mm

    6.73 mm6.35 mm

    1/2"7/16"3/8"

    5/16"0.265"

    1/4"

    0.441"0.371"2.172"

    3

    5.55 mm

    4760 m4000 m3360 m2830 m2380 m

    3 1/2

    45678

    3 1/2

    45678

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    19/32

    Size Distribution of Mineral Particlesize Distribution of Mineral ParticlesAbertura Serie ASTM

    N de tamizSerie TylerN de tamiz

    2000 m1680 m1410 m1190 m1000 m

    1012141618

    910121416

    841 m707 m595 m500 m420 m

    2025303540

    2024283235

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    m297 m250 m210 m

    506070

    486065

    177 m149 m125 m105 m

    80100120140

    80100115150

    88 m74 m63 m53 m44 m

    37 m

    170200230270325

    400

    170200250270325

    400

    Size Distribution of Mineral Particlesize Distribution of Mineral ParticlesTotal mass 537,6 g

    I nter va l Rep re se ntative P ar ticle Mass P ar tial Cummu la tive

    Mesh Mesh size, m g fraction, % fracti on, %

    10 - 14 10 1680

    14 - 20 14 1190

    20 - 28 20 841

    28 - 35 28 595

    35 - Bottom 35 420

    I nter va l Rep re se ntative P ar ticle Mass P ar tial Cummu la tive

    Mesh Mesh size, m g fraction, % fracti on, %

    10 - 14 10 1680 65,4

    14 - 20 14 1190 93,0

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    20 - 28 20 841 145,4

    28 - 35 28 595 122,6

    35 - Bottom 35 420 110,9

    537,3

    I nter va l Rep re se ntative P ar ticle Mass P ar tial Cummu la tive

    Mesh Mesh size, m g fraction, % fracti on, %

    10 - 14 10 1680 65,4

    14 - 20 14 1190 93,0

    20 - 28 20 841 145,4

    28 - 35 28 595 122,6

    35 - Bottom 35 420 111,2537,6

    Size Distribution of Mineral Particlesize Distribution of Mineral ParticlesInterva l R ep re se ntat ive P ar ticle Mas s P ar tial C um mu la tive

    Mesh Mesh size, m g fraction, % fraction, %

    10 - 12 10 2380 65,4 12,17

    12 - 30 12 2000 93,0 17,30

    30 - 270 30 595 145,4 27,05

    270 - 400 270 53 122,6 22,81

    400 -(-400) 400 37 111,2 20,68

    537,6 100,00

    Interva l R ep re se ntat ive P ar ticle Mas s P ar tial C um mu la tive

    Mesh Mesh size m fraction % fraction %

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    , , ,

    10 - 12 10 2380 65,4 12,17 100,00

    12 - 30 12 2000 93,0 17,30 87,83

    30 - 270 30 595 145,4 27,05 70,54

    270 - 400 270 53 122,6 22,81 43,49

    400 -(-400) 400 37 111,2 20,68 20,68

    537,6 100,00

    80% size (F80) is the 80% passing size in the

    distribution.

    Which is the F80 of this distribution size?

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    20/32

    Size Reduction Definitionsize Reduction Definitionsize Reduction Definitionsize Reduction Definitions

    Size Reduction Caracterizationize Reduction CaracterizationSize Reduction

    Power consumption

    Pot in kW

    Feed Product

    F80

    F, mtph

    P80

    P=F, mtph

    100

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    10 100 1000 10000 100000 1000000

    0.1

    1

    10

    AcumuladoPasante,

    %

    Tamao de Partcula, m

    Alimentacin Molino SAG

    Descarga Molino Sag

    Reduction RatioReduction Ratio

    Ratio of feed size to product size for acrushing or grinding operation:

    RF

    Pr

    80

    80

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    RF

    Pr

    max

    max

    Inefficient process:

    Rr = 1

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    21/32

    Consumed Specific Energy (CSE)Consumed Specific Energy (CSE)

    CSE is the necesary energy to reduce a ton ofmineral:

    kWPotCSE

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Inefficient process:

    F = 0 mtph

    mtp

    Reduction Ratio and SECReduction Ratio and SEC

    The ideal condition is to obtain themaximum reduction ratio and minimumCSE:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    0CSERr

    Sizing and

    Sizing and

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    22/32

    Sizing and Size ClassificationSizing and Size Classification

    Sizing is the general term for separation ofparticles according to their size. The simplestsizing process is screening.

    Classification refers to sizing operations that

    exploit the differences in settling velocitiesexhibited by particles of different size.Classification equipment may includeh droc clones and rotatin trommels.

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    .

    Feed

    Fine

    Coarse

    Sizing and Size ClasificationSizing and Size Clasification

    DPA

    Global mass balance:

    coarseinflowMassfineinflowMassfeedinflowMass

    Mass balance by size: Feed

    FineP, mtph

    pi

    CpR

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    iiiDdPpAa

    Mass balance of water:

    D

    D

    P

    P

    A

    A

    Cp

    CpD

    Cp

    CpP

    Cp

    CpA

    )100()100()100(

    A, mtph

    ai

    Coarse

    D, mtph

    di

    CpA

    CpD

    10

    100

    pa

    sante,

    %

    Sizing and Size ClassificationSizing and Size Classification

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    10 100 1000 10000 1000001

    Granulometras:

    Alimentacin

    Descarga

    RebalseAcumulado

    Tamao de partcula, m

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    23/32

    Size Reduction Circuitsize Reduction Circuitsize Reduction Circuitsize Reduction Circuits

    Open CircuitOpen Circuit

    Size ReductionFeed, F Product, P

    F80 P80

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    PF

    productinflowMassfeedinflowMass

    Direct Closed CircuitDirect Closed Circuit

    Size

    Reduction

    Feed, F

    Classification

    F80

    Water

    Water

    Coarse

    Product, DG

    A

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Fine Product, P

    P80GDF

    PDA

    GA

    ass ow a ance

    Mass balance by size:

    iiiGgDdFf

    iiiPpDdAa

    FP

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    24/32

    Inverse Closed CircuitInverse Closed Circuit

    Size Reduction

    Feed, F

    Classification

    F80Water

    Water

    CoarseProduct, D

    A

    G

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Fine Product, P

    80

    AGF

    PDA

    GD

    Mass flow balance

    FP

    Mass balance by size:

    iiiAaGgFf

    iiiPpDdAa

    Circulating Load RatioCirculating Load Ratio

    Equipo deF G FF

    Circulating Load, C, is the ratio of the massflowrate of solids in the classifier dischargestream to the mass flowrate of solid in theclassifier overflow stream:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Reduccin de

    Tamaos

    Producto

    final

    Clasificador

    Q

    D

    A

    Equipo de

    Reduccinde

    Tamaos

    Q

    Clasificador

    D

    A

    GEquipo de

    Reduccinde

    Tamaos

    Q

    Clasificador

    D

    A

    G

    P

    DC 100

    P

    DC 100

    P

    R

    Circulating Load RatioCirculating Load Ratio

    FeedA, mtph

    ai

    Fine

    P, mtph

    pi

    CpA

    CpR

    DPA

    iiiDdPpAa

    D

    D

    P

    P

    A

    A

    Cp

    CpD

    Cp

    CpP

    Cp

    CpA

    )100()100()100(

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    )(

    )(100

    ii

    ii

    ad

    paC

    CoarseD, mtph

    diCpD

    PDA

    DAP

    CpCpCp

    CpCpCpC

    )(

    )(100

    Since mass balance by size:

    Since mass balance of water:

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    25/32

    Circulating Load RatioCirculating Load Ratio

    Feed

    A, mtph

    ai

    Fine

    P, mtph

    pi

    CpA

    CpR

    PDA

    DAP

    CpCpCp

    CpCpCpC

    )(

    )(100

    Example 1:

    CpA = 60%

    CpD = 80%

    CpP = 30%

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Coarse

    D, mtph

    diCpD

    Example 2:

    CpA = 60%

    CpD = 78%

    CpP = 35%

    R: Example 1=400%: Example 2=309,5%

    Size Reduction Circuit EvolutionSize Reduction Circuit Evolution

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Size Reduction Circuit Evolution:60s Decade

    Transporte

    a Proceso

    Chancado

    Primario

    (Mandbulas)

    Chancado

    Secundario

    (Cono

    estndar)Molino

    A Flotacin

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Conventional circuit: Conventional blast Jaw primary crusher Symons cone crusher, secondary and terciary Mills of 12 ft, 950 kW The same power in both mill steps Ball mill circuit is direct Classification in spirals

    Chancado

    Terciario

    (Cono

    C. corta)

    Tolva de Finos

    Molino

    de Barras

    de Bolas

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    26/32

    Transporte

    a Proceso

    Chancado

    Primario

    (Mandbulas)

    Chancado

    Secundario

    (Cono olino

    A Flotacin

    Size Reduction Circuit Evolution:70s Decade

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Unitary circuit:

    Conventional blast Jaw primary crusher Symons cone crusher, secondary and terciary Ball mills of 16,5 ft, 3.000 kW Ball mill circuit is inverse Classification in small hydrocyclon

    estndar)

    Chancado

    Terciario

    (Cono

    C. corta)

    Tolva de Finos

    de Bolas

    SAG mill Circuit:

    Conventional blast Giratory primary crusher SAG mills of 36 ft, 11.200 kW Balls mills of 18 ft, 4.800 kW Power of primary mill is bigger than

    secondary mill Ball mill circuit is inverse

    Transporte

    a Proceso

    Chancado

    Primario

    (Giratorio)

    Stock

    Size Reduction Circuit Evolution:80s Decade

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    uster of y rocyc ons of inc

    Molino

    de Bolas

    A Flotacin

    Clasificador

    Molino SAG

    Pebbles

    SAG mill circuit: Conventional blast Giratory primary crusher SAG mills of 40 ft, 19.400 kW Balls mills of 24 ft, 10.500 kW Power of primary mill iqual to secondary mill Pebbles crusher Ball mill circuit is inverse

    Cluster of hydrocyclon of 26 inch

    Transporte

    a Proceso

    Chancado

    Primario

    (Giratorio)

    StockStock

    PilePile

    Size Reduction Circuit Evolution:90s Decade

    Pebbles

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Molino

    de Bolas

    A Flotacin

    Clasificador

    Molino SAG

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    27/32

    SAG mill circuit: Selective blast Giratory primary crusher Pre crushing SAG mills of 40 ft, 24.000 kW

    Balls mills of 27 ft, 18.650 kW Power of primary mill less than secondary

    mill Pebbles crusher Secundar circuit is inverse

    Circuitos de Reduccin de Tamaos:Dcada del 2000

    Transporte

    a Proceso

    Chancado

    Primario

    (Giratorio)

    Stock

    Pile

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Pebbles crushed to ball mills Cluster of hydrocyclons de 33 inch

    Molino

    de Bolas

    A Flotacin

    Clasificador

    Molino SAG

    Prechancado

    (Cono

    serie moderna)

    Pebbles

    Concentration ProcessConcentration Process

    Concentration ProcessConcentration Process

    Feed

    Mf , G f

    Tail

    Mt , Gt

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Concentrate

    Mc , Gc

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    28/32

    Concentration CircuitConcentration Circuit

    Rougher o Bulk:

    Is the first concentration step. Their objective is tomaximize the recovery. Produce a rougher concentrate

    and rougher tails.

    Scavenger:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    or w roug er a s, e r o ec ve s o

    supplement the recovery. Produce a scavengerconcentrate and scavenger tails.

    Cleaner:

    Work with rougher concentrate, their objective is to

    maximize the concentrate grade. Produce a cleaner

    concentrate and cleaner tails.

    Concentration CircuitConcentration Circuit

    Alimentacin

    fresca

    Relave

    finalRougher Scavenger

    Rougher

    Feed

    Tail

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Concentrado

    final

    Scavengercleaner

    Cleaner

    Concentrate

    Alimentacinfresca

    Relave

    finalRougher

    ScavengerCleaner

    Concentration CircuitConcentration Circuit

    Feed

    Tail

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Concentradofinal

    cleaner

    RecleanerScavengerrecleaner

    Concentrate

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    29/32

    Concentration ProcessConcentration Process

    Recovery, R (%):

    100feedininterestofelementofmass

    econcentratininterestofelementofmassR

    Feed

    Concentrate

    MF , GF

    MC, GC

    Tail

    MT, GT

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    100FF

    CC

    GM

    GMR

    Concentration Ratio, K (%):

    masseConcentrat

    massFeedK

    C

    F

    M

    MK

    Concentration ProcessConcentration Process

    Example:

    A mineral process plant, processes 1000 mtpd of ore

    with copper feed grade of 1,3%. The concentrate grade is

    28% and the tail grade is 0,10%. If the plant produces 43

    mtpd of concentrates and 957 mtpd of tails, determine:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    o Copper mass in each flow

    o Recovery

    o Concentration ratio

    a) 13,0, 12,04, 0,96 mtpd; b) 92,6%; c) 23,25

    Concentration ProcessConcentration Process

    Material balance:

    tailinflowMasseconcentratinflowMassfeedinflowMass

    Ore balance:

    Mf= Mc+ Mt

    Feed

    MF , GF

    Tail

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Element balance:

    Mf Ga = Mc Gc + Mt Gt

    Concentrate

    MC, GC

    T, T

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    30/32

    Concentration ProcessConcentration Process

    Concentrate mass:

    Recovery:Feed

    MF , GF

    Tail

    F

    TC

    TFC

    MGG

    GGM

    CTFGGG )(

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Concentration Ratio: ConcentrateMC, GC

    T, T

    FTC GGG )(

    TF

    TC

    GG

    GGK

    Concentration CircuitConcentration Circuit

    Alimentacinfresca

    Relavefinal

    Feed

    Tail

    2605 tph1,29% Cu

    Example:

    Which is the flow mass in each point?

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Concentradofinal

    ougher

    Scavengercleaner

    Cleaner

    Concentrate

    ,

    13,57% Cu7,88% Cu

    5,22% Cu

    30,93% Cu

    10,63% Cu

    0,22% Cu

    0,12% Cu

    Relationship Between

    Consumed Energy and Particle

    Relationship Between

    Consumed Energy and ParticleSizeSize

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    31/32

    Size Reduction and

    Consumed Specific Energy

    Size Reduction and

    Consumed Specific Energy

    Primary crushing: < 1 kWh/t

    Secondary crushing: Between 1 to 2 kWh/t

    Tertiar crushin : Between 1 5 to 3 kWh t

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    ,

    Primary mill: Between 4 to 8 kWh/t

    Secondary mill: Between 6 to 20 kWh/t

    BondBonds laws law(Bond(Bonds third theory)s third theory) BondBonds laws law(Bond(Bonds third theory)s third theory)

    EnergyEnergy Particle SizeParticle SizeEnergyEnergy Particle SizeParticle Size

    11

    The Bonds law assumes that the total work useful inbreakage is inversely proportional to the square rootof the size of the product particles:

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    WI is the work index (kWh/t) which expresses heresistance of the material to crushing and grinding;and F80 and P80 are the 80% passing size of the feedand the product (m), respectively.

    8080

    10FP

    WICSE

    WI depend:

    Ore (resistance at comminution)

    The machine used

    EnergyEnergy Particle SizeParticle SizeEnergyEnergy Particle SizeParticle Size

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    WI is determined in a standard laboratory test

  • 7/27/2019 5.- Mineral Processing_Introduction_MCU_2011_Luis Magne.pdf

    32/32

    Reduction Ratio and

    Consumed Specific Energy

    Reduction Ratio and

    Consumed Specific Energy

    The balance between capacity and reductionratio is:

    11 kWPot

    Capacity Reduction ratio

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    8080 FPi

    t/hA

    In a first evaluation, we need:

    CSE

    Wi

    Circulating Load

    F80 and P80

    Solid bypass in classification

    Mill Circuit UniversityWeir Minerals

    Mill Circuit UniversityWeir Minerals

    Mineral Processing: IntroductionMineral Processing: IntroductionLuis MagneLuis Magne

    Mineral Processingineral Processing