5.15 swing barrier v.1.0

Upload: rfvz6s

Post on 02-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 5.15 Swing Barrier v.1.0

    1/190

    Design of structural barriers (column) for swing object.

    Material properties

    Material yield stress Fy = 355 N/mm (NV A36)

    Young's modulus E = 210000 N/mm

    Material factor m = 1.0

    Weight input

    Lift weight W = 20.0 T

    = 200.0 kN

    Rigging weight Wrw = 5.0 T (Assumed)

    = 50.0 kN

    Static hook load Wst = W + Wrw

    = 250.0 kN

    Loading as per ISO 19901-6

    Horizontally directed force in plane of bumper Fh = 0.10 Wst (refer Table 18 of ISO 1990

    = 233.0 kN

    Horizontally directed force out-of-plane of bumper Fl = 0.05 Wst (refer Table 18 of ISO 1990

    = 11.7 kN

    Vertically directed force Fv = 0.01 Wst (refer Table 18 of ISO 1990

    = 23.3 kN

    Height of column Lc = 0.75 m

    No. of columns in a row n = 3 Nos.

    Spacing between columns (average) Lb = 4.20 m

    No. of tie beams in one column = 4 Nos.

    Permissible deflection Lc / 150 = 5.0 mm

    Section properties for column = H 200-200

    D Bf tw tf Root Rd.

    200 200 10 15 10 mm

    Moment of inertia of section Iy Iz

    5.55E+07 2.00E+07 mm4

    Elastic section modulus Zey Zez

    555441.67 200141.7 mm3

    Plastic section modulus Zpy Zpz

    634117 304250 mm3

    Plastic moment capacity Mpy Mpz

    225.1 108.0 kN-m

    Torsional rigidity of column Jt = 506667 mm4

    Cross-section area Ax = 7700 mm2

    Shear area for Fh Aw = 2000 mm2

    Shear area for Fl Af = 5700 mm2

    Section class

    Web c/t = 15.0

    < 58.6 (= 72) -----------> Web is Class 1

    Flange c/t = 5.7

    < 7.3 (= 9) -----------> Flange is Clas

    Weight of one column = 0.45 kNWeight/ unit length of tie beams = 0.31 kN

    Total weight on one column Wc = 5.6 kN

  • 8/10/2019 5.15 Swing Barrier v.1.0

    2/190

    Work done by horizontal force (Fh) WFh = Fh*

    Moment at a distance x` from top My = Fh* x

    Elastic Strain energy developed in the column Wse =

    =

    From energy balance theory WFh = Wse

    Fh* =

    Hence, =

    = 1.40 mm

    < 5.00 mm Hence OK

    Moment developed at base of column My = Fh* L

    = 174.75 kN-m

    Mz = Fl* L /n

    = 2.91 kN-m

    BMD

    (Assumption:Horizontal out-of-plane force being

    distributed among all columns in a row equally.)

    Fh

    D

    LcColumn

    x

    My

    1

    2

    Y Y

    Z

    Z

    Fl

    Fh

    dx2EI

    xFdx

    2EI

    M L

    0

    22h

    L

    0

    2y

    3

    L

    2EI

    F 32h

    3

    L

    2EI

    F 32h

    3

    L

    2EI

    F 3h

  • 8/10/2019 5.15 Swing Barrier v.1.0

    3/190

    Bending stress at base of column h = My/ Zey

    = 314.6 N/mm2

    l = Mz/ Zez

    = 14.6 N/mm2

    Axial compressive stress v = (Fv+ Wc) / Ax

    = 3.76 N/mm2

    Shear stress y = Fh/ Aw

    = 116.50 N/mm2

    z = Fl/ Af

    = 2.04 N/mm2

    Note: Torsion is assumed not to reach the bottom of column due to the presence of tie members.

    Elastic verification at location

    x,Ed = h+ v

    = 318.37 N/mm2

    Ed = 1.53 N/mm2

    = 0.80 (UR)

    Elastic verification at location

    x,Ed = h+ l+ v

    = 332.93 N/mm2

    Ed = 0.00 N/mm2

    = 0.88 (UR)

    Plastic check as per eqn. 6.2 of EC3-1-1

    Axial Check:

    Design Axial Force, NEd = 28.94 kN

    Axial Capacity, NRd = 2733.5 kN

    Utilization Ratio, Ura=NEd/NRd = 0.01 Safe

    Shear Check:

    Design Shear Force, VzEd= Fh = 233.00 kN

    Shear Capacity, VzRd = 409.92 kN

    Utilization Ratio, Ursz = VzED/VzRD = 0.57 Safe

    Design Shear Force, VyEd = Fl = 11.65 kN

    Shear Capacity, VyRd = 1168.27 kNUtilization Ratio, Ursy = VyED/VyRD = 0.01 Safe

    Bending Check:

    Moment Capacity is reduced if design shear force is geater than half the plastic shear resistance of section.

    1

    2

  • 8/10/2019 5.15 Swing Barrier v.1.0

    4/190

    (Equation 6.33 of EN 1993-1-1:2005 / NA: 2008)

    NEd

  • 8/10/2019 5.15 Swing Barrier v.1.0

    5/190

    = 355.0 kN

    NEd 28.9 kN 0.01 UR

    Buckling check not required

    Joint check

    Impact force Fh = 233.00 kN

    Fl = 11.7 kN

    YY

    Z w1

    w2

    w1

    0

    5.0

    M

    yww fth

  • 8/10/2019 5.15 Swing Barrier v.1.0

    6/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    7/190

    235 NV A

    355 NV A36

    Section D Bf tw tf r Na wt Wp We

    100x100 100 100 6 8 10 50 16.5 87360 76500

    125x125 125 125 6.5 9 10 62.5 23.1 153268 13600

    150x150 150 150 7 10 11 75 30.7 245755 21900

    200x100 200 100 5.5 8 11 100 20.5 209137 18400

    194x150 194 150 6 9 13 97 29.5 308037 27700

    200x200 200 200 8 12 13 100 48.7 524975 47200

    250x125 250 125 6 9 12 125 28.6 365458 32400

    250x250 250 250 9 14 16 125 70.6 959523 86700

    300x150 300 150 6.5 9 13 150 35.6 541589 48100

    300x300 300 300 10 15 18 150 91.8 1499794 136000

    350x175 350 175 7 11 14 175 48.2 867262 77500

    350x350 350 350 12 19 20 175 133.8 2543313 230000

    400x200 400 200 8 13 16 200 64.3 1325288 119000

    390x300 390 300 10 16 22 195 103.5 2185409 198000

    400x400 400 400 13 21 22 200 168.4 3669932 333000

    428x407 428 407 20 35 22 214 279.9 6308904 557000

    488x300 488 300 11 18 26 244 123.8 3223436 291000

    600x200 600 200 11 17 22 300 102.3 2976187 259000588x300 588 300 12 20 28 294 145.8 4483890 402000

    0.880 (NV A36)

    D Bf tw tf r Na wt Wp We

    Built-up 200-200 200 200 10 15 10 100 60.4 634117 55544

    Box [350-300] 350 300 20 25 10 175 164.9 3237447 291071Side plate thickness = 15 15

    UR for Tie members

    0.81

    0.88

  • 8/10/2019 5.15 Swing Barrier v.1.0

    8/190

    Na = Neutral axis depth

    b1 = 200

    t1 = 15

    b1 = 170 t 1 = 10N.A.

    t2 = 15

    b2 = 200

    Plastic section modulus, Wp

    Neutral axis from top of plate = 100.00 mm

    Flange = 277500 mm3

    Web above N.A. = 36125 mm3

    Web below N.A. = 36125mm

    3

    Flange = 277500 mm3

    Second moment of Area, I

    Neutral axis from top of plate = 100.00 mm

    Flange = 25725000 mm4

    web = 4094167 mm4

    Flange = 25725000 mm4

    Total = 55544167 mm4

    Elastic section modulus, W = I/(D/2) = 555441.7 mm3

    Na = Neutral axis depth

    b1 = 200

    t1 = 15

    b1 = 170 t 1 = 10

    N.A.

    t2 = 15

    b2 = 200

    Plastic section modulus, Wp

    Neutral axis from top of plate = 100.00 mm 100 mm

    Flange = 277500 mm3

    75000 75

    Web above N.A. = 36125 mm3

    2125 2

    3

    ELASTIC SECTION MODULUS

    ELASTIC SECTION MODULUS OF BUILT-UP SECTION

    Major axis Minor axis

  • 8/10/2019 5.15 Swing Barrier v.1.0

    9/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    10/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    11/190

    Minor axis

    2* E * Iz/ Lcr

    2

    18436.3

    737

    28.9 0.04 UR

    P

    l Column

  • 8/10/2019 5.15 Swing Barrier v.1.0

    12/190

    (Fh2+ Fl

    2)

    l Mp

    l-x Me

    Plastic moment capacity of section Mp = 225.1 kN-m

    Elastic moment capacity of section Me = #REF! kN-m

    Height of column l = 0.8 m

    Length of plastic hinge x =

    = #REF! m

    (Mp - Me) * l

    Mp

    =

    Hinge

    Me

    Mp

  • 8/10/2019 5.15 Swing Barrier v.1.0

    13/190

    Top fl Bot fl Top web Bot web Top RR Bot RR c Web c Flng. Ix Iy Zx

    36800 36800 5292 5292 1588 1588 64 37 3.83E+06 1.34E+06 7.65E+04 2

    65250 65250 9302.3125 9302.313 2082 2082 87 49.25 8.47E+06 2.93E+06 1.36E+05 4

    105000 105000 14787.5 14787.5 3090 3090 108 60.5 1.64E+07 5.63E+06 2.19E+05 7

    76800 76800 23276 23276 4492 4492 162 36.25 1.84E+07 1.34E+06 1.84E+05 2

    124875 124875 23232 23232 5912 5912 150 59 2.69E+07 5.07E+06 2.77E+05 6

    225600 225600 30976 30976 5912 5912 150 83 4.72E+07 1.60E+07 4.72E+05 1

    135562.5 135562.5 40368 40368 6799 6799 208 47.5 4.05E+07 2.94E+06 3.24E+05 4

    413000 413000 55444.5 55444.5 11317 11317 190 104.5 1.08E+08 3.65E+07 8.67E+05 2

    196425 196425 64613.25 64613.25 9756 9756 256 58.75 7.21E+07 5.08E+06 4.81E+05 6

    641250 641250 91125 91125 17522 17522 234 127 2.04E+08 6.75E+07 1.36E+06 4

    326287.5 326287.5 94136 94136 13207 13207 300 70 1.36E+08 9.84E+06 7.75E+05 1

    1100575 1100575 146016 146016 25065 25065 272 149 4.03E+08 1.36E+08 2.30E+06 7

    503100 503100 139876 139876 19668 19668 342 80 2.37E+08 1.74E+07 1.19E+06 1

    897600 897600 160205 160205 34899 34899 314 123 3.87E+08 7.21E+07 1.98E+06 4

    1591800 1591800 208266.5 208266.5 34899 34899 314 171.5 6.66E+08 2.24E+08 3.33E+06 1

    2799143 2799143 320410 320410 34899 34899 314 171.5 1.19E+09 3.94E+08 5.57E+06 1

    1269000 1269000 280918 280918 61800 61800 400 118.5 7.10E+08 8.11E+07 2.91E+06 5

    991100 991100 440489.5 440489.5 56504 56504 522 72.5 7.76E+08 2.28E+07 2.59E+06 21704000 1704000 450456 450456 87489 87489 492 116 1.18E+09 9.02E+07 4.02E+06 6

    Top fl Bot fl Top web Bot web Top RR Bot RR c Web c Flng. Ix Iy Zx

    277500 277500 36125 36125 3434 3434 150 85 55544167 20014167 555442

    1218750 1218750 225000 225000 6223 6223 280 130 509375000Side plt. 168750 168750

  • 8/10/2019 5.15 Swing Barrier v.1.0

    14/190

    Na = N

    plastic elastic

    100 7700

    19 770000

    eutral Axis 100 100

    X = 85.0

    N.A. = X + t1 = 100.00 mm

    Yc = 81.5 mm C = 3850 x syp

    Yt = 81.5 mm T = 3850 x syp

    Zp = 627250 mm3

    P

    Neutral

    S

    Neutral

    Elastic section

    plastic elastic

    100 7700

    19 770000

    eutral Axis 100 100

    X = 85.0

    N.A. = X + t1 = 100.00 mm

    Yc = 81.5 mm C = 3850 x syp

    Yt = 81.5 mm T = 3850 x syp

    Zp = 627250 mm3

    (Torsion) T = Tf* r / Jt

    325 2 N

  • 8/10/2019 5.15 Swing Barrier v.1.0

    15/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    16/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    17/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    18/190

    Torsion at base of column Tf = 1.17 kN-m

  • 8/10/2019 5.15 Swing Barrier v.1.0

    19/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    20/190

    b1 = 300

    t1 = 25 plastic elastic

    175.00 30000.0

    35.00 5250000

    Neutral Axis 175.00 175.0

    20

    t3

    =

    N.A. X = 150.0

    t4 = 15 N.A. = X + t1 = 175.00 mm

    Yc = 137.5 mm C =

    Yt = 137.5 mm T =

    t2 = 25

    b2 = 300 Zp = 2887500 mm3

    , Wp

    = 175.00 mm

    = 1218750 mm3

    N.A. = 225000 mm3

    ve N.A. = 168750 mm

    3

    N.A. = 225000 mm3

    ow N.A. = 168750 mm3

    = 1218750 mm3

    , I

    = 175.00 mm

    = 198437500 mm4

    = 45000000 mm4

    = 67500000 mm4

    = 198437500 mm4

    = 509375000 mm4

    ) = 2910714.286 mm3

    TION MODULUS OF BOX SECTION

    300

    b3

    =

  • 8/10/2019 5.15 Swing Barrier v.1.0

    21/190

    Design of structural barriers (column) for swing object.

    Material properties

    Material yield stress Fy

    Young's modulus E

    Material factor m

    Weight input

    Lift weight W

    Rigging weight Wrw

    Static hook load Wst

    Loading as per ISO 19901-6

    Horizontally directed force in plane of bumper Fh

    Horizontally directed force out-of-plane of bumper Fl

    Vertically directed force ( -ve for Tension) Fv

    Nsd

    Design Hydrostatic pressure Psd

    Height of column Lc

    No. of columns in a row n

    Spacing between columns Lb

    No. of tie beams in one column

    Permissible deflection 2*Lc / 200

    Supporting bottom girder/beam

    Unsupported length of supporting girder/beam lg

    Moment of inertia of supporting girder/beam Ig

    Section properties for column

    D

    219.08

    Moment of inertia of CHS Ic

    Elastic section modulus of CHS Ze,c

    Plastic section modulus of CHS Zp,c

    (Assumption:- Horizontal members checked for 2840mm span and found to be

  • 8/10/2019 5.15 Swing Barrier v.1.0

    22/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    23/190

    Work done by horizontal force (Fh) WFh

    Moment at a distance `xc` from top My,c

    Elastic Strain energy developed in the column due to bending moment Wse,c

    Elastic Strain energy developed in the beam due to bending moment Wse,b

    From energy balance theory WFh

    Fh*

    Hence,

    Design bending moment about member y-axis (in-plane) My,sd

    Mz,sd

    BMD for Column

    (Assumption:Horizontal out-of-plane force being distributed among all

    columns in a row equally.)

    xc

    My,c

  • 8/10/2019 5.15 Swing Barrier v.1.0

    24/190

    k in equation 3 & 4 relate to buckling in the y and z directions, respectively.

    Reduction factors

    For cantilever tubular member Cmy

    For bottom fixed and top free to move for tubular member Cmz

    Ic/LcIg/Lg

    GB

    Hence from fig. 12-4 of N-004 (pg 72) k y

    Here, k z

    Calculation of material factor, M

    Geometric parameter =

    Hence, / (D/t)and 0.825D/t

    Elastic hoop buckling factor Ch

    Ch = = 0.0368

    Ch = =

    Ch = =

    L/D (2D/t)

    GA=

    .

    0.44t/D4/30.21(D/t)0.44t/D

    579.0/737.0

  • 8/10/2019 5.15 Swing Barrier v.1.0

    25/190

    Ch = 0.80 =

    Elastic hoop buckling strength f he=

    Hence, f he/fy

    Characteristic hoop buckling strength f h

    fh

    = = 355 N/mm^2

    fh = =

    fh = =

    c,Sd

    Design hoop stress due to hydrostatic pressure p,Sd = pSd* D/2t

    c =

    h =

    Shell slenderness parameter S

    Material factor MM = 1.15 = 1.15

    M = 0.85+0.60s =

    M = 1.45 =

    Calculation of design axial compressive resistance, Nc,Rd

    Critical elastic buckling coefficient Ce

    Characteristic elastic local buckling strength fcle = 2*Ce*E*t/D

    Hence, fy/ fcle

    Characteristic local buckling strength f cl

    fcl = = 355 N/mm^2

    Max. combined design compressive stress, design axial stress

    in damaged cylinder

    2Ch* E * t/D

    yf

    yf

    4.07.0 yhey /fff

    hef

    cley/ff

    hey/ff

    Et

    Dfy

    E

    fy120

  • 8/10/2019 5.15 Swing Barrier v.1.0

    26/190

    fcl = =

    fcl = =

    l = = 1.84

    fc = =

    fc = = 94.77753 N/mm^2

    Design axial compressive resistance Nc,Rd = Afc/M

    Calculation of design bending moment resistance, MRd

    Characteristic bending strength fm

    fm = = 490.5 N/mm^2

    fm = =

    fm = =

    Design axial local buckling resistance Ncl,Rd= fcl* A / M

    Euler buckling strengths corresponding to the member y - axis NEy

    Euler buckling strengths corresponding to the member z - axis NEZ

    Combined stress

    Check 1

    Check 2

    Design bending moment resistance MRd =

    y

    cle

    yf

    f

    f0.274-1.047

    clef

    yfW

    Z

    yy

    fW

    Z

    Et

    Df

    58.213.1

    yy

    fW

    Z

    Et

    Df

    76.094.0

    M

    mWf

    E

    lf

    i

    k c

    l

    yf

    228.00.1 l

    yf2

    9.0

    l

  • 8/10/2019 5.15 Swing Barrier v.1.0

    27/190

    Shear check

    Design shear resistance VRd

    Applied shear force VSd

    VSd

    VRd

    Interaction shear and bending moment

    My,sd

    MRd

    Mz,sd

    MRd

  • 8/10/2019 5.15 Swing Barrier v.1.0

    28/190

    = 355N/mm

    = 210000N/mm

    = 1.0

    = 20.0 T

    = 200.0 kN

    = 5.0 T (Assumed)

    = 50.0 kN

    = W + Wrw

    = 250.0 kN

    = 0.10 Wst (refer Table 18 of ISO 1

    = 25.0 kN

    = 0.05 Wst (refer Table 18 of ISO 1

    = 12.5 kN

    = 0.01 Wst (refer Table 18 of ISO 1

    = 2.5 kN

    = 0.00 kN/m^2

    = 5000 mm

    = 2 Nos.

    = 1800 mm

    = 8 Nos.

    = 50.0 mm (assumed cantilever???)

    = PG 200x200x15x25

    = 700.00 mm

    = 199327500 mm4

    = CHS

    = 200 #80

    d t

    182.48 18.3 mm

    = 5.86E+07 mm4

    = 535417.4 mm3

    = 739764 mm3

  • 8/10/2019 5.15 Swing Barrier v.1.0

    29/190

    = 71.3 mm

    = 117299252 mm4

    = 11543.1 mm2

    = CHS 130 #80d t

    122.3 9.5 mm

    = 8.59E+06 mm4

    = 12.0

    < 33.1 (= 50^2) ----------->

    = 0.91 kN

    = 0.906 kN

    = 14.0 kN

    Lb

    Column

  • 8/10/2019 5.15 Swing Barrier v.1.0

    30/190

    = Work done on col. + work done on tie beam= Fh* /2 + Fh* /2

    = Fh*

    = Fh* x

    =

    =

    =

    = Wse,c+ Wse,b

    =

    =

    = 55.77 mm

    > 50.00 mm Check

    = Fh* L

    = 125.00 kN-m

    = Fl* L /n

    = 31.25 kN-m

    BMD for beam

    xb

    My,b

    dx2EI

    xFdx

    2EI

    M L

    0

    2c

    2h

    L

    0

    2cy,

    3

    L

    2EI

    F 3

    c

    c

    2h

    3

    L

    2EI

    F

    3

    L

    2EI

    F 3b

    b

    2h

    3c

    c

    2h

    b

    3b

    c

    3ch

    I

    L

    I

    L

    6E

    F

    3

    L

    2EI

    F 3

    b

    b

    2

    h

  • 8/10/2019 5.15 Swing Barrier v.1.0

    31/190

    = 1.0

    = 0.85

    11730

    284754

    = 0.04

    =

    = 2.0

    = 1.0

    = 111.7

    = 9.33

    = 9.88

    for

    for

    for

    1.6

  • 8/10/2019 5.15 Swing Barrier v.1.0

    32/190

    for

    = 1289.43 N/mm^2

    = 3.63

    for

    for

    for

    =

    = 240.9 N/mm^2

    = 0.00 N/mm^2

    =0.18

    = 0.52

    =

    = 0.12

    for S < 0.5

    for 0.5

  • 8/10/2019 5.15 Swing Barrier v.1.0

    33/190

    for 0.17< fy/ fcle 1.911

    for l 1.34

    = 951.3 kN

    = 3563.3 kN

    = 1215.6 kN

    = 4862.3 kN

    = 0.563 UR

    for

    for

    for

    = 228.4 kN-m

    0517.0Et

    Dfy

    103.00517.0 Web is Class 1

    Flange c/t = 6.9

    < 7.3 (= 9) -----------> Flange is Clas

    Weight of one column = 1.95 kNWeight/ unit length of tie beams = 0.31 kN

    Total weight on one column Wc = 13.6 kN

  • 8/10/2019 5.15 Swing Barrier v.1.0

    116/190

    Work done by horizontal force (Fh) WFh = Work done on col. + work done on tie beam

    = Fh* /2 + Fh* /2

    = Fh*

    Moment at a distance `xc` from top My,c = Fh* x

    Elastic Strain energy developed in the column Wse,c =

    =

    Elastic Strain energy developed in the beam Wse,b =

    BMD for Column BMD for beam

    xc

    My,c

    2Lb

    Horizontal member

    connecting columns

    Fh

    D

    Column

    Column

    Column

    Horizontal member

    connecting columns

    Lc

    Fh

    2Lb

    Col. location

    Col. locationMy,b

    Fh

    dx2EI

    xFdx

    2EI

    M L

    0

    2c

    2h

    L

    0

    2cy,

    3

    L

    2EI

    F 3c2h

    384EI2LFb

    2

    h

    3

  • 8/10/2019 5.15 Swing Barrier v.1.0

    117/190

    Mz = Fl* L /n

    = 16.67 kN-m

    Elastic verification as per eqn. 6.1 of EC3-1-1

    Bending stress at base of column h = My/ Zey

    = 211.9 N/mm2

    l = Mz/ Zez

    = 104.2 N/mm2

    Axial compressive stress v = (Fv+ Wc) / Ax

    = 2.54 N/mm2

    Shear stress y = Fh/ Aw

    = 15.63 N/mm2

    z = Fl/ Af

    = 2.71 N/mm2

    Note: Torsion is assumed not to reach the bottom of column due to the presence of tie members.

    Elastic verification at location

    x,Ed = h+ v

    = 214.40 N/mm2

    Ed = 2.03 N/mm2

    = 0.36 (UR)

    Elastic verification at location

    x,Ed = h+ l+ v

    = 318.57 N/mm2

    Ed = 0.00 N/mm2

    = 0.81 (UR)

    (Assumption:Horizontal out-of-plane force being

    distributed among all columns in a row equally.)

    1

    2

    1

    2

    Y Y

    Z

    Z

    Fl

    Fh

  • 8/10/2019 5.15 Swing Barrier v.1.0

    118/190

    Shear Check:

    Design Shear Force, VzEd= Fh = 25.00 kN

    Shear Capacity, VzRd = 327.93 kN

    Utilization Ratio, Ursz = VzED/VzRD = 0.08 Safe

    Design Shear Force, VyEd = Fl = 12.50 kN

    Shear Capacity, VyRd = 944.45 kN

    Utilization Ratio, Ursy = VyED/VyRD = 0.01 Safe

    Bending Check:Moment Capacity is reduced if design shear force is geater than half the plastic shear resistance of section.

    Moment Reduction Factor for MzRdis z = 0.948

    Moment Reduction Factor for MyRdis y = 0.718

    Moment Capacity about Z-Z is MzvRd = 86.20 kNm

    Moment Capacity about Y-Y is MyvRd = 186.37 kNm

    Moment Capacity is further reduced if axial force is present and does not satisfy following criteria.

    Moment Capacity reduction paramerters:

    n = 0.007

    a = 0.252

    For Z-Z axis: Criteria for Moment Capacity reduction:

    (Equation 6.33 of EN 1993-1-1:2005 / NA: 2008)

    NEd

  • 8/10/2019 5.15 Swing Barrier v.1.0

    119/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    120/190

    Weld type w1 = Full penetration weld

    w2 = Full penetration weld

    Weld thk. around flange tw1 = 12.0 mm

    Fillet weld thk. around web tw2 = 8.0 mm

    Shear area of weld w1 a1 = 4800 mm2

    Shear area of weld w2 a2 = 1408 mm2

    Shear stress in weld w1

    Shear due to direct stress w1,d,ll = 2.6 N/mm2

    Shear stress in weld w2 w2,ll = 17.8 N/mm2

    Permissible shear stress perm = (Fy/m) / 3

    = 205.0 N/mm2

    = ll -----------> Safe in shea

    Material tensile stress Fu = 490 N/mm

    Section modulus of weld w1 W = 472000 mm3

    Moment at base of swing barrier Mb = Fr x L

    = 100.00 kN-m

    Normal stress due to bending moment T = Mp /Z

    = 211.9 N/mm2

    Permissible normal stress perm = Fu/m

    = 490.0 N/mm2

    > T -----------> Safe in norm

    Von misses stress [T2+ 3(ll

    2)] = 211.9 N/mm

    2UR = 0.43

    < 490.0 N/mm2

    -----------> Hence OK

    Z

  • 8/10/2019 5.15 Swing Barrier v.1.0

    121/190

    235 NV A

    355 NV A36

    Section D Bf tw tf r Na wt Wp We

    100x100 100 100 6 8 10 50 16.5 87360 76500

    125x125 125 125 6.5 9 10 62.5 23.1 153268 13600

    150x150 150 150 7 10 11 75 30.7 245755 21900

    200x100 200 100 5.5 8 11 100 20.5 209137 18400

    194x150 194 150 6 9 13 97 29.5 308037 27700

    200x200 200 200 8 12 13 100 48.7 524975 47200

    250x125 250 125 6 9 12 125 28.6 365458 32400

    250x250 250 250 9 14 16 125 70.6 959523 86700

    300x150 300 150 6.5 9 13 150 35.6 541589 48100

    300x300 300 300 10 15 18 150 91.8 1499794 136000

    350x175 350 175 7 11 14 175 48.2 867262 77500

    350x350 350 350 12 19 20 175 133.8 2543313 230000

    400x200 400 200 8 13 16 200 64.3 1325288 119000

    390x300 390 300 10 16 22 195 103.5 2185409 198000

    400x400 400 400 13 21 22 200 168.4 3669932 333000

    428x407 428 407 20 35 22 214 279.9 6308904 557000

    488x300 488 300 11 18 26 244 123.8 3223436 291000

    600x200 600 200 11 17 22 300 102.3 2976187 259000588x300 588 300 12 20 28 294 145.8 4483890 402000

    0.805 (NV A36)

    D Bf tw tf r Na wt Wp We

    Built-up 200-200 200 200 10 15 7.5 100 60.4 631173 55544

    Box [350-300] 350 300 20 25 10 175 164.9 3237447 291071Side plate thickness = 15 15

    UR for Tie members

    0.81

  • 8/10/2019 5.15 Swing Barrier v.1.0

    122/190

    Col. location

    My,b

    My,b

  • 8/10/2019 5.15 Swing Barrier v.1.0

    123/190

    Na = Neutral axis depth

    b1 = 200

    t1 = 12

    b1 = 176 t 1 = 8

    N.A.

    t2 = 12

    b2 = 200

    Plastic section modulus, Wp

    Neutral axis from top of plate = 100.00 mm

    Fl 2256003

    ELASTIC SECTION MODULUS

  • 8/10/2019 5.15 Swing Barrier v.1.0

    124/190

    Total = 46104917 mm4

    Elastic section modulus, W = I/(D/2) = 461049.2 mm3

    Na = Neutral axis depth

    b1 = 200t1 = 15

    b1 = 170 t 1 = 10

    N.A.

    t2 = 15

    b2 = 200

    Plastic section modulus, Wp

    Neutral axis from top of plate = 100.00 mm 100 mm

    Flange = 277500 mm3

    75000 7

    Web above N.A. = 36125 mm3

    2125

    Web below N.A. = 36125 mm3

    Flange = 277500 mm3

    75000 7

    Total = 627250 mm3

    304250 mm3

    Second moment of Area, I

    Neutral axis from top of plate = 100.00 mm 100 mm

    Flange = 25725000 mm4

    1.000E+07 mm4

    web = 4094167 mm4

    14167 mm4

    Flange = 25725000 mm4

    1.000E+07 mm4

    Total = 55544167 mm4

    20014166.7 mm4

    ELASTIC SECTION MODULUS OF BUILT-UP SECTION

    Major axis Minor axis

  • 8/10/2019 5.15 Swing Barrier v.1.0

    125/190

    Elastic section modulus, W = I/(D/2) = 555442 mm3

    200142 mm3

    Minor axis

    2* E * Iz/ Lcr

    2

    518.2

    21

    16.1 0.78 UR

    P

    l Column

  • 8/10/2019 5.15 Swing Barrier v.1.0

    126/190

    (Fh2+ Fl

    2)

    l Mp

    l-x Me

    Plastic moment capacity of section Mp = 186.4 kN-m

    Elastic moment capacity of section Me = #REF! kN-m

    Height of column l = 4.0 m

    Length of plastic hinge x =

    = #REF! m

    =

    (Mp - Me) * l

    Mp

    Hinge

    Me

    Mp

  • 8/10/2019 5.15 Swing Barrier v.1.0

    127/190

    Top fl Bot fl Top web Bot web Top RR Bot RR c Web c Flng. Ix Iy Zx

    36800 36800 5292 5292 1588 1588 64 37 3.83E+06 1.34E+06 7.65E+04 2

    65250 65250 9302.3125 9302.313 2082 2082 87 49.25 8.47E+06 2.93E+06 1.36E+05 4

    105000 105000 14787.5 14787.5 3090 3090 108 60.5 1.64E+07 5.63E+06 2.19E+05 7

    76800 76800 23276 23276 4492 4492 162 36.25 1.84E+07 1.34E+06 1.84E+05 2

    124875 124875 23232 23232 5912 5912 150 59 2.69E+07 5.07E+06 2.77E+05 6

    225600 225600 30976 30976 5912 5912 150 83 4.72E+07 1.60E+07 4.72E+05 1

    135562.5 135562.5 40368 40368 6799 6799 208 47.5 4.05E+07 2.94E+06 3.24E+05 4

    413000 413000 55444.5 55444.5 11317 11317 190 104.5 1.08E+08 3.65E+07 8.67E+05 2

    196425 196425 64613.25 64613.25 9756 9756 256 58.75 7.21E+07 5.08E+06 4.81E+05 6

    641250 641250 91125 91125 17522 17522 234 127 2.04E+08 6.75E+07 1.36E+06 4

    326287.5 326287.5 94136 94136 13207 13207 300 70 1.36E+08 9.84E+06 7.75E+05 1

    1100575 1100575 146016 146016 25065 25065 272 149 4.03E+08 1.36E+08 2.30E+06 7

    503100 503100 139876 139876 19668 19668 342 80 2.37E+08 1.74E+07 1.19E+06 1

    897600 897600 160205 160205 34899 34899 314 123 3.87E+08 7.21E+07 1.98E+06 4

    1591800 1591800 208266.5 208266.5 34899 34899 314 171.5 6.66E+08 2.24E+08 3.33E+06 1

    2799143 2799143 320410 320410 34899 34899 314 171.5 1.19E+09 3.94E+08 5.57E+06 1

    1269000 1269000 280918 280918 61800 61800 400 118.5 7.10E+08 8.11E+07 2.91E+06 5

    991100 991100 440489.5 440489.5 56504 56504 522 72.5 7.76E+08 2.28E+07 2.59E+06 21704000 1704000 450456 450456 87489 87489 492 116 1.18E+09 9.02E+07 4.02E+06 6

    Top fl Bot fl Top web Bot web Top RR Bot RR c Web c Flng. Ix Iy Zx

    277500 277500 36125 36125 1962 1962 155 87.5 55544167 20014167 555442

    1218750 1218750 225000 225000 6223 6223 280 130 509375000Side plt. 168750 168750

  • 8/10/2019 5.15 Swing Barrier v.1.0

    128/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    129/190

    Na = N

    plastic elastic

    100 6208

    16 620800

    eutral Axis 100 100

    X = 88.0

    N.A. = X + t1 = 100.00 mm

    Yc = 82.7 mm C = 3104 x syp

    Yt = 82.7 mm T = 3104 x syp

    Zp = 513152 mm3

    P

    Neutral

  • 8/10/2019 5.15 Swing Barrier v.1.0

    130/190

    Elastic sectio

    plastic elastic

    100 7700

    19 770000

    eutral Axis 100 100

    X = 85.0

    N.A. = X + t1 = 100.00 mm

    Yc = 81.5 mm C = 3850 x syp

    Yt = 81.5 mm T = 3850 x syp

    Zp = 627250 mm3

    (Torsion) T = Tf* r / Jt

    = 678.8

    Torsion at base of column Tf

  • 8/10/2019 5.15 Swing Barrier v.1.0

    131/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    132/190

    Torsion at base of column Tf = 1.25 kN-m

  • 8/10/2019 5.15 Swing Barrier v.1.0

    133/190

    Left web right web left flng*2 right flng*2 Zpz Tor. Rigidity Radius of G

    378 378 20000 20000 40756 40181 41.8

    565 565 35156 35156 71443 70545 52.9

    796 796 56250 56250 114093 114863 63.9

    696 696 20000 20000 41392 44338 82.3

    792 792 50625 50625 102834 85572 83.0

    1408 1408 120000 120000 242816 260437 86.2

    1044 1044 35156 35156 72401 77454 103.7

    2248 2248 218750 218750 441996 511279 108.2

    1489 1489 50625 50625 104229 98715 124.1

    3375 3375 337500 337500 681750 765000 130.5

    2009 2009 84219 84219 172456 192785 146.8

    5616 5616 581875 581875 1174982 1780145 152.2

    2992 2992 130000 130000 265984 356763 167.9

    4475 4475 360000 360000 728950 938533 168.7

    7563 7563 840000 840000 1695126 2731775 174.5

    17900 17900 1449429 1449429 2934658 12588083 181.6

    6837 6837 405000 405000 823673 1366937 208.4

    8561 8561 170000 170000 357122 906182 240.39864 9864 450000 450000 919728 1915648 247.6

    Left web right web left flng*2 right flng*2 Zpz Tor. Rigidity

    2125 2125 150000 150000 304250 506667 84.9

  • 8/10/2019 5.15 Swing Barrier v.1.0

    134/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    135/190

    b1 = 300

    t1 = 25 plastic elastic

    175.00 30000.035.00 5250000

    Neutral Axis 175.00 175.0

    20

    t3=

    N.A. X = 150.0

    t4 = 15 N.A. = X + t1 = 175.00 mm

    Yc = 137.5 mm C =

    Yt = 137.5 mm T =

    t2 = 25

    b2 = 300 Zp = 2887500 mm3

    , Wp

    = 175.00 mm

    1218750 mm3

    TION MODULUS OF BOX SECTION

    300

    b3

    =

  • 8/10/2019 5.15 Swing Barrier v.1.0

    136/190

    = 45000000 mm4

    = 67500000 mm4

    = 198437500 mm4

    = 509375000 mm4

    ) = 2910714.286 mm3

    kN-m

  • 8/10/2019 5.15 Swing Barrier v.1.0

    137/190

    Design of structural barriers (column) for swing object.

    Material properties

    Material yield stress Fy

    Young's modulus E

    Material factor m

    Weight input

    Lift weight W

    Rigging weight Wrw

    Static hook load Wst

    Loading as per ISO 19901-6

    Horizontally directed force in plane of bumper Fh

    Horizontally directed force out-of-plane of bumper Fl

    Vertically directed force ( -ve for Tension) Fv

    Nsd

    Design Hydrostatic pressure Psd

    Height of column Lc

    No. of columns in a row n

    Spacing between columns (average) Lb

    No. of tie beams in one column

    Permissible deflection 2*Lc / 200

    Supporting bottom girder/beam

    Unsupported length of supporting girder/beam lg

    Moment of inertia of supporting girder/beam Ig

    Section properties for column

    D

    219.08

    Moment of inertia of CHS Ic

    Elastic section modulus of CHS Ze,c

    Plastic section modulus of CHS Zp,c

    (Assumption:- Horizontal members checked for 2840mm span and found to be

  • 8/10/2019 5.15 Swing Barrier v.1.0

    138/190

    Radius of gyration of CHS i

    Torsional rigidity of column Jt

    Cross-section area Ax

    Section properties for top beamD

    141.3

    Moment of inertia of CHS Ib

    Section class

    Tubular Sextion d/t

    Weight of one column

    Weight/ unit length of tie beams

    Total weight on one column Wc

    2Lb

    Horizontal m

    connecting c

    Fh

    D

    Column

    Column

    Horizontal member

    connecting columns

    Lc

  • 8/10/2019 5.15 Swing Barrier v.1.0

    139/190

    Work done by horizontal force (Fh) WFh

    Moment at a distance `xc` from top My,c

    Elastic Strain energy developed in the column Wse,c

    Elastic Strain energy developed in the beam Wse,b

    From energy balance theory WFh

    Fh*

    Hence,

    BMD for Column

    xc

    My,c

    Col. location

    My,b

    Fh

  • 8/10/2019 5.15 Swing Barrier v.1.0

    140/190

    Design bending moment about member y-axis (in-plane) My,sd

    Mz,sd

    k in equation 3 & 4 relate to buckling in the y and z directions, respectively.

    Reduction factors

    For cantilever tubular member Cmy

    For bottom fixed and top free to move for tubular member Cmz

    Ic/Lc

    Ig/Lg

    GB

    Hence from fig. 12-4 of N-004 (pg 72) k y

    Here, k z

    Calculation of material factor, M

    (Assumption:Horizontal out-of-plane force being distributed among all

    columns in a row equally.)

    GA=

    .

  • 8/10/2019 5.15 Swing Barrier v.1.0

    141/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    142/190

    Calculation of design axial compressive resistance, Nc,Rd

    Critical elastic buckling coefficient Ce

    Characteristic elastic local buckling strength fcle = 2*Ce*E*t/D

    Hence, fy/ fcle

    Characteristic local buckling strength f cl

    fcl = = 355 N/mm^2

    fcl = =

    fcl = =

    l = = 1.44

    fc = =

    fc = = 154.6027 N/mm^2

    Design axial compressive resistance Nc,Rd = Afc/M

    Calculation of design bending moment resistance, MRd

    Characteristic bending strength fm

    fm = = 478.6 N/mm^2

    fm = =

    fm = =

    Design axial local buckling resistance Ncl,Rd= fcl* A / M

    Euler buckling strengths corresponding to the member y - axis NEy

    Euler buckling strengths corresponding to the member z - axis NEZ

    Combined stress

    Check 1

    Design bending moment resistance MRd =

    y

    cle

    yf

    f

    f0.274-1.047

    clef

    yf

    yfW

    Z

    yy

    fW

    Z

    Et

    Df

    58.213.1

    yy

    fW

    Z

    Et

    Df

    76.094.0

    M

    mWf

    E

    lf

    i

    k c

    l

    yf

    228.00.1 l

    yf2

    9.0

    l

  • 8/10/2019 5.15 Swing Barrier v.1.0

    143/190

    Check 2

    Shear check

    Design shear resistance VRd

    Applied shear force VSd

    VSd

    VRd

    Interaction shear and bending moment

    My,sd

    MRd

    Mz,sd

    MRd

  • 8/10/2019 5.15 Swing Barrier v.1.0

    144/190

    = 355N/mm

    = 210000N/mm

    = 1.0

    = 20.0 T

    = 200.0 kN

    = 5.0 T (Assumed)

    = 50.0 kN

    = W + Wrw

    = 250.0 kN

    = 0.10 Wst (refer Table 18 of ISO 19901-6)

    = 25.0 kN

    = 0.05 Wst (refer Table 18 of ISO 19901-6)

    = 12.5 kN

    = 0.01 Wst (refer Table 18 of ISO 19901-6)

    = 2.5 kN

    = 0.00 kN/m^2

    = 4015 mm

    = 6 Nos.

    = 2100 mm

    = 4 Nos.

    = 40.2 mm

    = PG 200x200x15x25

    = 550.00 mm

    = 199327500 mm4

    = CHS UR = 0.79

    = 200 #80 UR = 0.61

    d t

    193.68 12.7 mm

    = 4.40E+07 mm4

    = 401730.8 mm3

    = 541610 mm3

  • 8/10/2019 5.15 Swing Barrier v.1.0

    145/190

    = 73.1 mm

    = 88011193 mm4

    = 8234.2 mm2

    = CHS 130 #80d t

    122.3 9.5 mm

    = 8.59E+06 mm4

    = 17.3

    < 33.1 (= 50^2) -----------> Tube is Class 1

    = 0.65 kN

    = 0.646 kN

    = 6.1 kN

    ember

    olumns

  • 8/10/2019 5.15 Swing Barrier v.1.0

    146/190

    = Work done on col. + work done on tie beam

    = Fh* /2 + Fh* /2

    = Fh*

    = Fh* x

    =

    =

    =

    = Wse,c+ Wse,b

    =

    =

    = 31.86 mm

    < 40.15 mm Hence OK

    BMD for beam

    Column

    Fh

    2Lb

    Col. locationCol. location

    My,b

    My,b

    dx2EI

    xFdx

    2EI

    M L

    0

    2c

    2h

    L

    0

    2cy,

    3

    L

    2EI

    F 3c

    c

    2h

    b

    b2h

    3c

    c

    2h

    384EI

    2LF

    3

    L

    2EI

    F 3

    b

    b2h

    384EI

    2LF 3

    b

    3b

    c

    3ch

    24I

    L

    3I

    L

    2E

    F

  • 8/10/2019 5.15 Swing Barrier v.1.0

    147/190

    = Fh* L

    = 100.38 kN-m

    = Fl* L /n

    = 8.36 kN-m

    = 1.0

    = 0.85

    10960

    362414

    = 0.03

    =

    = 2.0

    = 1.0

    =

    .......4

  • 8/10/2019 5.15 Swing Barrier v.1.0

    148/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    149/190

    = 0.3

    = 7304.2 N/mm^2

    = 0.049

    for f y/ fcle

  • 8/10/2019 5.15 Swing Barrier v.1.0

    150/190

    = 0.605 UR

    = 0.603 UR

    = 733.8 kN

    = 37.5 kN

    < 1.00 OK 0.60 UR

    < 1.00 OK 0.05 UR

    = 0.60

    = 0.05

    = 0.05 UR

    = 1.16

  • 8/10/2019 5.15 Swing Barrier v.1.0

    151/190

    CHS

    Section D tw d Iy Iz We

    80 #80 88.9 7.62 73.66 1620938 1620938 36467

    100 #80 114.3 8.56 97.18 4000262 4000262 69996

    130 #80 141.3 9.5 122.3 8585789 8585789 121526

    150 #80 168.28 10.97 146.34 16851647 16851647 200281

    200 #80 219.08 12.70 193.68 44005596 44005596 401731

    D Bf tw tf r Na

    Built-up 300x300x10x15 300 300 10 15 18 150

    K2 K3

    K5

    K2

    186.9

    1.0

    0.23

    Deflection = 31.86 mm

    Strength

  • 8/10/2019 5.15 Swing Barrier v.1.0

    152/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    153/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    154/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    155/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    156/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    157/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    158/190

    Wp Jp Ax wt.

    50489 3241875 1945.8 0.153

    95918 8000523 2843.6 0.223

    165313 17171578 3933.6 0.309

    271908 33703293 5421.4 0.426

    541610 88011193 8234.2 0.646

    wt Wp We Web ht. Top fl Bot fl Top web Bot web

    91.8 1499794 1328850 270 641250 641250 91125 91125

    E = 210000 N/mm^2

    G = 80769 N/mm^2

    1 2.33E-03 + 1.71E-03 + 1.30E-03

    K2

    = 5.35E-03

    Hence, K2 = 186.9 N/mm

    : K5 : K3

    : 428.3 : 186.9

    : 2.3 : 1.0

    : 0.53 : 0.23

    =

  • 8/10/2019 5.15 Swing Barrier v.1.0

    159/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    160/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    161/190

    Na =

  • 8/10/2019 5.15 Swing Barrier v.1.0

    162/190

    Neutra

    Neutra

    Elastic secti

  • 8/10/2019 5.15 Swing Barrier v.1.0

    163/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    164/190

    strength

  • 8/10/2019 5.15 Swing Barrier v.1.0

    165/190

    Top RR Bot RR c Web c Flng. Ix Iy Zx Zy A

    17522 17522 234 127 ######## #REF! 1328850 #REF! 11700

  • 8/10/2019 5.15 Swing Barrier v.1.0

    166/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    167/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    168/190

    Neutral axis depth

  • 8/10/2019 5.15 Swing Barrier v.1.0

    169/190

    b1 = 300

    t1 = 15

    b1 = 270 t 1 = 10

    N

    N.A.

    t2 = 15

    b2 = 300

    Plastic section modulus, Wp

    l axis from top of plate = 150.00 mm 150 mm

    Flange = 641250 mm3

    168750 168750

    Web above N.A. = 91125 mm3

    3375 0

    Web below N.A. = 91125 mm3

    Flange = 641250 mm3

    168750 168750

    Total = 1464750 mm3

    #REF! mm3

    Second moment of Area, I

    l axis from top of plate = 150.00 mm 150 mm

    Flange = 91462500 mm4

    ######## mm4

    web = 16402500 mm4

    22500 mm4

    Flange = 91462500 mm4

    ######## mm4

    Total = 1.99E+08 mm4

    ######## mm4

    n modulus, W = I/(D/2) = 1328850 mm3 #REF! mm3

    Minor axis

    ELASTIC SECTION MODULUS OF BUILT-UP SECTION

    Major axis

  • 8/10/2019 5.15 Swing Barrier v.1.0

    170/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    171/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    172/190

    Left web right web left flng*2 ight flng*2 Zpz Tor. Rigidity

    3375 3375 337500 337500 681750 765000 130.5

  • 8/10/2019 5.15 Swing Barrier v.1.0

    173/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    174/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    175/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    176/190

    plastic elastic

    150 11700

    20 1755000

    eutral Axis 150 150

    X = 135.0

    N.A. = X + t1 = 150.00 mm

    Yc = 125.2 mm C = 5850 x syp

    Yt = 125.2 mm T = 5850 x syp

    Zp = 1464750 mm3

  • 8/10/2019 5.15 Swing Barrier v.1.0

    177/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    178/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    179/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    180/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    181/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    182/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    183/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    184/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    185/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    186/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    187/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    188/190

  • 8/10/2019 5.15 Swing Barrier v.1.0

    189/190

    Dia of top bar = 101 mm

    Angle for weld = 120.0o

    Actual weld length = 105.8 mm

    Weld length for shear stress = 52.9 mm

    Weld length for normal stress = 52.9 mm

    Design horz. force along length = 25 kN

    Design horz. force normal to length = 25 kN

    Yield strength (of weaker part joined) = 235.0 N/mm^2

    Material factor for welds = 1.3

    Correlation factor = 0.8

    Permissible stress = 226.0 N/mm^2

    Weld size = 4.5 mm

    Weld area for shear stress = 336.5 mm^2

    Weld area for normal stress = 336.5 mm^2

    Shear stress per unit length of weld = 74.3 N/mm^2

    Normal stress per unit length of weld = 74.3 N/mm^2

    Combine stress at location "1" = 148.6 N/mm^2

    UR = 0.66

    Combine stress at location "2" = 182.0 N/mm^2

    UR = 0.81

  • 8/10/2019 5.15 Swing Barrier v.1.0

    190/190

    1

    2