50. surface area integrals - arizona state university example 50.2: find the surface area of the...

13
289 50. Surface Area Integrals Let (, ) = 〈(, ), (, ), (, )βŒͺ parametrically describe a surface S in 3 . Then its surface area over a region of integration R is given by ∬ =∬ | Γ— | . If the surface is defined explicitly, in of the form = (, ), then the surface can be parametrized as (, ) = 〈, , (, )βŒͺ. Its partial derivatives are = 〈1,0, (, )βŒͺ and = 〈0,1, (, )βŒͺ. The cross product is Γ— = βŒ©βˆ’ (, ), βˆ’ (, ),1βŒͺ, and the magnitude of this cross product is | Γ— |= √ (βˆ’ (, )) 2 + (βˆ’ (, )) 2 +1 2 = √ ( (, )) 2 + ( (, )) 2 +1 . Thus, in the case of a surface being described by an explicitly-defined function, the surface area of the surface S over a region of integration R is ∬ =∬ √ ( (, )) 2 + ( (, )) 2 +1 .

Upload: trinhdieu

Post on 09-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

289

50. Surface Area Integrals

Let 𝐫(𝑒, 𝑣) = ⟨π‘₯(𝑒, 𝑣), 𝑦(𝑒, 𝑣), 𝑧(𝑒, 𝑣)⟩ parametrically describe a surface S in 𝑅3. Then its surface

area over a region of integration R is given by

∬ 𝑑𝑆𝑆

= ∬ |𝐫𝑒 Γ— 𝐫𝑣| 𝑑𝐴𝑅

.

If the surface is defined explicitly, in of the form 𝑧 = 𝑓(π‘₯, 𝑦), then the surface can be parametrized

as

𝐫(π‘₯, 𝑦) = ⟨π‘₯, 𝑦, 𝑓(π‘₯, 𝑦)⟩.

Its partial derivatives are

𝐫π‘₯ = ⟨1,0, 𝑓π‘₯(π‘₯, 𝑦)⟩ and 𝐫𝑦 = ⟨0,1, 𝑓𝑦(π‘₯, 𝑦)⟩.

The cross product is

𝐫π‘₯ Γ— 𝐫𝑦 = βŸ¨βˆ’π‘“π‘₯(π‘₯, 𝑦), βˆ’π‘“π‘¦(π‘₯, 𝑦),1⟩,

and the magnitude of this cross product is

|𝐫π‘₯ Γ— 𝐫𝑦| = √(βˆ’π‘“π‘₯(π‘₯, 𝑦))2

+ (βˆ’π‘“π‘¦(π‘₯, 𝑦))2

+ 12 = √(𝑓π‘₯(π‘₯, 𝑦))2

+ (𝑓𝑦(π‘₯, 𝑦))2

+ 1.

Thus, in the case of a surface being described by an explicitly-defined function, the surface area

of the surface S over a region of integration R is

∬ 𝑑𝑆𝑆

= ∬ √(𝑓π‘₯(π‘₯, 𝑦))2

+ (𝑓𝑦(π‘₯, 𝑦))2

+ 1 𝑑π‘₯ 𝑑𝑦𝑅

.

290

Example 50.1: Find the surface area of the plane with intercepts (6,0,0), (0,4,0) and (0,0,10) that

is in the first octant.

Solution: The plane’s equation is π‘₯

6+

𝑦

4+

𝑧

10= 1, or 10π‘₯ + 15𝑦 + 6𝑧 = 60. Below is a sketch of

the surface S, the plane in the first octant, and its region of integration R in the xy-plane:

Solving for z, we have 𝑧 = 10 βˆ’5

3π‘₯ βˆ’

5

2𝑦. Therefore, the plane can be written parametrically:

𝐫(π‘₯, 𝑦) = ⟨π‘₯, 𝑦, 10 βˆ’5

3π‘₯ βˆ’

5

2π‘¦βŸ©.

Its partial derivatives are 𝐫π‘₯ = ⟨1,0, βˆ’5

3⟩ and 𝐫𝑦 = ⟨0,1, βˆ’

5

2⟩, and the cross product is

𝐫π‘₯ Γ— 𝐫𝑦 = ⟨5

3,5

2, 1⟩.

Therefore, the magnitude is

|𝐫π‘₯ Γ— 𝐫𝑦| = √(5

3)

2

+ (5

2)

2

+ 12 = √361

36=

19

6 .

The surface area is

∬ 𝑑𝑆𝑆

= ∬ |𝐫π‘₯ Γ— 𝐫𝑦| 𝑑𝐴𝑅

=19

6∬ 𝑑𝐴

𝑅

.

Note that ∬ 𝑑𝐴𝑅

is the area of the region of integration R, which is the β€œshadow” cast by the plane

onto the xy-plane, which in this case is a triangle. Using geometry, R’s area is 1

2(6)(4) = 12. Thus,

the surface area of the plane 𝑧 = 10 βˆ’5

3π‘₯ βˆ’

5

2𝑦 in the first octant is

19

6(12) = 38 square units.

291

Example 50.2: Find the surface area of the portion of the paraboloid 𝑧 = 9 βˆ’ π‘₯2 βˆ’ 𝑦2 that extends

above the xy-plane.

Solution: The paraboloid is described parametrically by 𝐫(π‘₯, 𝑦) = ⟨π‘₯, 𝑦, 9 βˆ’ π‘₯2 βˆ’ 𝑦2⟩, and its

partial derivatives are 𝐫π‘₯ = ⟨1,0, βˆ’2π‘₯⟩ and 𝐫𝑦 = ⟨0,1, βˆ’2π‘¦βŸ©. Therefore, their cross product is

𝐫π‘₯ Γ— 𝐫𝑦 = ⟨2π‘₯, 2𝑦, 1⟩,

and the magnitude of the cross product is

|𝐫π‘₯ Γ— 𝐫𝑦| = √(2π‘₯)2 + (2𝑦)2 + 12 = √4π‘₯2 + 4𝑦2 + 1.

The paraboloid intersects the xy-plane (𝑧 = 0) at a circle of radius 3, centered at the origin, so that

the region of integration R is given by π‘₯2 + 𝑦2 ≀ 9. Therefore, the surface area of the paraboloid

𝑧 = 9 βˆ’ π‘₯2 βˆ’ 𝑦2 that extends above the xy-plane is given by

∬ 𝑑𝑆𝑆

= ∬ √4π‘₯2 + 4𝑦2 + 1𝑅

𝑑𝐴.

In rectangular coordinates, this is a difficult integrand to antidifferentiate. Instead, we use polar

coordinates to rewrite this surface-area integral in terms of π‘Ÿ and πœƒ:

∬ √4π‘₯2 + 4𝑦2 + 1𝑅

𝑑𝐴 = ∫ ∫ √4π‘Ÿ2 + 1 π‘Ÿ π‘‘π‘Ÿ3

0

π‘‘πœƒ2πœ‹

0

.

The inside integral is evaluated first:

∫ √4π‘Ÿ2 + 1 π‘Ÿ π‘‘π‘Ÿ3

0

= [1

12(4π‘Ÿ2 + 1)3 2⁄ ]

0

3

=1

12(373 2⁄ βˆ’ 1).

Then, the outside integral is evaluated to find the surface area:

1

12(373 2⁄ βˆ’ 1) ∫ π‘‘πœƒ

2πœ‹

0

=πœ‹

6(373 2⁄ βˆ’ 1), or about 117.32 units2.

292

Example 50.3: Find the surface area of the hemisphere π‘₯2 + 𝑦2 + 𝑧2 = 25 such that π‘₯ β‰₯ 0.

Solution: We can write this explicitly by solving for x:

π‘₯ = 𝑓(𝑦, 𝑧) = √25 βˆ’ 𝑦2 βˆ’ 𝑧2.

Thus, the hemisphere is parameterized as

𝐫(𝑦, 𝑧) = ⟨√25 βˆ’ 𝑦2 βˆ’ 𝑧2, 𝑦, π‘§βŸ©.

The partial derivatives are found first:

𝐫𝑦 = βŸ¨βˆ’π‘¦

√25 βˆ’ 𝑦2 βˆ’ 𝑧2, 1,0⟩ and 𝐫𝑧 = βŸ¨βˆ’

𝑧

√25 βˆ’ 𝑦2 βˆ’ 𝑧2, 0,1⟩.

The cross product is then determined:

𝐫𝑦 Γ— 𝐫𝑧 = ⟨1,𝑦

√25 βˆ’ 𝑦2 βˆ’ 𝑧2,

𝑧

√25 βˆ’ 𝑦2 βˆ’ 𝑧2⟩ .

Then the magnitude of the cross product is determined and simplified:

|𝐫𝑦 Γ— 𝐫𝑧| = √12 + (𝑦

√25 βˆ’ 𝑦2 βˆ’ 𝑧2)

2

+ (𝑧

√25 βˆ’ 𝑦2 βˆ’ 𝑧2)

2

= √1 +𝑦2

25 βˆ’ 𝑦2 βˆ’ 𝑧2+

𝑧2

25 βˆ’ 𝑦2 βˆ’ 𝑧2

= √25 βˆ’ 𝑦2 βˆ’ 𝑧2

25 βˆ’ 𝑦2 βˆ’ 𝑧2+

𝑦2

25 βˆ’ 𝑦2 βˆ’ 𝑧2+

𝑧2

25 βˆ’ 𝑦2 βˆ’ 𝑧2

= √25 βˆ’ 𝑦2 βˆ’ 𝑧2 + 𝑦2 + 𝑧2

25 βˆ’ 𝑦2 βˆ’ 𝑧2

=5

√25 βˆ’ 𝑦2 βˆ’ 𝑧2 .

293

Thus, the surface area of the hemisphere is

∬5

√25 βˆ’ 𝑦2 βˆ’ 𝑧2 𝑑𝐴

𝑅

,

where R is the region of integration on the yz-plane, a circle of radius 5 centered at the origin. We

rewrite this integral in terms of π‘Ÿ and πœƒ:

5 ∫ ∫1

√25 βˆ’ π‘Ÿ2 π‘Ÿ π‘‘π‘Ÿ

5

0

π‘‘πœƒ2πœ‹

0

.

The inside integral is evaluated using u-du substitution:

∫1

√25 βˆ’ π‘Ÿ2 π‘Ÿ π‘‘π‘Ÿ

5

0

= [βˆ’βˆš25 βˆ’ π‘Ÿ2]0

5

= 5.

Then the outer integral is evaluated:

5(5) ∫ π‘‘πœƒ2πœ‹

0

= 25(2πœ‹) = 50πœ‹ units2.

Note that the surface area of a sphere of radius π‘Ÿ is 𝐴 = 4πœ‹π‘Ÿ2. Thus, the surface area of a

hemisphere of radius 5 is 1

2(4πœ‹(5)2) = 50πœ‹. An alternative method of this example using

spherical coordinates is presented next.

Example 50.4: Use spherical coordinates to find the surface area of π‘₯2 + 𝑦2 + 𝑧2 = 25 where

π‘₯ β‰₯ 0.

Solution: Since the hemisphere lies β€œabove” the yz-plane. Thus, when describing this hemisphere

in spherical coordinates, the variable πœ™ will be reckoned from the positive x-axis, such that πœ™ = 0

is the positive x-axis and πœ™ =πœ‹

2 is the yz-plane. The radius is fixed, so 𝜌 = 5. The conversions are:

π‘₯ = 5 cos πœ™ , 𝑦 = 5 sin πœ™ cos πœƒ , 𝑧 = 5 sin πœ™ sin πœƒ.

Thus, we can describe the parameterize the hemisphere using variables πœ™ and πœƒ:

𝐫(πœ™, πœƒ) = ⟨5 cos πœ™ , 5 sin πœ™ cos πœƒ , 5 sin πœ™ sin πœƒ ⟩, where 0 ≀ πœ™ β‰€πœ‹

2 and 0 ≀ πœƒ ≀ 2πœ‹.

The partial derivatives are

π«πœ™ = βŸ¨βˆ’5 sin πœ™ , 5 cos πœ™ cos πœƒ , 5 cos πœ™ sin πœƒβŸ© and π«πœƒ = ⟨0, βˆ’5 sin πœ™ sin πœƒ , 5 sin πœ™ cos πœƒβŸ©.

294

The cross product looks intimidating, but trigonometric identities will help simplify it:

π«πœ™ Γ— π«πœƒ = |

𝐒 𝐣 π€βˆ’5 sin πœ™ 5 cos πœ™ cos πœƒ 5 cos πœ™ sin πœƒ

0 βˆ’5 sin πœ™ sin πœƒ 5 sin πœ™ cos πœƒ|

= |5 cos πœ™ cos πœƒ 5 cos πœ™ sin πœƒ

βˆ’5 sin πœ™ sin πœƒ 5 sin πœ™ cos πœƒ| 𝐒 βˆ’ |

βˆ’5 sin πœ™ 5 cos πœ™ sin πœƒ0 5 sin πœ™ cos πœƒ

| 𝐣 + |βˆ’5 sin πœ™ 5 cos πœ™ cos πœƒ

0 βˆ’5 sin πœ™ sin πœƒ| 𝐀

= (25 cos πœ™ sin πœ™ cos2 πœƒ + 25 cos πœ™ sin πœ™ sin2 πœƒ)𝐒 βˆ’ (βˆ’25 sin2 πœ™ cos πœƒ)𝐣 + (25 sin2 πœ™ sin πœƒ)𝐀

= (25 cos πœ™ sin πœ™)𝐒 + (25 sin2 πœ™ cos πœƒ)𝐣 + (25 sin2 πœ™ sin πœƒ)𝐀

The magnitude is found next:

|π«πœ™ Γ— π«πœƒ| = √(25 cos πœ™ sin πœ™)2 + (25 sin2 πœ™ cos πœƒ)2 + (25 sin2 πœ™ sin πœƒ)2

= √625(cos2 πœ™ sin2 πœ™ + sin4 πœ™ cos2 πœƒ + sin4 πœ™ sin2 πœƒ)

= 25√cos2 πœ™ sin2 πœ™ + sin4 πœ™ (cos2 πœƒ + sin2 πœƒ)

= 25√cos2 πœ™ sin2 πœ™ + sin4 πœ™

= 25√sin2 πœ™ (cos2 πœ™ + sin2 πœ™)

= 25√sin2 πœ™

= 25 sin πœ™.

Therefore, the surface area of the hemisphere is

∫ ∫ 25 sin πœ™ πœ‹ 2⁄

0

π‘‘πœ™2πœ‹

0

π‘‘πœƒ.

The inside integral is evaluated:

∫ 25 sin πœ™ πœ‹ 2⁄

0

π‘‘πœ™ = [βˆ’25 cos πœ™]0πœ‹ 2⁄

= βˆ’25 (cosπœ‹

2βˆ’ cos 0)

= βˆ’25(0 βˆ’ 1)

= 25.

Then, the integral with respect to πœƒ is evaluated:

∫ 252πœ‹

0

π‘‘πœƒ = 25(2πœ‹) = 50πœ‹.

295

Example 50.5: A circular cylinder π‘₯2 + 𝑦2 = 36 intersects the plane π‘₯ + 𝑧 = 10. Find the surface

area of this plane that is cut off by the cylinder, and then find the surface area of the cylinder that

is bounded below by the xy-plane and above by the plane π‘₯ + 𝑧 = 10.

Solution: For the plane π‘₯ + 𝑧 = 10, we solve for 𝑧, getting 𝑧 = 10 βˆ’ π‘₯. Thus, the plane is

parametrized by

𝐫(π‘₯, 𝑦) = ⟨π‘₯, 𝑦, 10 βˆ’ π‘₯⟩.

Note that we use y as a parameter since the plane does extend into the y direction, even though

values of y do not govern the values of z. (If it helps, think of the plane as π‘₯ + 0𝑦 + 𝑧 = 10).

The partial derivatives are 𝐫π‘₯ = ⟨1,0, βˆ’1⟩ and 𝐫𝑦 = ⟨0,1,0⟩, and their cross product is

𝐫π‘₯ Γ— 𝐫𝑦 = ⟨1,0,1⟩,

with magnitude |𝐫π‘₯ Γ— 𝐫𝑦| = √2. Thus, the surface area of the plane is

∬ |𝐫π‘₯ Γ— 𝐫𝑦| 𝑑𝐴𝑅

= √2 ∬ 𝑑𝐴𝑅

,

where ∬ 𝑑𝐴𝑅

is the area of the region of integration R. Since R is a circle of radius 6, we have

∬ 𝑑𝐴𝑅

= 36πœ‹, so that the surface area of the plane is 36πœ‹βˆš2 units2.

296

The surface area of the cylinder bounded by the xy-plane (z = 0) and the plane π‘₯ + 𝑧 = 10 (written

z = 10 – x = 10 βˆ’ 6 cos πœƒ) is found in a similar manner. First, we parametrize the cylinder:

𝐫(πœƒ, 𝑧) = ⟨6 cos πœƒ , 6 sin πœƒ , π‘§βŸ©, where 0 ≀ πœƒ ≀ 2πœ‹ and 0 ≀ 𝑧 ≀ 10 βˆ’ 6 cos πœƒ.

The partial derivatives are π«πœƒ = βŸ¨βˆ’6 sin πœƒ , 6 cos πœƒ , 0⟩ and 𝐫𝑧 = ⟨0,0,1⟩, and their cross product is

π«πœƒ Γ— 𝐫𝑧 = ⟨6 cos πœƒ , 6 sin πœƒ , 0⟩.

The magnitude of the cross product is

|π«πœƒ Γ— 𝐫𝑧| = √(6 cos πœƒ)2 + (6 sin πœƒ)2 + 02

= √36(cos2 πœƒ + sin2 πœƒ)

= √36

= 6.

Thus, the surface area of the cylinder is

∫ ∫ 6 𝑑𝑧10βˆ’6 cos πœƒ

0

π‘‘πœƒ2πœ‹

0

= 6 ∫ ∫ 𝑑𝑧10βˆ’6 cos πœƒ

0

π‘‘πœƒ2πœ‹

0

= 6 ∫ (10 βˆ’ 6 cos πœƒ) π‘‘πœƒ2πœ‹

0

= 6[10πœƒ βˆ’ 6 sin πœƒ]02πœ‹

= 120πœ‹ units2.

297

Example 50.6: Find the surface area of the cone 𝑧 = √π‘₯2 + 𝑦2 where 1 ≀ 𝑧 ≀ 4. This is called a

band. The solid formed by removing the apex from any conical or pyramidal object is called a

frustum.

Solution: We have

𝐫(π‘₯, 𝑦) = ⟨π‘₯, 𝑦, √π‘₯2 + 𝑦2⟩.

We will determine the bounds of integration in a moment.

The partial derivatives are

𝐫π‘₯ = ⟨1,0,π‘₯

√π‘₯2 + 𝑦2⟩ and 𝐫𝑦 = ⟨0,1,

𝑦

√π‘₯2 + 𝑦2⟩.

The cross product is

𝐫π‘₯ Γ— 𝐫𝑦 =|

|

𝐒 𝐣 𝐀

1 0π‘₯

√π‘₯2 + 𝑦2

0 1𝑦

√π‘₯2 + 𝑦2

|

|

= ||

0π‘₯

√π‘₯2 + 𝑦2

1𝑦

√π‘₯2 + 𝑦2

|| 𝐒 βˆ’ ||

1π‘₯

√π‘₯2 + 𝑦2

0𝑦

√π‘₯2 + 𝑦2

|| 𝐣 + |1 00 1

| 𝐀

= βˆ’π‘₯

√π‘₯2 + 𝑦2𝐒 βˆ’

𝑦

√π‘₯2 + 𝑦2𝐣 + 𝐀.

298

The magnitude is

|𝐫π‘₯ Γ— 𝐫𝑦| = √(βˆ’π‘₯

√π‘₯2 + 𝑦2)

2

+ (βˆ’π‘¦

√π‘₯2 + 𝑦2)

2

+ 12

= √π‘₯2

π‘₯2 + 𝑦2+

𝑦2

π‘₯2 + 𝑦2+ 1

= √π‘₯2

π‘₯2 + 𝑦2+

𝑦2

π‘₯2 + 𝑦2+

π‘₯2 + 𝑦2

π‘₯2 + 𝑦2

= √π‘₯2 + 𝑦2 + π‘₯2 + 𝑦2

π‘₯2 + 𝑦2

= √2(π‘₯2 + 𝑦2)

π‘₯2 + 𝑦2= √2 .

The region of integration R is the area between two concentric circles, one of radius 1 and the other

of radius 4. This is the β€œshadow” cast by the side of the conical band onto the xy-plane. Thus, the

surface area of the band on the cone 𝑧 = √π‘₯2 + 𝑦2 where 1 ≀ 𝑧 ≀ 4 is given by

∬ √2𝑅

𝑑𝐴 = √2 ∬ 𝑑𝐴𝑅

= √2(πœ‹(4)2 βˆ’ πœ‹(1)2)

= 15πœ‹βˆš2 units2.

We used geometry to determine the area between the two circles, represented by ∬ 𝑑𝐴𝑅

.

In the following example, this problem is evaluated again using cylindrical coordinates.

299

Example 50.7: Use cylindrical coordinates to find the surface area of the cone 𝑧 = √π‘₯2 + 𝑦2

where 1 ≀ 𝑧 ≀ 4.

Solution: In rectangular coordinates, the cone is parameterized as

𝐫(π‘₯, 𝑦) = ⟨π‘₯, 𝑦, √π‘₯2 + 𝑦2⟩.

Letting π‘₯ = π‘Ÿ cos πœƒ and 𝑦 = π‘Ÿ sin πœƒ, we have

𝐫(π‘Ÿ, πœƒ) = βŸ¨π‘Ÿ cos πœƒ , π‘Ÿ sin πœƒ , √(π‘Ÿ cos πœƒ)2 + (π‘Ÿ sin πœƒ)2⟩ = βŸ¨π‘Ÿ cos πœƒ , π‘Ÿ sin πœƒ , π‘ŸβŸ©.

The bounds are 1 ≀ π‘Ÿ ≀ 4 and 0 ≀ πœƒ ≀ 2πœ‹.

The partial derivatives are

π«πœƒ = βŸ¨βˆ’π‘Ÿ sin πœƒ , π‘Ÿ cos πœƒ , 0⟩ and π«π‘Ÿ = ⟨cos πœƒ , sin πœƒ , 1⟩.

The cross product is

π«πœƒ Γ— π«π‘Ÿ = |𝐒 𝐣 𝐀

βˆ’π‘Ÿ sin πœƒ π‘Ÿ cos πœƒ 0cos πœƒ sin πœƒ 1

|

= βŸ¨π‘Ÿ cos πœƒ , π‘Ÿ sin πœƒ , βˆ’π‘Ÿ sin2 πœƒ βˆ’ π‘Ÿ cos2 πœƒβŸ©

= βŸ¨π‘Ÿ cos πœƒ , π‘Ÿ sin πœƒ , βˆ’π‘ŸβŸ©.

The magnitude is

|π«πœƒ Γ— π«π‘Ÿ| = √(π‘Ÿ cos πœƒ)2 + (π‘Ÿ sin πœƒ)2 + (βˆ’π‘Ÿ)2

= βˆšπ‘Ÿ2(cos2 πœƒ + sin2 πœƒ) + π‘Ÿ2

= βˆšπ‘Ÿ2 + π‘Ÿ2

= π‘Ÿβˆš2.

300

The surface area is given by

∬ |π«πœƒ Γ— π«π‘Ÿ|𝑅

𝑑𝐴 = ∫ ∫ π‘Ÿβˆš2 π‘‘π‘Ÿ4

1

π‘‘πœƒ2πœ‹

0

= √2 ∫ ∫ π‘Ÿ π‘‘π‘Ÿ4

1

π‘‘πœƒ2πœ‹

0

= √2 ∫ [π‘Ÿ2

2]

1

4

π‘‘πœƒ2πœ‹

0

= √2 ∫15

2 π‘‘πœƒ

2πœ‹

0

=15

2√2 ∫ π‘‘πœƒ

2πœ‹

0

=15

2√2(2πœ‹)

= 15πœ‹βˆš2 units2.

Example 50.8: Find the surface area of 𝐫(𝑒, 𝑣) = βŸ¨π‘’ + 𝑣, 𝑒 βˆ’ 𝑣, 2π‘’π‘£βŸ© over the circular region

𝑒2 + 𝑣2 ≀ 9.

Solution: Taking partial derivatives of r, we have

𝐫𝑒(𝑒, 𝑣) = ⟨1,1,2π‘£βŸ© and 𝐫𝑣(𝑒, 𝑣) = ⟨1, βˆ’1,2π‘’βŸ©.

Thus, 𝐫𝑒 Γ— 𝐫𝑣 = ⟨2𝑒 + 2𝑣, 2𝑣 βˆ’ 2𝑒, βˆ’2⟩, and its magnitude is

|𝐫𝑒 Γ— 𝐫𝑣| = √(2𝑒 + 2𝑣)2 + (2𝑣 βˆ’ 2𝑒)2 + (βˆ’2)2

= √4𝑒2 + 8𝑒𝑣 + 4𝑣2 + 4𝑣2 βˆ’ 8𝑒𝑣 + 4𝑒2 + 4

= √4 + 8𝑒2 + 8𝑣2.

The surface area is given by

∬ |𝐫𝑒 Γ— 𝐫𝑣|𝑅

𝑑𝐴 = ∬ √4 + 8𝑒2 + 8𝑣2

𝑅

𝑑𝑒 𝑑𝑣.

301

Converting to polar coordinates, and noting that the region of integration is inside a circle of radius

3, we have

∬ √4 + 8𝑒2 + 8𝑣2

𝑅

𝑑𝑒 𝑑𝑣 = ∫ ∫ √4 + 8π‘Ÿ2 π‘Ÿ π‘‘π‘Ÿ3

0

π‘‘πœƒ2πœ‹

0

.

The inside integral is evaluated:

∫ √4 + 8π‘Ÿ2 π‘Ÿ π‘‘π‘Ÿ3

0

= [1

24(4 + 8π‘Ÿ2)3 2⁄ ]

0

3

=1

24(763 2⁄ βˆ’ 8).

The outside integral is then evaluated:

∫ (1

24(763 2⁄ βˆ’ 8)) π‘‘πœƒ

2πœ‹

0

=1

24(763 2⁄ βˆ’ 8) ∫ π‘‘πœƒ

2πœ‹

0

=πœ‹

12(763 2⁄ βˆ’ 8)

β‰ˆ 171.36 units2.

The generic form of the surface-area integral (in parameters u and v), ∬ |𝐫𝑒 Γ— 𝐫𝑣| 𝑑𝐴𝑅

, does not

distinguish whether u and v are rectangular, polar, cylindrical or spherical coordinates. Thus, the

area differential is always 𝑑𝐴 = 𝑑𝑒 𝑑𝑣.

In some examples, we used a non-rectangular coordinate system to set up the integral. In such a

case, we do not write in the usual Jacobian associated with that system. See Examples 50.4 and

50.7 for two such cases.

However, if after setting it up in a particular coordinate system, we decide to integrate it in a

different coordinate system, then we must make all the necessary substitutions and then include

the Jacobian. See Examples 50.2 and 50.8 for two such cases where we did include the Jacobian.