5.7 ghz high gradient test cavity

28
ROSSANA BONOMI, ALBERTO DEGIOVANNI, MARCO GARLASCHÉ, SILVIA VERDÚ ANDRÉS 5.7 GHz high gradient test cavity 16 - 06 - 2010

Upload: gail-mccoy

Post on 31-Dec-2015

24 views

Category:

Documents


1 download

DESCRIPTION

Rossana Bonomi , Alberto Degiovanni, Marco Garlasché , Silvia Verdú Andrés. 5.7 GHz high gradient test cavity. Outline. High gradient test goals and program RF design Structural design Tolerances and tuning Open issues. TERA high gradient program. 3. Design overview. - PowerPoint PPT Presentation

TRANSCRIPT

ROSSANA BONOMI, ALBERTO DEGIOVANNI,

MARCO GARLASCHÉ, SILVIA VERDÚ ANDRÉS

5.7 GHz high gradient test cavity

16 - 06 - 2010

2

Outline

- High gradient test goals and program

- RF design

- Structural design

- Tolerances and tuning

- Open issues

TERA Foundation

TERA high gradient program3

S-band single cell

C-band single cell C-band mini-tank

Why ? - find operation limit in S-band- scaling law ?

- find operation limit in C-band- scaling law ?- bd craters distribution (cut 1 cavity)

- test cyclinac structure with high gradient- feasibility of C-band modules

Where ?

- pre-test @CTF3- precise test @PSI?

-?-ADAM lab /Frascati

- ? (source availability)

When ? - end 2010 - end 2010 ? - June 2011 ?

TERA Foundation

4

Design overview

Accelerating cell @ 5.7 GHz(two unsymmetrical half cells)

RF H-coupling system(waveguide, short circuit)

Connection to data acquisition(through CF flanges)

Cooling system(3 plates, in-out pipes)

TERA Foundation

power source5

TERA Foundation

VE2098 – Tunable C-band Magnetron

Output Power 2.5 MW

Frequency 5707-5717

MHz

Pulse duration 4.0 µs

Duty cycle 0.08% -

frequency tuning

2 MHz/turn

RF Design

TERA Foundation

7

Cavities comparison

TERA Foundation

7.47

18.8

1.5

2.0

1.0

1.0

1.0

17.39

15.8

25°

All values in mm !

C-band 1 cell test:NAME NEEDED!!!

β 0.7163

Q0 9305.7

T 0.905

ZTT [MOhm/m] 128.73

E0 [MV/m] 33

Es,max [MV/m] 154

Sc,max [MW/mm2] 0.708

Hmax [kW/mm2] 0.0858

Es,max/ E0 4.656

P [kW] 130

r(Es,max)-r(Sc,max) [mm] 0.42

8

separate Emax and Sc,max

TERA Foundation

Flat Nose

InnerNose Radiu

s

Outer Nose Radiu

s

9

separate Emax and Sc,max

TERA Foundation

Power and Surface Electric Field

scaling:

1

2

0

max 46.73/

MWP

E

E

MWE

E

EPP

norm

2*400

*)400(2

max

0

2

,0

E0,norm=33 MV/m 

10

Cavities comparison

TERA Foundation

8.0

18.8

1.5

3.0

1.0

3.0

1.0

17.34

15.8

20°

All values in

mm !

C-band 1 cell test:NAME NEEDED!!!

β 0.7163

Q0 9245.93

T 0.898

ZTT [MOhm/m] 116.29

E0 [MV/m] 33

Es,max [MV/m] 115

Sc,max [MW/mm2] 0.522

Hmax [kW/mm2] 0.0888

Es,max/ E0 3.484

P [kW] 142

r(Es,max)-r(Sc,max) [mm] 1.93

11

Parameter list for test

Pin

[kW]Tpulse

[μs ]Es [MV/m] Sc

[MW/mm2]lg(BDR)

242 2 150 0.89 -13.3

430 2 200 1.58 -9.5

672 2 250 2.47 -6.6

967 2 300 3.55 -4.3

1316 2 350 4.84 -2.3

1719 2 400 6.32 -0.5

TERA Foundation

mesh12

TERA Foundation

Max. element length for:• Cell………………... 3 mm• Coupler …………. 2 mm• WG ……………….. 10 mm

Max. surf. deviation for:• Cell……………… 0.01 mm• Coupler ……… 0.01 mm

cavity parameters13

TERA Foundation

Frequency [GHz] 5.712

ZTT [MOhm/m] 116

df/dR [MHz/mm] -140

Coupling coefficient b

1.5 ±0.05

slot dimensions14

TERA Foundation

Coupler mm

Length SL17.65

Width SW3.80

Depth SD5

Short-circuit

field asymmetry15

TERA Foundation

W

S

N

E

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

-0.02

-0.01

0.00

0.01

0.02

0.03

Field asymmetry(S-N)/N

(W-N)/N

(E-N)/N

Structural Design

TERA Foundation

17

Struct. design: halfcells

Øcell [mm] 34.68mm

coupling slot [mm] 17.65 x 3.8

inner cavity profile geometry tolerance = ±10 μm

roughness = 0.4 Ra

material C10100 copper

C_factor = 1.5

Tuning range ≈ 20 MHz

Two unsymmetrical halfcells: - easier brazing- no spikes in slot

Outer dimensions: 48.9 x 45.9mm

TERA Foundation

18

Struct. design: halfcell #1- tuning

• Small cell diameter and brazing position do not allow controlled dimple tuning• Presence of tuners in standard linacs for med. treatment

TERA Foundation

Tuning done through 3 tuners diametrically inserted in cavity.Øtuners ~ 2 - 3 - 4 mm

19

Struct. design: halfcells’ brazing

Enlarged flanges (CF 34/16) for structural resistance during brazing (Øext= 39mm)

TERA Foundation

20

Struct. design: waveguide+flanges

Waveguide: - WR 187 thickwalled(ID : 1.872 x 0.872 in – OD: 2.122 x 1.122

in) - C10100 copper

Flanges: - FDP48-FDM48 standard* - 316LN stainless steel

Brazing:

TERA Foundation

21

Struct. design: cooling plate

Pp(kW)

f rep(Hz)

t pulse(us)

Duty cycle

Pav(W)

Gtot(l/min)

Nº circ Øeq

(mm)2000 <100 4 <0.4‰ 800 11 3 5.5

TERA Foundation

Es (MV/m)

Hmax (kA/m)

Ppeak (kW)

ΔT (K)

260 210 700 ~ 20

400 330 1700 ~ 50

Pulsed Surface Heating

22

Struct. design: cooling plate

C10100 CopperTuners covering plate

316L stainless steel with Ni+Cu coating

TERA Foundation

Tolerances and Tuning

TERA Foundation

tolerances

part dz dr dfµm µm kHz

1. top straight ± 20 ± 10 -16612. OUTER_CORNer_radius ± 20 ± 10 -30893. web ± 40 ± 10 -73044. INNER_CORNer_radius ± 20 ± 10 -7275. nose angle ± 20 ± 10 -1916. OUTER_NOSE_radius ± 20 ± 10 94967. flat_top ± 20 ± 10 1288. INNER_NOSE_radius ± 20 ± 10 17939. beampipe ± 20 ± 10 4

total ± 24 MHz

12

3

456

78

9

z

r24

TERA Foundation

tuning sensitivity25

TERA Foundation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

2

4

6

8

10

12

14

16

18

diam 2mmdiam 3mm

penetration length [mm]

f-fr

ef

[MH

z]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-4.0%

-3.5%

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

0.5%

diam 2mm

diam 3mm

diam 4mm

penetration length [mm]

dQ

/Q0

field asymmetries26

TERA Foundation

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.02

-0.01

0.00

0.01

0.02

0.03

F.A. vs distance (mm)(S-N)/N(W-N)/N(E-N)/N

3 tuners: Ø = 3-3-4 mm penetration = 3

mm Δf = + 22 MHz

27

Open Issues

Prototype components:• any info on FDP-FDM standard

Test components:• advice on instrumentation needed, dimensions, weight, C to S band

transition…• Faraday cup• Optical spectrum analyzer• Thermal sensors, flowmeter, manometer..

• RF pick-up

Further tests:• Two more prototypes brazed @ 1040˚ under Nitrogen, need support

on:o geometry definition (holes, thicknesses, stresses & deformations) o production process definition (tolerances..)o brazing process definition (process sponsoring, brazing material,

logistics..)TERA Foundation

acknowledgments

Thank youfor all advice, discussions and help for our project

Thank youfor scheduling our meeting today

to be continued….

28

TERA Foundation