50999882vakx_electromagnetic field theory_solution manual

Upload: anney-revathi

Post on 06-Jul-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    1/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    2/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    3/212

    Solutions of Examples for Practice

    Example 1.6.3

    Solution :   The origin O (0, 0, 0) while P (3, – 3, – 2) hence the distance vector OP is,

    OP   = ( ) ( ) ( )3 0 3 0 2 0 3 3 2 a a a a a ax y z x y z

      OP   =     3 3 22   2 2   = 4.6904Hence the unit vector along the direction OP is,

    a OP   =  OP

    | OP|

    a a ax y z

      3 3 24 6904.

    =   0.6396 a x   – 0.6396 a y   – 0.4264 a z

    Example 1.6.4

    Solution :   The starting point is A and terminating point is B.

    Now   A   =   2 2a a ax y z   and   B a a ax y z 3 4 2

      AB   =   B A 3 2 4 2 2 1a a ax y z   AB   =   a 6 a ax y z This is the vector directed from A to B.

    Now   AB   =       1 6 12   2   2   = 6.1644Thus unit vector directed from A to B is,

    aAB   =  AB

    AB

    a a ax y z

      6

    6.1644

      =  0.1622 a x   – 0.9733 a y   + 0.1622 a z

    It can be cross checked that magnitude of this unit vector is unity i.e.

    0.1622 0.9733 0.16222 2 2   = 1.

    Example 1.7.3   Kept this unsolved example for student's practice.

    Example 1.7.4

    Solution :  Consider the upper surface area, the normal to which is   a z . So the differential

    surface area normal to z direction is   r d dr   . Consider the Fig. 1.7.8.

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM(1 - 1)

    1  Vector Analysis

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    4/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    5/212

      =   cos  

    1   A B

    |A| |B|= cos

     

    1   27

    45 38= 130.762º

    Example 1.10.7

    Solution :   A  = 5  a x   and   B = 4  a ax y By   ,   AB   45

    Now   A B   = A B A B A Bx x y y z z   =  5 4 0 0 20 But   A B   =   |A| |B|cosAB

      20 =     5 4 B cos2 2 y 2 45   i.e.   16 By2   = 5.6568   By

    2 = 16 i.e.   By   =    4

    Now   B   = 4 a a ax y z B By zStill   A B   = 20

      20 =  

        5 452 4 B B2 y

    2z

    2 cos

      16 B By2

    z2   = 5.6568 i.e.   B By

    2z2   =  16

    This is the required relation between By   and Bz .

    Example 1.11.4

    Solution :   Note that the unit vector normal to the plane containing the vectors A  and   B  is

    the unit vector in the direction of cross product of  A  and  B.

    Now   A B   =a a ax y z

    3 4 5

    6 2 4

    = a a ax y z4 5

    2 4

    3 5

    6 4

    3 4

    6 2

     

     

    = 26 18 30a a ax y z

      a N   =

    A B

    A B

    a a ax y z

       

    26 18 30

    26 18 302 2 2=  0.5964 a x   + 0.4129 a y   + 0.6882 a z

    This is the unit vector normal to the plane containing  A  and   B.

    Example 1.11.5

    Solution :   The perpendicular vector to the plane containing   A   and   B   is given by their

    cross product.

    A B   =a a ar z

    A A A

    B Br z

    r z=

    a a ar z

    2 1

    1 2

    =  72

      3 4 a a ar z

      a n   = Unit vector in the direction  A B

    Electromagnetic Field Theory 1 - 3 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    6/212

    =

       

     

    72

      3 4

    72

      3 42

    2 2

    a a ar z

    ( ) ( )

    = 3.5

    16.9651

    a a ar z3 4=  0.648 a 0.1768 a 0.74 ar z

    Example 1.11.6   Kept this unsolved example for student's practice.

    Example 1.12.3

    Solution :  The scalar triple product is,

    A B C     =2 0 1

    2 1 2

    2 3 1

    =  14

    The vector triple product is,

    A  B C   =   B A C C A B

    A C   =   2 2 0 3 1 1   = 3A B   =   2 2 0 1 1 2   = 2

    A B C   = 3 B 2 C  =   3 2 2 2 2 3a a a a a ax y z x y z   =  2a 3a 4 ax y z Example 1.13.9

    Solution :   A   =   y x za a ax y z   A r   =   A a r   a x   a r   a a r   a z   a ry y x z

    =   y cos x sin   (Refer Table 1.13.1) … (1)

    A   =   A a a a a a a ax   y   z

    y x z

    =   y sin x cos   … (2)

    A z   =   A a a a a a a az x z z z zy y x z z   … (3)Now x = r cos y r sin z z1

    Using in equations (1), (2), (3) we get,

    A   = [r sin cos r sin cos ] [ r sin r c2 a r   os ] z2   a a z

    =   0 r (sin cos z2 2     a a r az   z a z

    Example 1.13.10

    Solution : B   =   10r   r cosa a ar   

      Br   =  10

    r , B r cos     , B 1     … In spherical

    B

    B

    B

    x

    y

    z

    =

    sin cos cos cos sin

    sin sin cos sin

    cos

    cos sin 0

    10r

    r cos

    1

    Electromagnetic Field Theory 1 - 4 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    7/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    8/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    9/212

      B   =   – sin sin sin cos cos cosr r r 2 2

      B   =   r rsin cos cos cos 2   … cos – sin cos2 2 2

      B   =   B B Br   a a ar    

    At Q, r = 7,  64.623 ,    = 108.435 hence   B  at Q is,B   =   – 0.8571 a – 0.4064 a ar      – 6   … At point Q

    Example 1.13.12

    Solution :  Refer example 1.13.11 for P in cylindrical system.

      P (6.3245, 108.43 , 3)   … Cylindrical

    To convert A   to cylindrical,

    A   =   A a a a a ax y y( ) (x z) ( )

    = y x zcos ( ) sin   and x =  cos , sin ,y z z   A   = 2 2 sin cos sin sin sin z z

    A   =   A a a a a ax y y ( x z) ( ) ( )

    = y x z(– sin ) ( ) (cos )

    =   cos2     z cos … cos – sin cos2 2 2

      A  = [ sin sin ] [ cos 2 2 0 z z cosa a a z

      At P,   A   =   – 0.9485a – 6a Example 1.15.3

    Solution :  From given A, A 2 xy, A z, A yzx y z2

    A   = div  A  =      

     

     

    A

    x

    A

    y

    A

    zx   y   z

    =          

        x

      2 xyy

      zz

      yz2 = 2y 0 2zy 2y 2yz

    At P (2, – 1, 3), x = 2, y = – 1, z = 3

    A   =   (2) 1 2 1 3  8Example 1.15.4

    Solution :   Given A   in cylindrical system,

      div  A   =   1r   r

      r A  1

    r

    A   A

    zrz

     

     

       

    where A r   = r z sin , A 3 r z2

        cos , A z   = 0

      div  A   = 1r   r   r z  1

    r  r z2 2

       

      sin cos

      3 0

    Electromagnetic Field Theory 1 - 7 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    10/212

    =   1r   z 2r  1

    r  3r z 2 sin sin   = 2z sin   3 z 2 sin

    At point P, r = 5,    

      , z = 1

      div  A   =   2 1 3 1 sin sin

      =  – 1  at P.

    Example 1.16.3

    Solution :   The outward flux is given by,

      =   F S     dS

    over a closed surface S

    The cylindrical surface is shown in the Fig. 1.1.The total surface is made up of,

    1. Top surface S1   for which z = 1, r varies from0 to 4 and   varies from 0 to 2 .

    2. Lateral surface for which z varies from 0 to 1, from 0 to 2  and r = 4.

    3. Bottom surface S3   for which z = 0, r varies from

    0 to 4 and   varies from 0 to 2  .For S1, dS   = r dr d azFor S2, dS   = r dz d arFor S3, dS   = r dr d (–  az)

      F S

         dS1

    = ( cos sin ) ( )r z r dr d

    S

    2 2

    1

    a a ar z  

        = 0

    F S     dS 3

    = ( cos sin ) [r zS

    2 2

    3

    a a ar z      r dr d ( )] = 0F S     d

    S2

    =   ( cos sin ) ( )r z r d dS

    2 2

    2

    a a ar r       z= r r dz d

    z

    2 2

    0

    2

    0

    1

    cos  

           … a ar z   = 1,   a a   r  = 0 r = 4

    = (4)3

    dz dz

    cos2

    0

    2

    0

    1

           = 64   dz0

    1

    0

    21 2

    2    

    cos  

    d

    = 64 × [ ] [ ]  sin

    z01

    02

    0

    212

    22

       

    = 64

      F S     dS

    = 0 + 64  + 0 =  64

    Electromagnetic Field Theory 1 - 8 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    ur aceS1

    SurfaceS3

    z = 1

    SurfaceS2

    r = 4

    z = 0

    x

    y

    Fig. 1.1

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    11/212

    Let us verify divergence theorem which states that,

    F S     dS

    = (     F)v

    dv where dv = r dr d dz

    F   =

      1

    r   r

      (r Fr) + 1

    r

    F   F

    z

    z

    =  1 12 2

    r   r  r r

    r  z

       

      ( cos ) ( sin )   + 0

    =  cos

    ( cos )2

    23

    r

      r zr

      = 3 r cos2  

     z

    rcos

      (     F)v

    dv = 3   2

    0

    4

    0

    2

    0

    1

    r  z

    rrz

    cos    

     

           

      cosr dr d dz

    =   33

    32

    0

    2

    0

    4

    0

    1

    r z rz

    cos cos

           d dz

    = 4  1 2

    2  43

    0

    2

    0

    1

     

          cos

    cos

    z

    z

    d dz = 32  2

    2  40

    2

    02

    0

    1

     

     

      

      sin[sin ]z

    z

    dz

    =   { [ ] [ ]}32 2 0 4 0

    0

    1

           zz

    dz =   64

    0

    1

    z     dz =  64

    Thus   F S

        d

    S

    = (

        F)

    v

    dv and divergence theorem is verified.

    Example 1.16.4

    Solution :   Using divergence theorem

    S

    d     A S   =v

    ( ) dv    A

    To evaulate   A S d it is necessary to consider all six faces of the cube. Let us find dS   foreach surface, for a cube shown in the Fig. 1.2.

    Electromagnetic Field Theory 1 - 9 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    x = Constant planes(back and front)

    y = Constant planes(sides)

    z = Constant planes(top and bottom)

     –ax

    ax   –ay   ay

    az

     –az

    Back

    FrontLeft   Right

    Top

    Bottom

    (a) Cube   (b) Directions of dS

    Fig. 1.2

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    12/212

    1. Front surface (x = 1), dS = dy dz, direction =  a x ,   dS = dy dz  a x

    2. Back surface (x = 0), dS = dy dz, direction =  a x , dS =   dy dz a x3. Right side (y = 1), dS = dx dz, direction = a y , dS  = dx dz a y

    4. Left side (y = 0), dS = dx dz, direction =  a y , dS =   dx dz a y

    5. Top side (z = 1), dS = dx dy, direction = a z ,   dS =  dx dy a z

    6. Bottom side (z = 0), dS = dx dy, direction =   a z ,  dS =   dx dy a zA   =   xy y y z2 3 2a a ax y z

    For front,   A S d = xy dy dz (x 1) y dy dz2 2

    For back,   A S d   =   xy dy dz (x 0) 02

    For right,   A S d = y dx dz (y 1) dx dz3

    For left,   A S d   =   y dx dz (y 0) 03

    For top,   A S d = y z dx dy (z 1) y dx dy2 2

    For bottom,   A S d =   y z dx dy (z 0) 02

    S

    d     A S   =z 0

    1

    y 0

    12

    z 0

    1

    x 0

    1

    y 0

    1

    x

    y dy dz dx dz

       

    0

    12y dxdy  

    =  y

    3  [z] [x] [z]

      y

    3  [x]

      13

    0

    1

    01

    01

    01

    3

    0

    1

    01

     

    3

      1  1

    3

     53

    A   = 

    A

    x

    A

    y

    A

    z  y 3y y 5yx

      y   z   2 2 2 2

    v      A)  dv =

    z 0

    1

    y 0

    1

    x 0

    12

    3

    0

    5y dx dy dz 5  y

    3      

     

    1

    01

    01[x] [z] = 5

      13

      1 1   53

    Thus divergence theorem is verified.

    Example 1.16.5

    Solution :   A  = 2xy y 4 yz2a a ax y z

    Using Divergence theorem,S

    d     A S =v

    dv    ( A)

    A   = 

    A

    x

    A

    y

    A

    z  2y 2y 4y 8yx

      y   z

    S

    d     A S   =v

    (8y)dv     ... dv = dx dy dz

    Electromagnetic Field Theory 1 - 10 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    13/212

    =

    z 0

    1

    y 0

    1

    x 0

    1   2

    8y dx dy dz 8  y

    2      

     

    0

    1

    01

    01[x] [z]   = 8

      12

     4

    Example 1.16.6

    Solution : The divergence theorem states that

    S

    d    A S   =   v    A   dv

    Now

    S

    d    A S   =side top bottom

    d   

      A S

    Consider dS normal to  a r  direction which is for the side surface.

      dS   = r d dz  a r

      A Sd =  30 2e z r d dzr

    a a ar z r

    =   30 r e d dz r e d dzr r a ar r  

    side

    d    A S   =

       

    z 0

    5r30 r e d dz with r = 2

    =   30 2 e z2 05  

    02

    = 255.1

    The dS on top has direction a z  hence for top surface, dS = r dr d a z

      A Sd   =  30 e 2 z r dr dr a a ar z z   = – 2 z r dr d   ...  a az z   1

    top

    d    A S   =

       

    r 0

    2

    2 z r dr d   with z = 5

    =    

      2 5

      r2

    2

    0

    2

    02

    40

    While dS  for bottom has direction  a z   hence for

     bottom surface, dS = r dr d   a z   A Sd =    30 e 2 z r dr dr a a ar z z = 2 z r dr d   ...  a az z   1

    But z = 0 for the bottom surface, as shown in the

    Fig. 1.3.

    S

    d    A S   = 255.1 – 40  =   129.4363

    Electromagnetic Field Theory 1 - 11 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    ar 

     –az

    z = 0

    az

    dS

    z = 5

    dS

    Fig. 1.3

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    14/212

    This is the   left hand side of divergence theorem.

    Now evaluate   v    A   dv

    A  =   1

    r   r

      r A  1

    r

    A   A

    zr

    z

       

       

    and A r   =   30 e

      r ,   A   = 0,   A 2 zz  

    A   =     1r   r   30 r e z   2 zr       0=       1r   30 r e 30 e 1 2r r =  30 e   30r   e 2r r

      v

       

    A   dv =

    z 0

    5

    r 0

    2r r30 e  30

    r  e 2

          

     

    r dr d dz

    =   z 0

    5

    r 0

    2r r30 r e 30 e 2r

         

    dr d dz

    =  

     

     

      30 r  e

    1  30

      e1

      dr 30  e

    1

    r r r

     

     

    2

     r2

      z2

    05  

    02

    Obtained using integration by parts.

    =   30 r e 30 e 30 e rr r r 2

    0

    2

      5 2   = 60 e 22 2   10   =   129.437

    This is same as obtained from the left hand side.

    Example 1.16.7

    Solution :   The given   D   is in spherical

    co-ordinates. The volume enclosed is shown in the

    Fig. 1.4.

    According to divergence theorem,

    S

    d

        D S   =

      v   

    D   dv

    The given   D   has only radial component as given.

    Hence D  5 r

    4r2

      while D D    0.

    Hence   D has a value only on the surface r = 4 m.

    Consider dS normal to the   a r   direction i.e.

    r d d2 sin

    Electromagnetic Field Theory 1 - 12 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    z

    x

    y

    45º

    a

    D

    r = 4 m

    Dr 

    ar 

    Fig. 1.4

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    15/212

      dS   =   r d d2 sin  a r

      D Sd   =  r d d   5r4   r d d22

    4sin sin

     

      

     54

      ...  a ar r   1

    S

    d    D S   =

        054 r d d4 sin   ... r = 4m

    =     54   r4 cos  

    0 02

    =       54   4 0 24

    cos cos

     

    =   588.896 C

    To evaluate right hand side, find D.D   =     1

    r  r

      r Dr

      Dr

    D

    22

    r

       

     

     

    1 1sin

      sinsin  

       

    =   1r   r

      r  5

    4 r

    r   r  r

    22 2

    24

       

       

    0 0

      5

    4=   5

    4 r4 r

    23 = 5 r

    In spherical co-ordinates, dv = r dr d d2 sin

      v    D   dv =  

       

    0r 0

    425 r r dr d dsin

    =     5 0 02r44

    0

    4

      cos   =   5   44   0 2

    4

     cos cos  

    =   588.896 C

    Example 1.16.8

    Solution :   The volume bounded by the given planes is a cube. To evaluate total charge

    use Gauss's law.

    Q =S

    d    D SBut to evaluate   D S

    d , it is necessary to consider all six faces of the cube. Let us find dSfor each surface.

    1) Front surface (x = 2), dS = dy dz, direction =  a x , dS  = dy dz  a x

    2) Back surface ( x = 1), dS = dy dz, direction =   a x , dS = – dy dz  a x3) Right side (y = 3), dS = dx dz, direction =  a y , dS = dx dz  a y

    4) Left side (y = 2), dS = dx dz, direction =   a y , dS  = – dx dz  a y5) Top side (z = 4), dS = dx dy, direction = a z , dS  = dx dy  a z

    6) Bottom side (z = 3), dS = dx dy, direction =    a z , dS = – dx dy  a z

    Electromagnetic Field Theory 1 - 13 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    16/212

    Key Point  Remember that though the co-ordinates of x, y and z are positive, the directions of 

    unit vectors are with respect to region bounded by the planes, as shown in the Fig. 1.5 (b).

    For front   D Sd   = 4x dy dz, x = 2 ... a ax x   1For back   D Sd   = – 4x dy dz, x = 1 ... a ax x   1For right   D Sd = 3 y 2 dx dz, y = 3 ... a ay y   1For left   D Sd   =    3 y 2 dx dz, y = 2 ... a ay y   1For top   D S

    d = 2 z 3 dx dy, z = 4 ... a a

    z z

      1

    For bottom   D Sd =   2 z 3 dx dy, z = 3 ... a az z   1

    S

    d    D S   =z 3

    4

    y 2

    3

    z 3

    4

    y 2

    3

    4x dy dz + 4x dy dz

        

    Front, x = 2 Back, x = 1

       

    z 3

    4

    x 1

    22

    z 3

    4

    x 1

    223y dx dz 3y dx dz

    Right, y = 3 Left, y = 2

       

    y 2

    3

    x 1

    23

    y 2

    3

    x 1

    2

    2z dx dz + z dx d2   3 z

    Top, z = 4 Bottom, z = 3

    =             4 2 y z 4 1 y z 3 3 x z23

    34

    23

    34 2

    12

    34

    Electromagnetic Field Theory 1 - 14 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    x = constant planes(back and front)

    y = constant planes(sides)

    z = constant planes(top and bottom)

     –ax

    ax   –ay   ay

    az

     –az

    Back

    FrontLeft Right

    Top

    Bottom

    (a) Cube (b) Directions of dS

    Fig. 1.5

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    17/212

    =                 3 2 x z 2 4 x y 2 3 x y2 12 34 3 12 23   3

    12

    23

    = 8 4 27 12 128 54   =  93 CThis is the total charge enclosed.

    Let us verify by divergence theorem.

    D   =      

     

     

      D

    x

    D

    y

    D

    z  4 6 y 6 zx

      y   z   2

    v    D   dv =  

    z 3

    4

    y 2

    3

    x 1

    224 6 y 6 z

            dx dy dz ... Integrate w.r.t. x

    =   z 3

    4

    y 2

    32

    124 6y 6z x

            dy dz ... Integrate w.r.t. y

    =z 3

    4   22

    2

    3

    4y 6 y

    2  6 z y

        

    dz

    =       z 3

    42 2 24 3 2

      62

      3 2 6 z 3 2

        

     dz

    =   z 3

    42

    3

    3

    4

    4 15 6 z dz 19 z 6 z

    3    

    =     19 4 3 2 4 33 3   =  93 CThus divergence theorem is verified.

    Example 1.17.6

    Solution :   t =   x y e2 z   and P(1, 5, – 2)

    t = Gradient of t =  

       

       

    t t

    y

    t

    zx a a ax y z   = 2xy x e

    2 za a ax y z

    At P, x = 1, y = 5, z = – 2

    t =   10 a a e ax y

    2

    z  

    Example 1.17.7

    Solution : 1)   V = e– z sin 2x cosh y

    V =  

    V

    x

    V

    y

    V

    zx y za a a

    V

    x  =

      x

     [e– z sin 2x cosh y] = 2 e– z cos 2x cosh y

    Electromagnetic Field Theory 1 - 15 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    18/212

    V

    y  =

      y

      [e– z sin 2x cosh y] = e– z sin 2x sinh y

    V

    z  =

      z

     [e– z sin 2x cosh y] = – e– z sin 2x cosh y

    V =   2e cos 2x cosh yz

    a e sin 2x sinh y a e sin 2x cosh y axx

    y

    z

    z

    2)   U =   2 2zcos

    U =    

    U U

    z   za a a 1 U

    = 2 

      z z   zcos2  1

    2 2 22 2a a a ( sin ) cos

    =   2  z z   zcos a a a2 2 2 22 sin cos

    3)   W = 10 r sin2  cos W =  

     

     

    W

    r   rW

    rW

    a a ar  1 1

    sin

    = 10 sin2 cos cos sin cosa ar  1

    10 2r

      r   1

    10   2r

      rsin

      sin ( sin )

        a

    =   10 sin2 cos cos sin sin sina a ar  10 2 10

    Example 1.17.8

    Solution :  Gradient of f in spherical system is,

    f =     f 

    r1r

    f 1r sin

    f a a ar 

    Hence verify the answer as,

    f = 100 r sin cos 5 sin   a   25r cos cos   2 sinr3 r   3    

      –

     

    a   25r sin  5 cos

    sin  a3

     

    Example 1.18.7

    Solution : A  = x y y2 2 2a a ax y z

    A   =

     

    A

    x

    A

    y

    A

    z

    (x

    x   +

      (y

    y   +

      (y

    z

    x   y   z2 2 2

      ) ) )

    = 2x + 2y + 0 =  2 (x + y)   ... Divergence

    A   =

    a a ax y z

    x y z

    x y2 2  y 2

    = a a a 2y ax y z x[2y 0] [0 0] [0 0]   … Curl

    Electromagnetic Field Theory 1 - 16 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    19/212

    Example 1.18.8

    Solution :

    1) P   = x2yz a x   + xz a z

    Px   = x2yz, Py  = 0, Pz  = xz

    P   =  

    Py

    Pz

    Pz

    Px

    Px

    z   yx

    x zy

    y

      a a   Pyx

    z

    a

    = [0 – 0]  a x   + [x2y – z] a y  + [0 – x

    2z] a z   =   (x2y – z) a y   – x

    2z a z

    2) Q   =    sin   a   + 2 z  a  + z cos  a z

    Q   =    sin , Q  =  2 z, Qz  = z cos  

    Q   =   1 1

     

    Q   Q

    z

    Q

    z

    Qz z

     

      a aQ )

     

    1   Q

    a z

    =  1

    0 0  1

    32

     

     

     

     

    ( sin ) [ ] cosz   a a   2 z   1

    a z

       

      z

    z   zsin

    ( cos )

     

    2 3a a

    3) T   =  1

    2rrcos sin cos cos   a a ar 

    Tr

      = 

    r 2  cos, T

     = r sin   cos , T

     = cos 

    T   =   1 1r

    T   T   rT

    sin

    sin

    sin

    ( )

     

     

      a r

    r1r

    T

    r

     a   +

     1r

    T

    ( )r

    r

    Tr

     a

    =  1 1

    0r

      rsin

    (sin cos )sin ( sin )

    sin  (

     

      a r

    1r

      )  ( cos )

     

    r

    r  a

    + 1 12

    2r

    r

    r   r

        ( sin cos )

    ( sin )

    a

     

    (sin cos )

    =  1

    2

    2

    ( sin cos )=

      12

    2

    (sin )=

      12

      2 2   cos    = cos2

    T  =   1 2   1 1 2r

      rr r

      rsin

      [cos sin sin ] [ cos ] sin cos

      a ar  

    sin

    r 2  a

    =  cos

    sin  sin

      cossin cos

      sin22

    3

          r r rr

     

    a a

    a

    Electromagnetic Field Theory 1 - 17 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    20/212

    Example 1.18.9

    Solution : E a a ax y z yz xz xy

     E   = 

    E

    x

    E

    y

    E

    zx   y   z 0 0 0 0

    As    E   = 0, field  E is  solenoidal   in nature.

     E   =a a ax y z

    x y z

    yz xz xy

    =       a a ax y zx x y y z z   = 0

    As  E = 0, field  E is   irrotational   in nature.Example 1.18.10

    Solution : 1) A  = yz 4xy ya a ax y z

    A   =a a ax y z

    x y z

    yz 4xy y

    = a   ya   [4y – z] ax y z

    2) B =   z sin cosa a 3   2z   … Cylindrical

     B =   1

    2

    a a a z

    zz sin 3 z cos 02

    = – ( – )6 z cos   a   sin   a   6z cos z cos   a2 z

    Example 1.19.2

    Solution :   A L     dL

    =      ab bc cd da

    DL   = d d a a  + dz  a z   … Cylindrical system

    A   =    cos , A = sin , Az  = 0 … From given A

    For path ab, the direction is  a   hence  A Ld   = (sin ) (  d)   A L  

      dab

    = sinº

    º

    d  60

    30

    with    = 2

    = [ c o s ]ºº

    6030

    (2) = 2 [– 0.866 + 0.5] = – 0.732

    For path bc, the direction is  a   hence  A Ld =  cos d   A L     d

     bc

    =  

    cos d  

    2

    5

    with    = 30º

    Electromagnetic Field Theory 1 - 18 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    21/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    22/212

    A   =   1   A   Az

    z  a   +

    A   A zz

     

     a

    +  1   A   1   A

     

     

    a z

    Given :  A   =   cos  ,   A   = 0,   A z   =  2

    A   =     0 0 0 2 0   1 sin

    a a a z     =  2 sin a a z

    As the surface is in x - y plane,  dS =  d d   a z

           A SS

    d   =     sin d d a az z       … a a z     0

    =   sin d d cos 202   2

    0

    1

    0

    1

    0

    2  

     

           =   0 0 1   12  

        1

    2

    Example 1.19.4

    Solution :  The path L is shown in the Fig. 1.7.

    F dL     =AB BC CD DA    F dL

    F dL  AB

    =   x + y xy2 2AB

    i j dx i– 2     

    =   (x + y )dx2 2

    x = – a

    a

         =  x

    3  y x

    32

    x = – a

    a

    =  2a

    3

    3… y = 0 for AB

    F dL  BC

    =   x + y xy2 2BC

    i j dy j– 2        = –2xy dyy = 0

     b

      

    = – 2xy2

    2

    y = 0

     b

    = –ab2 … x = + a for BC

    F dL  CD

    =   x + y xy2 2CD

    i j dx i– 2        =   (x + y ) dx2 2x = a

    – a

      

    =  x

    3  y x

    32

    x = +a

    – a

      = – – – –

    a3

      ab  a

    3  ab

    32

    32

    Electromagnetic Field Theory 1 - 20 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    x

    y

    z

     A D

    B C

    x = – a

    y = b

    x = + a

    y = 0

    Fig. 1.7

    z

    y

    x

    1

    1

    az

    Fig. 1.6

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    23/212

    = – –2a

    3  ab

    322 … y = + b for CD

    F dL  DA

    =   x + y xy2 2DA

    i j dy j– 2        =   –2xy dyy = b

    0

      

    =   – 2xy

    2

    2

    y = b

    0

    = – ab2 … x = – a for DA

      F dL     =  2a

    3  ab

      2a3

      ab ab3

    23

    2 2– – – –2 = –   4ab2 … L.H.S.

     F   =

    i j k

    x y zx + y xy 02 2 2

    = (– )2y – 2y  k  = – 4yk

    ( )      F dSS

    =   – 4y dxdy

    S

    k k     ( )   =y = 0

     b

    x = – a

    +a

    – 4y dxdy   

    =  

    y = 0

     b

    x = – a+a– 4x ydy     =   –4 x

      y

    2–a+a

    2

    0

     b

    =  – 4ab2

    … Stoke's theorem is verified

    Example 1.19.5

    Solution :   According to Stoke's

    theorem,

    L

    d     H L   =   S

    d    H S

    Let us evaluate left hand side. The

    integral to be evaluated on a

    perimeter of a closed path shown inthe Fig. 1.8. The direction is a-b-c-d-a

    such that normal to it is positive   a zaccording to right hand rule.

         H Ld =ab bc cd da

    d    H L

    ab

    d     H L   =   x 2

    526xy 3 y dx

         a a ax y x

    Electromagnetic Field Theory 1 - 21 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    a

    bc

    d   x = 2

    x = 5

    x

    y = –1y = 1

    z

    Fig. 1.8

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    24/212

    =x 2

    5   2

    2

    5

    6 xy dx 6y  x

    2    

     

    =   6y2

      25 4   = 63 y

    Now y = – 1 for path ab,   ab

    d     H L   63 1 63

    Similarly

     bc

    d     H L =   y 1

    12

    33

    1

    13y dy

      3 y

    3  y 1 1

          

        = – 2

    cd

    d     H L   =     x 5

    2   2

    5

    2

    6 xy dx 6  x

    2  y

      6y

    2  4 25 63

        

     

        y

    But y = 1 for path cd hencecd

    d     H L = – 63

    da

    d     H L   =     y 1

    12 3

    1

    1 3 33y dy y 1 1 1 1 2

       

         H Ld =   63 2 63 2 126 A

    Now evaluate right hand side.

    H   =

    a a ax y z

    x y z

    xy 3y 26 0

    =   a a a ax y z z0 0 0 0 0 6x 6x  

    S

    d    H S   =   S

    6 x dx dy    a az z

    dS   = dx dy  a z   normal to direction a z

      S

    d    H S   =   y 1

    1

    x 2

    5   2

    2

    5

    11

    6x dx dy 6  x

    2  y

        

     

    =     62   25 4 1 1 3 21 2   126 AThus both the sides are same, hence Stoke's theorem is verified.

    Example 1.19.6

    Solution :   According to Stoke's theorem,

    L

    d     H L   =   S

    d    H S

    Electromagnetic Field Theory 1 - 22 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    25/212

    In spherical system,

    dL   = dr r d r da a ar     sinThe closed path forming its perimeter is composed of three circular arcs. The first path 1 is

    r = 3 ,    0,   0    as shown in the Fig. 1.9. The second path 2 is r = 3,   90 ,

    0    while the path 3 is r = 3,  90 ,  0    . For all the three arcs r = 3 m.

    Let us evaluate     H Ld over these three paths.

        H Ld   =

    Path1 Path2 Path3

    H r d H r d H r d

            sin

    Now,   H 0, H 0, H 0 sinr       1   ... Given  HThus only second line integtal exists.

         H Ld   =  

    = 0

    22r sin d 10 r sin    10 0 2sin   / ... Path 2

    =   10 3 90 22 sin   =  47.1238 A   ... r = 3 m,  90   for path 2

    Now evaluate second side of Stoke's theorem.

      H   in spherical co-ordinates is,

    =  1r sin

    H sin   H   1r

    Hr

     

     

       

     

     

    a r1

    sin

    (rH

    r

     

    )a  

     

       

    1r

    (rH

    r

    Hr

    )a

    As H 0, H 0, H 10 sinr      

      H   =   1r sin

    sin 1r

    (r10 sin

    r

    2

    10 0 0

     

     

     

    a r)

      a a  

    1r

      0 0

    Electromagnetic Field Theory 1 - 23 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    y

    x

    O r = 3

    r = 3

    r = 3

    Path 1

    Path 3

    Path 2

    rd  a

    rd  a

    rsin d  a

    d =Ld =L

    d =L

     = 0º    = 90º

     = 90º

    Fig. 1.9

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    26/212

    =   1r sin1r

      10 2 10 sin cos sina ar

    =  10r sin

    10r

      sin sin2   a ar 

    while   dS   =   r sin d d2 a r   ... As given in a r   direction

       H Sd =   10r sin   r sin d d2

      sin 2 ...  a ar r 1

           H SdS

    =

    = 0

    2

    = 0

    2

    r sin 2 d d/ /

         10

    =   10   22   10 20

    20

    2

    02

    r r

       

     

    cos cos ( cos )

    //

       

    2

      ... r = 3 m

    = 10 3  1

    2

    1

    2 2

     

     =  47.1238 A   ... Thus Stoke's theorem is verified.

    Example 1.20.3   Kept this unsolved example for student's practice.

    Electromagnetic Field Theory 1 - 24 Vector Analysis

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    27/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    28/212

      R1Q   =   C A a ay z

    and   R2Q   =   C B a ay z 4 3

      R1Q   =   1 1 22 2   And

    R2Q   =   4 32 2

    = 5

      F1   = Force on Q due to Q  Q Q

    R1

    1

    1Q2

    4

    a 1Q

    and   F2   = Force on Q due to Q  QQ

    R2

    2

    2Q2

    4

    a 2Q

      Ft   =   F F a a1 2 1Q 2Q

    Q   Q

    R

    Q

    R

    1

    1Q2

    2

    2Q24

    =

      Q   Q

    5

    224

    2 10

    2   2

    4 3

    5

    9

    2  

     

      

     

     

     

      a a a ay z y z

    =   Q 7.071 10   Q12510   24   4 3

    a a a ay z y z

     Total z component of   Ft   is,

    =  Q

    7.071 10  3 Q

    125

    10   2

    4

    a z

    To have this component zero,

    7.071 10  3 Q

    12510   2 = 0 as Q is test charge and cannot be zero.

      Q 2   =     7.071 10 125

    3

    10=  – 29.462 nC

    Example 2.2.8

    Solution :   Let the side of equilateral

    triangle is d and is placed in x-y plane asshown in the Fig. 2.3.

    l(AB) =   l(BC) =   l(AC) = d

    l(CD) = d  d

    22

    2

     

       

      =  3

    2

    d

      A (0, 0, 0), B (d, 0, 0),

    C  d

    2 ,

      3d2

      , 0

       

    Electromagnetic Field Theory 2 - 2 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    y

    x

    z

     AB

    C

    d d

    d

    P

    Dd2

    d2

    Fig. 2.3

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    29/212

    Key Point   For equilateral triangle, the centroid is at a distance of   1

    3  rd of height of 

     perpendicular drawn from any one corner to opposite side, from the side on which

     perpendicular is drawn.

      l(DP) =  1

    3  l(CD) i.e.   l(DP) =

      1

    3

    3

    2

      d=

      d

    2 3= 0.2886d

      Co-ordinates of centroid P   d d2

      0 2886 0, . ,

       

    The charge at each corner is +Q. Let charge at P is QP. Then net force   Ft   on charge at A

    due to all other charges is,Ft   =   F F FB C P

    =  QQ

    4 R

    QQ

    4 R

    Q Q

    4 RBA2

    CA2

    P

    PA2 0 0 0

    a a aBA CA PA

    a BA   =  R

    |R |BA

    BA

    =  d

    d

    a x = –  a x ,   a CA =  R

    |R |CA

    CA

    = d d

    d2

    32

    a ax y

    a PA   =

    dd

    d2

      0 2886

    0 5773

    a ax y.

    .

      Ft   =  Q

    d d

    d d

    2

    0   242

    32

    a   a ax   x y

    d2  +

      Q Q P4 0

    d2

     a 0 . 2886 d a

    (0.5773 d) (0.5773 d)

    x y

    2

    =   Qd

    2

    024

    0 5 0 866

    a a ax x y. .   +   Q Qd

    P

    42 5987 1 5

    02

    . .a ax y

    =   Qd

    Q Q QP   p4

    1 5 1 50

    2[ . [ . ] Q 2.5987 0.866] a ax y

    For keeping all charges in equilibrium,   Ft   = 0

      – 1.5 Q – 2.5987 QP  = 0

      QP   = – 0.5773 Q

    Thus charge at centroid P must be   negative  and  0.5773 times  the charge Q.

    Example 2.2.9

    Solution :   The square is kept in x-y plane with origin as one of its corners, as shown in

    the Fig. 2.4.

    The diagonals AC = BD = 8 m

    Let AD = DC = BC = AB =  l m

    Electromagnetic Field Theory 2 - 3 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    30/212

      l l2 2   = 8 2

      l = 5.656 mz

    Hence the co-ordinates of various points are,

    A (0, 0, 0), B (0, 5.656, 0), C (5.656, 5.656, 0),

    D (5.656, 0, 0)The point E is centroid hence E (2.828, 2.828, 0).

    The point P is 3 m above the centre E hence theco-ordinates at P are (2.828, 2.828, 3).

    To find force on charge at P which is

    Q 150 C2     due to charges at A, B, C and D of Q 30 C1    each.   FP   =   F F F FA B C D

    FA   =  Q Q

    4 R

    Q Q

    4 R   |

    1 2

    0   AP2

    1 2

    0   AP2

    a  R

    R

    APAP

    A

    P|

    ,   FB   =  Q Q

    4 R

    Q Q

    4 R   |

    1 2

    0   BP2

    1 2

    0   BP2

    a  R

    R

    BPBP

    BP

    |

    FC   =  Q Q

    4 R

    Q Q

    4 R   |1 2

    0   CP2

    1 2

    0   CP2

    a  R

    RCP

    CP

    C

    P|

    ,   FD   =  Q Q

    4 R

    Q Q

    4 R   |1 2

    0   DP2

    1 2

    0   DP2

    a  R

    RDP

    DP

    D

    P|

    RAP   = (2.828 0) (2.828 0) (3 0) 2.828 a a a ax y z x y za a 2.828 3

    RBP   = (2.828 0) (2.828 ) (3 0) 2.8 a a ax y z5656. 28 2.828 3a a ax y z

    RCP   = (2.828 ) (2.828 ) (3 0) 5 656 5 656. .a a ax y z   2.828 2.828 3 a a ax y z

    RDP   = (2.828 ) (2.828 ) (3 0) 2. 5 656 0.   a a ax y z   828 2.828 3a a ax y z

    | |RAP   =| |R R RBP CP DP| | | | (2.828) (2.828) 32 2 2   5

      F F F FA B C D   =  Q Q

    4 (5)[ ]1 2

    03

    R R R RAP BP CP DP

      FP   =  30 10 150 10

    4 8.854 10

    6 6

      12 35[12 ]

    a 3.8827 a Nz z

    Example 2.2.10

    Solution. :   The arrangement of charges is shown

    in the Fig. 2.5. The charge at P is test charge i.e.

    QP   = 1C.

    F1P   =  Q Q

    R

    P1

    0   124

    a R1   ... Force due to Q1

    R1   =       1 1 1 2 0 0a a ax y z= – 2  a x –  a y

      R1  =   R1   2 1 52 2

    Electromagnetic Field Theory 2 - 4 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    z

    y

    x

    0

    P (–1, 1, 0)

    Q (1, 2, 0)1Q (2, 0, 0)2   R2

    R1

    Fig. 2.5

    z

    x

    y A   B

    P

    C

    D  E   At A, B, C, D

    Q = 30 C1  

    Q = 150 C2  

    (AC) = 8 m(BD) = 8 m

    Fig. 2.4

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    31/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    32/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    33/212

      F3   =  1 10 1 10

    4 8.854 10 12

    3 3

    12

    a x   3 2 2

    12

    a ay z

    =   216.211 374.489 611.538 Na a ax y z

     The total force on charge at P4

      is,

    F   =   F F F a a1 2   3   z z3 611.446 1834.338 N   i.e.   |F| =  1834.338 NThe magnitude of force on each charge remains same as above due to symmetrical

    distribution of charges.

    Example 2.2.13

    Solution :   The arrangement is shown in the

    Fig. 2.8.

    The co-ordinates of the vertices of triangle are,

    Point O   (0, 0, 0)Point Q   (0.1, 0, 0)

    Point P    (0.05, 0.0866, 0).

    Let us find the force on P due to the charges

    at O and Q.

      F1   =  Q Q

    4 R

    Q Q

    4 R   |1 2

    0   OP2

    1 2

    0   OP2

    a  R

    ROP

    OP

    OP

    |

      ROP   =   0.05 0.0866a ax y   ,   | | (0.05) (0.0866) 0.12 2ROP  

      F1   =  0.25 10 0.25 10

    4 8.854 10

    6 6

    12

      0.1

    [0.05 0.0866 ]

    0.12 

      a ax y= 0.02808 0.0486 Na ax y

    F2   =  Q Q

    4 R

    Q Q

    4 R   | |1 2

    0   QP2

    1 2

    0   QP2

    a  R

    RQP

    QP

    QP

    RQP   = (0.05 0.1) 0.0866 0.05 0.0866 a a ax y x   a y

    |RQP| = (0.05) (0.0866)2 2   = 0.1

      F2   =  0.25 10 0.25 10

    4 8.854 10 0

    6 6

    12

      .1

    [ 0.05 0.0866

    0.12 

      a a ]x y=  0.02808 0.0486 Na ax y

      F   =   F F 0.09729 a N1 2 y   … Direction a y

      |F|  =   0.09729 N   … Magnitude

    Electromagnetic Field Theory 2 - 7 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    y

    xO

    d

    10 cm   10 – 52 2

    = 8.66 cm

    Q

    5 cm

    10 cm

    5 cm 0.25 C0.25 C

    0.25 CP

    R

    Fig. 2.8

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    34/212

    Example 2.3.6

    Solution :   E1   =  Q

    4 R

    1

    0   12

    a R1

    a R1

      =    R

    R

    a a

    R

    x z1

    1

    0 1 1 0

    1

     

    =  a ax z

    2

      E1  =

    8

    4 2   20

    02

      a ax z =   12

    a ax z

    E2  =  Q

    4 R

    2

    0   22

    QR2

    a R2   =  R

    R

    a a

    R

    a a2

    2

    x

    2

    x z0 1 1 0   z 

     

    2

      E2  =

      44 2   2

    0

    02

    a aa ax z x z

      1

    2

      E   =   E E 0.3535 a 1.0606 a1 2   x z   V m

    Example 2.3.7

    Solution :   The various points and charges are

    shown in the Fig. 2.10.

    The position vectors of points A, B and P are,A   = 2 a x   ,   B a x 2

    P   =   a a ax y z 2 2EA   is field at P due to Q 1, and will act along  aAP .

    EB  is field at P due to Q 2  and will act along  a BP .

     EA   =  Q

    R

    Q

    R

    1

    AP2

    1

    AP24 4

    a  P A

    P AAP  

     

      EB   =  Q

    R

    Q

    R

    2

    BP2

    2

    BP2

    4 4

    a  P B

    P B

    BP    

      E at P =   E EA B

    =  14

    Q

    R

    Q

    R

    1

    AP2

    2

    BP2

    P A

    P A

    P B

    P B

       

     

      1

    4

    1 2 2

    9 1 2 2

    3 2 2

    17 3 22   2 2 2

    2

    2   2 2

    a a a a a ax y z x y zQ

    2   2

    Electromagnetic Field Theory 2 - 8 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    Q1

    O

    Q2

    R AP

    RBPa AP

    aBP

     A(2, 0, 0)

    B(–2, 0, 0)

    P(1, 2, 2)

    y

    x

    z

    Fig. 2.10

    P  (0, 0, 1)

    (–1, 0, 0)Q1

    Q2

    R2

    R1

    B

     A

    (1, 0, 0)

    y

    z

    x

    Fig. 2.9

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    35/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    36/212

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    37/212

     y component of   EA   i.e.   E EA y A cos 45

    Similarly   l  (OB) = 2 m,   l  (OP) = 2 mhence    PBO = 45

     y component of   EB   i.e.   E EBy B cos 45

    But   EAy   is in   a y   direction while   EBy   is ina y   direction. From symmetry of thearrangement   E EAy By   . Hence they cancel

    each other.

    While z components of   EA   and   EB   help

    each other as both are in a z   direction.

    EAz   =   E E E aBz A B z or sin 45Similarly there are 4 more pairs of charges

    which will behave identically and their y

    components are going to cancel while z components are going to add.

    Thus total z component of   E at P is,

    Etotal   = (E due to any charge)  10 45sin   a z   =  Q

    R2410 45

    sin   a z

    where R =   2 2 82 2

      Etotal   =

    500 10

    4 810 45

    6

    2

    sin   a z   = 3.972  10

    6 a z   V/m

      FP   =   Q 10 3.972 10P6 6E atotal z

    20   =  – 79.44 ( )a z   N

    This is the force on the charge at P. In general, force acts normal to the plane in which

    circle is kept, i.e. – 79.44   a n   where   a n   is unit vector normal to the plane containing the

    circle.

    Example 2.3.11

    Solution : a)   A (2, –1, 3) and P (0, 0, 0)

      E  at P =   Q

    RAP24 aAP

    Now   aAP   =  

    0 2 0 1 0 3

    2 1 32 2 2

    a a ax y z

      E   =

    5 10

    4

    2 3

    14

    9

      8.854 10 1412  2

    a a ax y z

    =   – 1.715 a x   + 0.857 a y   – 2.573 a z   V/m

    Electromagnetic Field Theory 2 - 11 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    Oy

    x

    z

    45º 45º

    2 2

    2

     ABQ

    Q

    QQ   Q

    Q

    Q   Q  Q

    Q

    R R

    P(0,0,2)EAy

    EA

    EBy

    EB

    45º45º

    Fig. 2.13

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    38/212

    b)  Let point P is now (x, 0, 0).

      aAP   =

    r

    r

    a a aAP

    AP

    x y z

     

    x 2

    x 2 1 32 2 2

    3

      E   =

    Q

    x 2 1 9

    x 2

    x 2 1 92   24

    3

       

    a a ax y z

    =

      5 10

    x 2 10

    x 29

    2  3/ 2

    4

    3

    a a ax y z

    =

      44.938

    x 2 10

    x 22   3/ 2

    a a ax y z3

    | |E   =

      44.938

    x 2 10

    x 2 1 32

      3/ 22 2 2

      =

    44.938

    x 2 102 V/m

    To find x at which| |E   is maximum,

    d

    dx

    | |E= 0

      44.938 

    2 x 2

    x 2 102   2  = 0

      (x – 2) = 0

      x = 2   where| |E   is maximum.The graph of | |E  against x is shown in the Fig. 2.14.

    c)  Hence| |maxE   is at x = 2,

      | |maxE   =  44.938

    10  =  4.4938 V/m

    Example 2.3.12

    Solution : E =  Q

    R024

    a R

    a R   =  R

    R

    QP

    QP

    =  P Q

    P Q

    P Q   =    0 2 0 2 0 01 2 3 2 5. . . . .a a ax y z=   0 4 01 0 2. . .a a ax y z

    Electromagnetic Field Theory 2 - 12 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    4.49| |E   max

    | |E   in V/m

    10 –10 20x

    Fig. 2.14

    y

    z

    xaR

    P

    Q5 nC

    Fig. 2.15

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    39/212

      a R   =

    0 4 01 0 2

    0 4 0 1 0 22 2 2

    . . .

    . . .

    a a ax y z

    = 0 4 01 0 2

    0 45825

    . . .

    .

    a a ax y z

    =   0 8728 0 2182 0 4364. . .a a ax y z   R =   P Q   = 0.45825

      E   =

    5 10

    4 8 854 10 0 45825

    9

    12   2

      . . a R   = 214  a R

    Substituting value of  a R ,

    E   =   186.779 a 46.694 a 93.389 ax y z   V/m   …   E  at P

    Example 2.3.13

    Solution :  The arrangement is shown in the Fig. 2.16. Letthe charges are placed at A, B and C while   E   is to be

    obtained at fourth corner O.

      E at 'O' =   E E EA B C

    =  Q

    4 R

    Q

    4 R

    Q

    4 R0   A2

    0   B2

    0   C2

    a a aRA RB RC

    RA   = – 0.05 a x ,   RA   = 0.05,   a RA   = – a x

    RB   = – 0.05 – 0.05a ax y ,   RB   = 0.0707,

    a RB   = – 0.707 – 0.707a ax y

    RC   =   – 0.05 a y ,   RC   = 0.05,   a RC   = – a y

      E   =  Q4

    (0.05)

    – 0.707 – 0.707

    0.07070   2( )   ( )

    ( )

    a   a ax   x y

    ( )–

    (0.05) 2a y

    =  100 10

    4 8 854 10400 141 4 141 4 40

    9

    12

    –.– – . – . –

    a a ax x y 0 a y

    =   – . – .486 6 486 6a ax y   kV/m, |E| at 'O' =  688.156 kV/mExample 2.3.14

    Solution :  The arrangement is shown in the Fig. 2.17.

    F3   =  F F13   23   =  Q Q

    4 R

    Q Q

    4 R

    1 3

    0   132

    2 3

    0   232

    a aR13 R23

    R13   = – 3 2a a ax y z   ,   R13   = 14,   a R13   =  R

    R13

    13

    Electromagnetic Field Theory 2 - 13 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    x

    z

    y

     AB

    CO

    RA

    RC

    RB

    (0,0.05,0)(0,0,0)

    (0.05,0,0) (0.05,0.05,0)

    Fig. 2.16

    x

    z

    y

    R13

    (–1, ,4) –1

    (0,3,1)

    R23

    Q = – 2 mC2

    Q = 1 mC1

    Q = 10 nC3

    (3,2, ) –1

    Fig. 2.17

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    40/212

    R23   = a a ax y z 4 3–   ,   R23   =   26,   a R23   =  R

    R23

    23

       

     

     F

      a a a3

    x y z14

    1 10 10 10

    14   14

    3 9

    2

    – –

    ( )

    – 3 + + 2  

     

     

     

    ( )

    – –2 10 10 10

    26   26

    3 9

    2

    a a ax y z+ 4 – 3

    =  – 6.503 a 3.707 a 7.4985 ax y z–     mN

    E3   =  F

    Q3

    3

    =  – 650.3 a 370.7 a 749.85 ax y z–     KV/m

    Example 2.4.4

    Solution :   Given :   v   = 10 z e y C m2 0.1 x 3 sin .

    Consider differential volume in cartesian system as, dv = dx dy dz

      dQ =   v   dv = 10 z e y2 0.1 x

    sin    dx dy dz   Q =

    vol

    v      dv

    But now it becomes triple integration

    Q =z 3

    4

    y 0

    1

    x 2

    22 0.1 x10 z e y

          sin    dx dy dz

    =

    z 3

    4

    y 0

    12

    0.1 x

    2

    2

    10 z y  e

    0.1  dy dz

         

    sin    =

    z 3

    42

    0.2 0.210 z

      y   e0.1

    e0.1

        

       

    cos

    0

    1

      dz

    = 10  0z

    3

    3

    3

    4

     

     

    cos cos

      4.0267 = 10  4 3

    31 13 3

     

      4.0267 =   316.162 C

    Example 2.4.5

    Solution :   i)   0 < x < 5 m,   L   = 12x mC m2

    Q =   L dL     =   12 x dx mC20

    5

         = 12  x

    3

    3

    0

    5

      = 500 mC =  0.5 C

    ii)   S   = z nC m2 2 ,    = 3, 0 < z < 4 m

    Q =   SS

    dS     =   SS

    d dz     = 

    z

    2 –9z 10 d dz

         

    0

    4

    0

    2

    ...   = 3

    =     3 10   z3

    2   –902

    3

    0

    4

     

      = 1.206 C

    iii)  v   =  10rsin

      C m 3

      , r = 4 m

    Electromagnetic Field Theory 2 - 14 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    41/212

    Q =vol

    v dv      =vol

    v2r sin dr d d     =

     

         

    0

    2

    0 0r

    210r sin

      r sin dr d d

    =   102

    2

    0

    4

    0 02r

      = 1579.136 C.

    Example 2.4.6

    Solution :   n e   =  1000

    r  cos

    4

    electrons/m 3

    1 electron =     1.6 10   19 C charge

    v   = n e    charge on 1 electron =    1.6 10

    r  cos

    4 C / m

    163

    The volume is defined as sphere of r = 2 m.

      dv = r sin dr d d2   ... spherical system

      Q =vol

    vr 0

    2   162dv

      1.6 10r

      r    

     

    0

    2

    04

    cos sin dr d d

    =    

     

    1.6 10  r

    2  cos

    sin4

    14

    162

    0

    2

    0

    0

    2

    =   1.6 10 2 2 4 1 2.56 1016 15 C

    Example 2.6.6Solution : i)  For origin let r = r1

    E  = 

    L

    r2 0 1a r1

    Point on the line is (x, 3, 5). Origin is (0, 0, 0)

    Do not consider x co-ordinate as the charge is parallel

    to x-axis.

      r1   = (0 – 3)  a y  + (0 – 5)  a z

    = – 3 a y   – 5  a z , |r 1| =   34

      E  =  30 10

    2 34

    3 5

    34

    9

      8.854 10-12a ay z

    =  – 47.582 a y   – 79.303 a z   V/m

    ii)  P(5, 6, 1)

      r2   = (6 – 3)  a y  + (1 – 5)  a z   = 3 a y   – 4  a z , |r2 | = 5

    Electromagnetic Field Theory 2 - 15 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    z = 5

    z

    O y = 3 y

    x

    Parallelto x-axis

    Fig. 2.18

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    42/212

      E  =   30 10

    2 8.854 10 5

    3 4

    5

    9

    12

    a ay z=  64.711 a y  – 86.2823 a z   V/m

    Example 2.6.7

    Solutino :   a) The line charge is shown in the

    Fig. 2.19.It is parallel to the x axis as y = 1 constant and

    z = 2 constant. The line charge is infinite hence

    using the standard result,

    E   =

    L

    2 r  a r

    To find   a r , consider a point on the line charge

    (x, 1, 2) while P (6, –1, 3). As the line charge is

    parallel to x axis, do not consider x coordinate while finding  a r .

      r   =   1 1 3 2 2a a a ay z y z ,   r   =   2 1 52 2

      a r   =  r|r|

    a ay z

      2

    5

      E   =

      L

    122   8.854 105

    2

    5

    24 10 2

    2

    9

     

    a a   a ay z   y z

    5

    = – 172.564 a y   + 86.282  a z   V/m

     b) Consider a point charge QA  at A (–3, 4, 1).

    The electric field due to QA  at P (6, –1, 3) is,   EA   =  Q

    R

    A

    AP24

    aAP

    RAP   =     6 3 1 4 3 1 9 5 2 a a a a a ax y z x y z   ,   RAP   = 10.488

      aAP   =  R

    R

    a a aAP

    AP

    x y z

      9 5 210.4888

      EA

      =

    Q

    10.4888   10.4888

    A

    24

    9 5 2

     

    a a ax y z

    The total field at P is now,   Et   =   E+ EA

    The y component of total   Et   is to be made zero.

    172.564  Q

    10.4888

    A3

    5

    4 a y   = 0 i.e.

    5

    4

    Q

    10.4888

    A3  

    = – 172.564

      QA   =  172.564 8.854 10 10.488812   34

    5

    =   – 4.4311 C

    Electromagnetic Field Theory 2 - 16 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    r P(6,–1,3)

    1

    2 –

      O y

    x

    z

    Fig. 2.19

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    43/212

    Example 2.6.8

    Solution :  The charge is shown in the Fig. 2.20.

    Key Point   Charge is not infinite hence basic method of 

    differential charge dQ must be used.

      dQ =   L   dL =  L dz

      dE   =   dQ

    4 R2 0a R   =

     

    L dz

    4 R20

    R

    |R |

    i)  To find   E at origin

      R   = – z a z , |R| = z,   a R   = – a z

      dE   = 

    L

    o

    dz( )

    4 z 2a z i.e.   E =

     

      

    L

    o4dz

    z 2z 1

    3

    a z

      E   = 

    20 10

    4

    19

    1

    3

      8.854 10   12   z z

    z

    a z   =  – 119.824 a z   V/m

    ii)  To find   E  at P(4, 0, 0)

      R = (4 – 0)  a x  + (0 – z)  a z   = 4 a x   – z  a z , |R| =   16  2 z

    Example 2.6.9

    Solution :   The line is shown in the Fig. 2.21.

    The line with x = – 3 constant and y = 4 constant

    is a line parallel to z axis as z can take any value.The   E at P (2, 3, 15) is to be calculated.

    The charge is infinite line charge hence   E   can be

    obtained by standard result,

    E  = 

    L

    2 r a r

    To find   r, consider two points, one on the line

    which is (–3, 4, z) while P (2, 3, 15). But  as line is

    parallel to z axis, E cannot have component in

    a z   direction hence z need not be consideredwhile calculating r.

      r   =     2 3 3 4 5 a a a ax y x y   ... z not considered

      | |r   =   5 1 262 2

      a r   =  r

    r

    a ax y

    | | 

      5

    26

    Electromagnetic Field Theory 2 - 17 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    z

    z = 3

    dQ (0,0,z)

    z = 1

    y

    x

    Fig. 2.20

     –34

    O

    P(2,3,15)

     – 

    z

    y

    x

    ar 

    Fig. 2.21

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    44/212

      E   = 

    L

    2 8.854 10

     

     

    1

    26

    5   25 10 5

    2

    9a a

    26

    a ax y   x y

    12 26

    =   86.42 a x    17.284 a y   V/m

    Example 2.6.10

    Solution :  The charge is shown in the Fig. 2.22.

    The charge is parallel to x-axis hence   E   cannot have anycomponent in x direction hence do not consider x whilecalculating  E.

    i)  E at P(0, 0, 0)

      r  = (0 3) (0 5) a ay z   =   3 5a ay z

      r = | r |   3 5 342 2

      E   =   L0r L

    02 r 2 ra   r| r|  

    =  30 10

    2 8.854 10 34

    3 5

    34

    9

    12

    a ay z

      47.58 a 79.3 a V my z

    ii) E at P(0, 6, 1)

      r   = (6 3) (1 5) 3 4 , 3 a a a a |r|y z y z2 24 5

      E   =   30 10

    2 8.854 10 5

    3 4

    5

    9

    12

    a ay z 

      64.71 a 86.28 a V my z

    iii)  E at P(5, 6, 1)As   E  does not have any component in x direction and y, z, co-ordinates are same as in (ii)hence  E also remains same as obtained in (ii).

      E   =   64.71 a 86.28 a V my z

    Example 2.6.11

    Solution :  The charge is shown in the Fig. 2.23.

    Key Point   As charge is along z-axis,   E   can not have any

    component in a z   direction.

    Do not consider z co-ordinate while calculating   r .   r   = ( 2 0) (2 0) a ax y

    =   2 2 , 4 4 8a a rx y

      E   = 

    L

    0

    L

    02 r 2 ra

      r

    rr 

    = 40 10 2 a 2 a

    2 8.854 10 8 8

    9x y

    12

    179.754 a x   179.754 a V my

    Electromagnetic Field Theory 2 - 18 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    z

    x

    y

    (x, 3, 5)5

    L = 30 nC/m

    3

    Parallel tox-axis

    Fig. 2.22

    zL = 40 nC/m

     P(–2,2,8)

    x

    (0,0,z)

    Fig. 2.23

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    45/212

    Example 2.6.12

    Solution :   Consider the charge along z-axis as shown in

    the Fig. 2.24. Consider the differential charge at a

    distance z.

    dQ =   L   dl =  L dz

      dE   =

    L

    02

    dz

    4 Ra R

    R   = 0 ( h 0) (0 z)a a ax y z

    =   h za ay z

    | |R   = h z| |

    2 2R , a

      R

    R

      dE   =

    L

    0 2 2   2 2

    dz

    4 (h z )

    h z

    h z

    a ay z

      E   =

    L

    0 z1

    z2

    2 2 3/ 2z1

    z2

    2 24

    h dz

    (h z )

    z dz

    (h z   

    a   ay z

    ) 3/ 2

    I1

    I2

    …(1)

    I 1   =z1

    z2

    2 2 3/ 2

    h dz

    (h z )  

    , z = h tan , dz = h sec2  d

    I 1   =z1

    z2   2 2

    3

    h sec d

    h     sec 3

      =  1h

    z1

    z2

        cos d =  1h   z1

    z2[sin ]

    =  1

    hz

    h z2 2 z1

    z2

    =  1h

    z

    h z

    z

    h z

    2

    222

    1

    212

    I2   =

    z1

    z2

    2 2 3/ 2

    z dz

    (h z )  

    , h2 + z2 = u2, 2z dz = 2u du

    I2   =z1

    z2

    3

    u du

    u     =  

    1u z1

    z2= 

    1

    h z2 2 z1

    z2

    =  

    1

    h z

    1

    h z

    1

    h z

    1

    h z222 2

    12 2

    22 2

    12

    –  

    Using I1  and I2in equation (1),

    Electromagnetic Field Theory 2 - 19 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    P(0, –h,0)

    (0, 0, z )2

    (0, 0, z )1

    R

    y

     A

    B

    z

    dl 

    x

    z

    (0, 0, z)

    Fig. 2.24

    h

    zh +z2 2

    Fig. 2.24 (a)

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    46/212

      E   = 

       

    L

    0

    2

    222

    1

    212

    L

    0   24

    z

    h h z

    z

    h h z  4

    1

    ha y

    z

    1

    h z22 2

    12

    a V / mz

    Example 2.6.13

    Solution :   Q = 1   C and placed betweenA(0, 0, 1) and B(0, 0, 2) m.   L = 2 – 1 = 1 m

    L

      =  Q

    L  =

     11

     = 1 C/m

    Consider an elementary charge dQ at a distance

    z as shown in the Fig. 2.25.

      dQ =   L

     dz

    i)  For point P1(0, 0, 0),

    R   =   za z , a R   =  a z| |R   = z

      dE   =  dQ

    4 R02

    a R   = 

    L

    02

    dz

    4 z( ) a z

      E   =z 1

    z 2L

    02

    dz

    4 z( )

        

    a z

    =

      

    L

    0z 1

    2

    24dz

    z

    a z

    =    

    1 10

    4 10

    6

    12   8.854

    1z 1

    2

    a z   = 8987.7424  1

    1   a z

    =   – 4493.8712 a z   V/m

    ii)  For point P2(0, 1, 1)

    R   =   0 (1 0) (1 z)a a ax y z   ,   | |R   =   1 (1 z)2

      dE   =   dQ

    4 R02

    a R   =  dQ

    4 R02

    R

    |R |

    =

    L

    0  2

    dz

    4

    [ + (1 z) ]

    1 + (1 z)[ ( ) ]1 1  2

     z

    a ay z

      dE   =   1 10

    4

    6

     

      8.854 10

    dz

    [1 (1 z) ]

    (1 z) dz

    [112 2 3/ 2

    a   ay   z

    (1 z) ]2 3 / 2

      E   =   dE     = 8987.7424z 1

    2

    2 3/ 2 2 3/

    dz

    [1 (1 z) ]

    (1 z) dz

    [1 (1 z) ]  

     

    a   ay   z2

    Electromagnetic Field Theory 2 - 20 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    (0, 0, z)

    (0, 0, 2)

    (0, 0, 1)

    P (0, 1, 1)2

    P (0, 0, 0)1

    y

    z

    x

    z

    B

     A

    dz

    Fig. 2.25

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    47/212

    I 1   =z 1

    2

    2 3 / 2

    dz

    [1 (1 z) ]  

     put 1 – z = tan , – dz = sec2  d

    For z = 1,     = 0 and z = 2,  2  = – 45

      I1   =

    1

    2   2

    3/ 2sec d[1 ]     tan 2   =   

      1

    2

    1 dsec   =    

    1

    2

    dcos

      I1   =  

    [sin ]0

    45=  [sin ( )]45 = + 0.7071

    I2   =

    z 1

    2

      

      (1 z) dz

    [1 (1 z) ]2 3 / 2

     put [1 + (1 – z)2] = u2

    2(1 – z) (– dz) = 2u du i.e. (1 – z)dz = –u du

    for z = 1, u1  = 1 and z = 2, u2  = 2

      I2   =u 1

    u 2

    3

    u du

    u  

      = 

    1u 1

    2

    =  1

    21

     = – 0.2928

      E   = 8987.7424 [0.7071 a y – 0.2928  a z ] =  6355.2326 a y   – 2631.6109 a z   V/m

    Example 2.6.14

    Solution :   The charge is shown as in the

    Fig. 2.26.

    Key Point   If   L   is not distributed all along thelength then standard result can not be used. The

    basic procedure is to be used.

    As charge is not infinite, let us use basic

    procedure of considering differential charge.

    Consider the differential element dl   in the z

    direction hence,

    dl   = dz

      dQ =   L

    dl  = L

    dz

      dE   =   dQ

    R

    dz

    4 R2L

    24

    a aR R

    Any point on z axis is (0, 0, z) while point P at which   E to be calculated is  2 0 0, , .R   =   2 0 0 z z a a a ax z x z2

    |R|   =   2 z 4 z2 2   2   ,  a R   =  R

    |R |

    a ax z 

    2 z

    4 z 2

    Electromagnetic Field Theory 2 - 21 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    P(2,0,0)

    xdE

     – 5

    5

    y0R

    aR

    dQ

    L

    L

    z

    Fig. 2.26

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    48/212

      dE   =

    L

    22   2

    dz

    4 z

    z

    4 z4

    2

     

     

    a ax z =

     

    L

    2   3/ 2

    dz

    4 z

    z

    4

    2

    a ax z

    Now there is no charge between – 5 to 5 hence to find   E, dE  to be integrated in two zones

     to – 5 and 5 to    in z direction.

      E   =

       5

    5

    d dE+ E

    Looking at the symmetry it can be observed that z component of   E   produced by charge

     between 5 to     will cancel the z component of   E  produced by charge between – 5 to  .Hence for integration a z   component from dE can be neglected.

      E   = 

       

    5

    5

    2

    4

    2

    4

    L

    2   3/ 2L

    2   3/ 2

    dz

    4 z

    dz

    4 z

    a ax x

    Solving,   E   =   13 V ma xTo find cylindrical co-ordinates find the dot product of   E  with   a ar ,     and  a z , at point P,

    referring table of dot products of unit vectors.

      Er   =   E a a ar x r   13 13 cos   E   =   E a a ax     13 13 sin   Ez   =   E a a az x z   13 0At point P, x = 2, y = 0, z = 0

      r = x y2 2

      = 2 and     tan tan

    1 1

    0 0

    y

    x

      cos    = 1 and sin  = 0

      Er   = 13, E   = 0, Ez   = 0

    Hence the cylindrical co-ordinate systems   E is,

    E   =   E E Er za a ar z   =  13 a r   V/m

    Example 2.7.2   Kept this example for student's practice.

    Example 2.8.5

    Solution : Case 1 :  Point charge Q 1   = 6 C at A (0, 0, 1) and P (1, 5, 2)

      E1   =  Q

    R

    Q

    R

    1

    AP2

    1

    AP24 4

    a  R

    | RAP

    AP

    AP

     

    |

    RAP   =   1 0 5 0 2 1 a a ax y z   = a a ax y z 5

      | |RAP   =   1 5 1 272 2 2

    Electromagnetic Field Theory 2 - 22 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    49/212

      E1   =

    6 10

    4

    56

      8.854 10 2712  2

    a a a

    27

    x y z

      E1   = 384.375 a x   + 1921.879  a y   + 384.375  a z   V/mCase 2 :  Line charge  L   along x-axis.

    It is infinite hence using standard result,

    E2   = 

    L

    2 r a r   =

     

    L

    2 rr

    r

    Consider any point on line charge i.e. (x, 0, 0) while P (1, 5, 2). But as line is along x-axis,

    no component of   E   will be along   a x   direction. Hence while calculating   r   and   a r , do not

    consider x co-ordinates of the points.

      r   =   5 0 2 0 5 2 a a a ay z y z

      | r|   =   5 2 292 2

      E2   = 

      L

    2   8.854

     

    29

    5 2   180 10 5 2

    1

    9a a

    29

    a a

    2

    y z   y z

    0 2912

    = 557.859 a y   + 223.144  a z   V/m

    Case 3 :   Surface charge   S   over theplane z = – 1. The plane is parallel to xyplane and normal direction to the planeis   a an z   , as point P is above theplane. At all the points above z = – 1plane the   E   is constant along   a zdirection.

      E3   = 

    S

    2  a n

    =  25 10

    2 8.854 10

    9

    12

      a z

    = 1411.7913   a z V/m

    Hence the net   E at point P is,E   =   E E E1 2 3

    = 384.375 a x   + 1921.879  a y   + 384.375  a z   + 557.859  a y   + 223.144 a z   + 1411.7913  a z

    =   384.375 a x  + 2479.738 a y   + 2019.3103 a z   V/m

    Example 2.8.6

    Solution :   The sheet of charge is shown in the Fig. 2.28.

    Consider the differential area dS carrying the charge dQ. The normal direction to dS is  a zhence dS r dr dz    .

    Electromagnetic Field Theory 2 - 23 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    z

    x

    yaz

    S

    P(1, 5, 2)

    Fig. 2.27

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    50/212

      dQ =   S   dS =  S   r dr d = 10   4

    r

      r dr d

      dQ = 10   4 dr d

      dE   =  10   4 dr d

    4 R2

    a R

    Consider   R as shown in the Fig. 2.29, which has

    two components in cylindrical system,

    1. The component along  a r   having radiusr i.e.  r a r .

    2. The component z = 3 along a z   i.e. 3  a z .

      R   =   r  a ar z3

    |R|  =   r 3 r 92 2   2

      a R   =  R

    |R |

    a ar z 

    r

    r 923

      dE   =  10 34

     

     

    dr d

    4 r 9

    r

    r 922   2

    a ar z

    It can be seen that due to symmetry about

    z-axis, all radial components will cancel each

    other. Hence there will not be any component

    of   E   along  a r . So in integration  a r   need not beconsidered.

      E   =

     

       0 0

    4   4103

    r   2  3/ 2

    dr d

    4 r 9

    a z

    As there is no r dr in the numerator, use

    r = 3 tan , dr = 3 sec2 d

    For r = 0,    = 0For r = 4,    =  tan– /1 4 3

    ...Change of limits

      E   =

     

       0 0

    4 2

    2  3 2

    10 3

    4 9

    3sec

    tan/

    d da z

      E   =

       

     

    0 0

    2   2

    2   3 21

    299.5914 10 d d3 sec

    tan/

      a z

    Electromagnetic Field Theory 2 - 24 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    R

    aRr = 4   O

    P(0, 0, 3)

    S

    dS

    y

    x

    Fig. 2.28

    R

    O

    P(0, 0, 3)3

    y

    x –ar 

    az

    Fig. 2.29

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    51/212

    =

     

       

     

    0 0

    299.5914 10d d

    3

    sec  a z   =  

         

    0 1   0

    2

    299.5914 10 d d3 cos   a z

    = 299.5914     10 3 02

    0

    sin   a z   ... Separating variables

    = 1.8823   10 6 sin    a z   ... sin 0º = 0

    Now     =   tan1  4

    3  i.e.   tan  

      43

      sin   =  45

     = 0.8

      E   = 1.8823 10 0.86   a z

    = 1.5059   10 6 a z   V/m

    =   1.5059 a z   MV/mExample 2.8.7

    Solution :   The sheet is shown in the Fig. 2.31.

    The point P is on the back side of the plane.

    The normal to the plane in the direction of P is   a x .

      a n   =   a x

      EP   = 

    S

    0

    12

    1225 10

    2 8.854 10

    ( )a an x 

      EP   =  – 0.2823   a x V/m

    Example 2.8.8

    Solution :   Q = 100 C, r = 10 cm = 0.1 m, area =  r 2 = 0.03141 m2

    S   =  Qarea

      = 100 10

    0.03141

    – 6= 3.1831 10 m– 3 2   C

    The disc is shown in the Fig. 2.32.

    Consider differential surface area dS.

    Using cylindrical system,dS = r dr d,   R =  – r zr za a

    a R   =  – r a za

    r z

    r z

    2 2

    Key Point   All radial components of   E

    at P will cancel each other due to

    symmetry.

    Electromagnetic Field Theory 2 - 25 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    4

    3

    2

    4 +3= 5

    2 2

    Fig. 2.30

     – ax

    x

    O   y

    z

    P (–5, 0, 0)

    S = 5 pC/m2

    Sheetat x = 0

    Fig. 2.31

    z

    y

    x

    R

    P

    z

    ds

    P

    Rzaz

     – r a r 

    0

    (a) (b)

    Fig. 2.32

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    52/212

    E  =S  

      dQ

    4 R02

    a R

    =

       

    0 0   02 2   2 2

    [r dr d

    4 [r + z ]

    z

    r z

    2 0 1

    r

    S. ]   a z =

     

    S

    r

    z

    4r dr d

    [r + z ]0 0 02 2 3/ 2

       2 0 1.

    a z

    Use r z u2 2 2   i.e. r dr = u du

    Limits :  r = 0, u z1    and r = 0.1, u 2   012 2. z

      E   = 

    S

    u

    uz

    4u du d

    u0 03

       2

    1

    2

    a z   = 

        S

    z

    u4 0   u 1

    u 2[ ] –

    02   1

      a z

      S

    z

    u u4 0  

    2  1 1

    1 2–   a z

    Using z = 20 cm = 0.2 m,  u 1  = 0.2 and u 2   =   0.05 = 0.2236

      E   =   3.1831 10 0.2

    4 8.854 10

    10.2

     –  1

    0.2236

    – 3

    –12

     

    2  a z   =   18.9723 a z   MV/m

    Example 2.8.9

    Solution :   The plane is shown in the Fig. 2.33

    Consider the differential surface area dS carrying

    charge dQ.

      dQ =   S   dS where dS = dxdy

      dQ =   2 x y 92 2   3/2 dx dy nC

      dE   =   dQ

    4 Ro2

    a R

    R   =       0 – x 0 – y 0 – –3a a ax y z

    R   = –x – y 3a a ax y z   ,

    | | = x y 92 2R     , a R   =   RR| |

      dE   =

    2 x y 9 dx dy

    4 x y 9

    –x – y 3

    x y

    2 2   3/ 2

    o2 2   2 2

    a a ax y z

    910   9–

    Due to symmetrical distribution, x and y components of dE   will cancel each other and

    only z component will exist.

    Electromagnetic Field Theory 2 - 26 Coulomb's Law and Electric Field Intensity  

    TECHNICAL PUBLICATIONS - An up thrust for knowledgeTM

    z

    y

    x

    O

    P Q (2,2,–3)

    S(–2, 2, –3)

    R

    z = –3 plane

    (2,–2,–3)

    dS

    Fig. 2.33

  • 8/16/2019 50999882VAKX_Electromagnetic Field Theory_Solution Manual

    53/212

      dE  =  6 10

    4  dx dy

    –9

    o

    a z  

      E   =   6 104

      dx dy  6 10

    4  [x]

    –9

    ox – 2

    2

    y = –2

    2   –9

    o  –

     

           a z   2

    2–22[y]   a z   =  862.82 a z   V/m.

    Example 2.8.10

    Solution :   The sheets are shown in the

    Fig. 2.34.

    E   = 

    S

    2 0a N

    i)   PA  = (2, 5, – 5)

    It is below the plane z = – 4.

    Hence   a N   for this point due to all the

    sheets is  –a z .

      Et   =  

    S1 S2 S3

    2 2 20 0 0–a –a –az z z   =  –56.47 a z   V/m

    ii) PB  = (4, 2, –3)

    It is above z = – 4 and below other two plane. Hence   a aN z   for  S1   and   –a z   for  S2and  S3 .

      Et

      =

     

     

    3 10

    2

    6 10

    2

    8 10

    2

    9

    0

    9

    0

    9

    0

      – –   ––

    a –a –a

    z z z  =  282.358 a

    z  V/m

    iii)   PC  = (–1, –5, 2)

    It is above z = 1 and below z = 4. Hence  a N   = a z   for  S1   and  S2   while  –a z   for  S3 .

      Et   =

    3 102

    6 102

    8 10