573608 yee ann tan part b

92
Semester 2, 2014 The University of Melbourne v Yee Ann, Tan (573608) Tutor: Bradley (Group 3) AIR STUDIO

Upload: yee-ann-tan

Post on 04-Apr-2016

223 views

Category:

Documents


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: 573608 yee ann tan part b

vv

Semester 2, 2014The University of Melbourne

v

Yee Ann, Tan (573608)Tutor: Bradley (Group 3)

AIRSTUDIO

Page 2: 573608 yee ann tan part b

B-1

Table of Contents

A.1 Designing Futuring

A.2 Design Computation

A.3 Composition/Generation

A.4 Conclusion

A.5 Learning Outcomes

A.6 Algorithmic Sketches

A.7 Part A References

Part A: Case for Innovation

B.1 Research Field

B.2 Case Study 1.0

B.3 Case Study 2.0

B.4 Technique: Development

B.5 Technique Prototypes

B.6 Technique Proposal

B.7 Learning Objectives and Outcomes

B.8 Algorithmic Sketchbook

B.9 Part B References and Appendix

Part B: Case for Innovation

C.1 Design Concept

C.2 Tectonic Elements & Prototypes

C.3 Final Detail Model

C.3 Part C References

Part C: Case for Innovation

Table of ContentsTable of Contents

A.1 Designing FuturingA.1 Designing Futuring

A.2 Design ComputationA.2 Design Computation

A.3 Composition/Generation A.3 Composition/Generation

A.4 ConclusionA.4 Conclusion

A.5 Learning OutcomesA.5 Learning Outcomes

A.6 Algorithmic Sketches A.6 Algorithmic Sketches

A.7 Part A ReferencesA.7 Part A References

Part A: Case for InnovationPart A: Case for Innovation

B.1 Research FieldB.1 Research Field

B.2 Case Study 1.0B.2 Case Study 1.0

B.3 Case Study 2.0B.3 Case Study 2.0

B.4 Technique: DevelopmentB.4 Technique: Development

B.5 Technique PrototypesB.5 Technique Prototypes

B.6 Technique ProposalB.6 Technique Proposal

B.7 Learning Objectives and OutcomesB.7 Learning Objectives and Outcomes

B.8 Algorithmic SketchbookB.8 Algorithmic Sketchbook

B.9 Part B References and AppendixB.9 Part B References and Appendix

Part B: Case for InnovationPart B: Case for Innovation

C.1 Design ConceptC.1 Design Concept

C.2 Tectonic Elements & PrototypesC.2 Tectonic Elements & Prototypes

Part C: Case for InnovationPart C: Case for Innovation

Introduction

A 28-29

B 22-45

P 2-7

A 8-13

B 1-5

A 14-19

B 6-15

A 20-27

B 16-21

A 30-31

B 46-49

A 32-43

B 50-67

A 44-47

B 68-69

B 70-77

B 78-89

Page 3: 573608 yee ann tan part b

cvvvvcvvvv

Page 4: 573608 yee ann tan part b

cvvvv

B-3

In Part B, we are to select a Material system and explore it’s design technique. I have decided on Strips and Folding, as the material system for my research.

Strips and Folding is a powerful design technique that explores the three dimensionality of a surface, which enables the creation of geometric structures. 1 In addition, this process provides designers with a great degree of control in generating aesthetic composition VTJOHTVSGBDFJOnFDUJPOBOEEFGPSNBUJPO5IJTUFDIOJRVFJTEPOFwithin design parameters that facilitates design fabrication. 1

In Iwamoto’s book Digital Fabrication, She argues that Folding is a technique that can be used for ornamentation and also functional purposes. 1 This is substantiate in Cruz’s Journal which provides some practical examples of how folding technique that is beautify can be functional. 2 Also, Herzog de Meuron’s Messe Basel -Newhall in Switzerland show-cases how folding technique facade could be utilized in a functional aspect, evident in its double curving facade which could vary the degree of sunlight penetration. Conversely some of their designs focuses solely on ornamentation of the facades, seen in de Young museum with its ‘folded’ dimple facade. 3

Through 2 case studies, Miura Ori Origami folding Pattern and The %SBHPOnZQSPKFDUCZ&.&3(&/545PN8JTDPNCF5IJTUFDIOJRVFwill be explored and elaborated.

" Folding is not limited to being a secondary system of articulating the larger building diagram. The operation of folding material is also a generative design tool ...in digital fabrication" 1

Iwamoto

B1 Research Field

Page 5: 573608 yee ann tan part b

B-4

Miura Ori PatternCase Study 1:

In the article Folding Origami-Geometry of Folded Plate Structures , Buri Argues how folding of paper was useful in facilitating us to designing. .JVSB0SJ1BUUFSO'JHVSFBOEJTBCVJMETPMBSFGmDJFOUGPSN5IJTfolding pattern has demonstrated its potential in its use in satellites sails, where its can retract into a very compact form while having a maximum extension area.

However, this technique is limited to materials that has some tensile ability to withstand the twisting forces. This design method is something worth considering in my project which considers Solar panels, which may be further explored in Part C.

Figure 1: Miura Ori Pattern 2

Figure 2: Miura Ori Pattern 2

Page 6: 573608 yee ann tan part b

B-5

%SBHPOnZCZ&.&3(&/545PN8JTDPNCFCase Study 2:

*O5PN8JTDPNCFT%SBHPOnZQSPKFDU'JHVSFXFDBOsee how Strip and folding Technique cross path with bio-mimicry as a process for designing (Figure 4 &5). Despite UIJTQSPKFDUCFJOHOPOGVODUJPOBM A%SBHPOnZFYQMPSFTUIFphysics of spanning. This was carried out through the TUVEZPGUIFESBHPOnZTXJOHTUSVDUVSF8IJDIXBTUSBOT-lated into the art installation made of folded metal strips. 1

This project is one of many biomimicry inspired designs which draws design inspiration from biology and nature BOENJNJDTUIFOBUVSBMFGmDJFOUEFTJHOTUPEFBMXJUIclimatic problems. 4 This can be seen in the Case studies EJTDVTTFEJO1BSU" UIF#FJKJOH8BUFS$VCFBOEBMTPUIFBloom Project.

'JHVSF%SBHPOnZQSPKFDU1

'JHVSFBOE'JOBMDPOTUSVDUFEDPOUJOVPVTSJCBOEUIFBDUVBMESBHPOnZXJOHTUSVDUVSF1

" Biomimicry refers to the study

of nature's processes in order to

achieve greatereff iciency and improvement in

man's products and processes" 4

Primlani

Page 7: 573608 yee ann tan part b

cvvvvcvvvv

Page 8: 573608 yee ann tan part b

cvvvv

B-7

In this segment I experimented with different grasshopper functions to generate different iteration from the base design, Biothing. I used tools such as pipe, graph mapper, projection and lofting arches between the curves generated to alter the design and generate different outcomes.

B2 Case Study 1.0

Figure 6: Biothing

Page 9: 573608 yee ann tan part b

B-8

Design Species 1: Alteration of the number of branches

Design Species 2: Alteration of the Base curve

In this Species iterations are generated by changing the number of points on the circle, this results in the change in the number of branches. From the left to SJHIUUIF/WBMVFDIBOHFEGSPNUPBOEmOBMMZ

The alteration of the base curve can create a distinctively different outcomes. The closeness of each curve generate the degree of compression of curves due to the Point charges that are located along the curves.

Figure 7: The different patterns formed with the change of number of Line origin points.

Figure 8: The alteration of base input curves of the base algorithm

Page 10: 573608 yee ann tan part b

B-9

Design Species 3: Graphmapper

In this iteration the Graph mapper enabled me to alter the shape of curve in the Z axis, forming arches and splaying out curves.

Figure 9 &10: Different Pipe Radius and their outcomes

Design Species 4: Projection of pattern on a plane

This Species is generated through the projection of the base curves generated on different surfaces and piped forming different iterations.

Figure 11 &12: Different outcomes with different planes of translation

Page 11: 573608 yee ann tan part b

B-10

Design Iteration 5: Piping the form

Design Iteration 6: Piping the Curves with a Variable Pipe

In this Species, iterations are generated through varying the radius values for pipes generated from the base curves.

In this species the piping differs, where the piping across the curve is varying in it’s radius.

The First two iteration on the top starts from a bigger base followed CZOBSSPXFSQJQJOHBUUIFFOE8IFSFBTUIFCPUUPNJUFSBUJPOTTUBSUTwith a narrower base followed by a thicker piping.

Figure 14: The Piping of curves with different changes of pipe radius

Figure 13: Different Pipe Radius and their outcomes

Page 12: 573608 yee ann tan part b

B-11

Design Iteration 8: Merging additional Charged points

'PSUIJTTQFDJFT UIFDVSWFTGPSNFEBSFJOnVFODFECZUIFBEEJUJPOQPJOUDIBSHFTGPMMPXJOHBOPUIFSDVSWF5IJTJOnVFODFTUIFDVSWFTformed and the structure formed (Iteration 10) by pushing the curves away from the line’s point charges.

'JHVSF5ISFFJUFSBUJPOTTIPXJOHUIFDVSWFTBOEUIFmFMEBOEUIFTUSVDUVSFGPSNFE

Figure 17: The close up structure of one of the iterations

Design Iteration 7: Array Function

In these iterations the base curve is arrayed along another curve and the charges merge and clashes forming different structures. This is repeated twice with different base curves, resulting in differing results.

Figure 15: The Base Curves and the outcomes of the forms generated

Page 13: 573608 yee ann tan part b

B-12

Design Species 9: Drawing Arcs along the branches

Arcs are drawn along the curves generated. The iteration created has different number of arches. From the Left to Right the number of arches changes GSPNUPBOEmOBMMZBSDIFT

Figure 18: Arcs mapped to branches next to it

Page 14: 573608 yee ann tan part b

B-13

Design Species 10: Lofting the surfaces

The arches that are derived from Design iteration 9 were lofted through the use of an item list function. The different iteration are generated by regulating the number of arches drawn. In doing so it changes the resolution of the structure’s curvature.

Figure 20: Iteration of different number of arches drawn along the curves

Figure 19: Lofting of the arches drawn

Page 15: 573608 yee ann tan part b

B-14

Analysis of Design Generated: 4 Most successful outcomes

From the Design Species generated I took interest in the Lofted Arches which created an umbrella liked structure which could be used as shelter in designs. (Figure 21)

Second Design Species I found interesting is the addition of BMUFSOBUJWFmFMEMJOFTUIBUJOnVFODFUIFTUSVDUVSFTGPSN5IFbase curve is not intersecting which enables the branching structure to exist without much distortion enabling isolated pavilion like structures to emerge. (Figure 22)

The Third outcome that I saw potential is the projection iteration. In the projection the design can be translated as QBUUFSOTPSJOUPBOFXGPSNFOUJSFMZNBLJOHJUnFYJCMFGPSfurther iterations (Figure 23)

Lastly the alteration of the base curve species. The species of iterations is simple but really powerfully in altering the structure of the iteration. (Figure 24)

Figure 21: The umbrella like structure generated by lofting arches along the curve generated

Figure 23: Projection of curves on a surface

Figure 24: Change base curves

'JHVSF5IFVNCSFMMBMJLFTUSVDUVSFUIBUJOnVFODFECZBE-ditional point charge

Page 16: 573608 yee ann tan part b

B-15

Future iteration considerations

Additional ideas that could be further developed for Species in future projects. 1. Changing the charge from positive to negative2. Change the charge’s magnitude"EEBTQJOGPSDFPOUIFJOnVFODFPGUIFmFME4. Projection on a different axis 5. Instead of Arcs drawn lines could be drawn instead making JUnBU

Page 17: 573608 yee ann tan part b

cvvvvcvvvv

Page 18: 573608 yee ann tan part b

cvvvv

B-17

For this segment I have chosen to replicate Chris Bosse’s Digital Origami. This project is made up of Dodeahedron modules that are folded and attached to each other, the structure populate and grows in an organic manner. In each module of the structure has some of their surface cut with an offset or varying size.

Through Grasshopper I seek to recreate the project through reverse engineering. I made several attempts to map out the structure in Grasshopper and was able to reproduce a structure that is similar to the original structure.

B3 Case Study 2.0

Figure 25: Digital origami project by Chris Bosse Figure 26: Reverse Engineered outcome

Page 19: 573608 yee ann tan part b

B-18

Reverse Engineering

Attempt 1

To Reverse Engineer Digital Origami I started by trying to create the base module used for the structure. I off-setted one of the surface to achieve the form in (Figure 27).

Steps Taken:

1.Lunchbox Geometric form2. Deconstruct Brep3. Item List Selecting a Single face with the Slider4. Planar Surface of the Face5. Offset the surface6. Surface split7. Cull Index of the original deconsrtucted brep (same index as the face selected)8. Merge the faces together.

Figure 27: Base Structure of the object (Dodeahedron)

Page 20: 573608 yee ann tan part b

B-19

Reverse Engineering

Then I manually orient the modules together. Forming Figure 28 &29. I decided to dive deeper into the generation of the structure and create an automated arranging algorithm which varies the faces and the offset on the pentagonal module.

'JHVSF(SBTTIPQQFS"MHPSJUINPGUIFmSTUBUUFNQUJODSFBUJOHUIFCBTFNPEVMFGPSUIFstructure

'JHVSF(SBTTIPQQFS"MHPSJUINPGUIFmSTUBUUFNQUJODSFBUJOHUIFCBTFNPEVMFGPSUIFstructure

Page 21: 573608 yee ann tan part b

B-20

In my second attempt to reproduce the module with offsets and translate them into position. In addition the offset controlled by point charges. However this method was complicated and lead to many problems. Leading to attempt 3.

Reverse Engineering

Attempt 2

Steps taken:1. Lunchbox geometric shape2. Deconstruct brep

Construct the offsetted structure 1. Lunchbox Geometric form 2. Deconstruct Brep 3. Item List Selecting a Single face with the Slider 4. Planar Surface of the Face 5. Offset the surface 6. Using the distance from points from the centroid to the distance multiply the offset by a scale that makes it appropriate 7. Surface split 8. Cull Index of the original deconsrtucted brep (same index as the face selected) 9. Merge the faces together.

3. Get the Centroid with the average function of the deconstructed vertices4. Item list to select the face to translate along5. Using the area function to get the centroid6. Get a vector between the 2 points7. Multiply the vector 2x8. Move the structure9. Rotate the structure along the normal of the plane by 180 degrees (by converting it to radians)

Page 22: 573608 yee ann tan part b

B-21

Reverse Engineering

Attempt 3

Learning from Attempt 2, I generated forms without offsets and off-setted the individual modules that were translated. I also branched in two directions for some branches to create a more interesting form.

In addition I used the cluster command to help clean up the PSHBOJ[BUJPOPGUIF(SBTTIPQQFSmMF

Steps taken:1. Lunchbox geometric shape2. Deconstruct brep3. Get the Centroid with the average function of the de-constructed vertices4. Item list to select the face to translate along5. Using the area function to get the centroid6. Get a vector between the 2 points7. Multiply the vector 2x8. Move the structure9. Rotate the structure along the normal of the plane by 180 degrees (by converting it to radians)

Construct the off-setted structure1. Lunchbox Geometric form2. Deconstruct Brep3. Item List Selecting a Single face with the Slider4. Planar Surface of the Face5. Offset the surface6. Using the distance from points from the centroid to the distance multiply the offset by a scale that makes it appropriate7. Surface split8. Cull Index of the original de-constructed brep (same index as the face selected)9. Merge the faces together.

'PS5IFHSBTTIPQQFSEFmOJUJPOTSFGFSUPUIF"QQFOEJY

Figure 30: Digital model of Digital Origami project

Page 23: 573608 yee ann tan part b

cvvvvcvvvv

Page 24: 573608 yee ann tan part b

cvvvv

B-23

B4 Technique Development

In this segment I used various functions to seek methods UPSFEFmOFUIFTUSVDUVSFUPHFOFSBUFOFXEFTJHOJUFSBUJPOTCBTFEPOUIF(SBTTIPQQFSEFmOJUJPODSFBUFEJO#

Page 25: 573608 yee ann tan part b

B-24

Design Species 1 and 2: Branch and Point Charge alteration

Figure 31-38: Iterations of the Digital Origami Project

31 32 33

37 38

Page 26: 573608 yee ann tan part b

B-25

Design Species 1 and 2: Branch and Point Charge alteration

In this iteration I repeated the algorithm and changed the branch order generating a number of iterations of this species. I also shifted around the point charge to modify the offset arrangement of the structure.

34 35 36

Page 27: 573608 yee ann tan part b

B-26

Design Species 3: Anemone Explosion

Next I tried to create a loop with the Anemone plug-in. However the looping algorithm met with some glitch forming some explosive iterations where the cells are dispersed from the origin.

Figure 39-41: Shows the dispersed model generated with the loop function

41

39

40

Page 28: 573608 yee ann tan part b

B-27

Design Iteration 3: Anemone Explosion

Figure 42-45: Shows the dispersed model generated with the loop function

43

42

47

44 45

Page 29: 573608 yee ann tan part b

B-28

Design Species 4: Circles

To generate a different Species I decided to make an opening using a different shape. In this species I used a circle as an opening for the object.

Figure 46-54: Shows the iteration species of the form with a circular hole

46

49

52

47

50

53

48

51

54

Page 30: 573608 yee ann tan part b

B-29

Design Species 4.1: Circles Variant

In this species deviant I added an additional opening on the surface of the object. This set of iteration as an open surface on one side and an circular opening on another.

Figure 55-58: Shows the iteration species of the form with a circular opening and an open edge as well.

55

57

56

58

Page 31: 573608 yee ann tan part b

B-30

Design Species 5: Sphere joint

In this Species, I connected spheres to the vertices which can be used to facilitate construction with the slotting in of sheets into the spheres

59 60 61

Page 32: 573608 yee ann tan part b

B-31

Design Species 5: Sphere joint

Figure 59-64: Shows the iteration of the species with spheres added to the edges.

62 63 64

Page 33: 573608 yee ann tan part b

B-32

In this iteration I extruded the opening DSFBUJOHBnBQJOTUFBEPGBOPGGTFU

Design Species 6: Extrusion itereation

66

69

67

70

68

71

Figure 65: Shows the iteration module for the extrusion species

Page 34: 573608 yee ann tan part b

B-33

Design Species 6: Extrusion itereation

Figure 65-80: Shows the iteration species of extrusion along the open surface

72

75

78

73

76

79

74

77

80

Page 35: 573608 yee ann tan part b

B-34

Design Species 7: Pointed Extrusion

In this species a extrusion pointed cap was added to one of the faces. The iterations differ from each other with difference in branching directions.

81 8284

83

Page 36: 573608 yee ann tan part b

B-35

Design Species: Pointed Extrusion

85 86 8887

Figure 81-88: Shows the iteration spe-cies of a pointed extrusion cap on one of the base module’s surface

Page 37: 573608 yee ann tan part b

B-36

Design Species 7.1: Pointed Extrusion Variant

Again incorporating an opening I generated another iteration with more species for form with varying branches. This is a slight variation to that of Iteration 7.

89

92

90

93

9190

94

Page 38: 573608 yee ann tan part b

B-37

Design Species 7.1: Pointed Extrusion Variant

95

99

96

100

9897

101

Figure 89-101: Shows the iteration variant species with a pointed extrusion cap for one of the open-ings and an open surface for another surface.

Page 39: 573608 yee ann tan part b

B-38

Design Species 8: Base change

This Species is where the base form is altered from a Dodeahedron to a Isoahedron to generate a unique and different structure.

Figure 64-69: Shows the iteration species where the base geometry is changed to triangulated model and the shifting of point charges and branch directions

64

102

105

65

103

106

66

104

107

Page 40: 573608 yee ann tan part b

B-39

Design Species 9: Base change (Failed attempt)

This species of Tetrahedron base form failed to work due to the difference in translation of the base module.

Despite the failed attempt in generating geometries that would stack and grow similar to previous iterations. This failure lead to the intersecting forms generated which could have some design potential in future projects.

Figure 64-69: Shows the failed iteration spe-cies where the base geometry intersects other geometries

108 109 110

Page 41: 573608 yee ann tan part b

B-40

Design Species 9: Shearing of the form

Figure 111: Different shearing direction and factor

Figure 112: Different shearing direction and factor

Page 42: 573608 yee ann tan part b

B-41

Design Species 9: Shearing of the form

Figure 113: Different shearing direction and factor Figure 114: Different shearing direction and factor

This species is where the structure is augmented through shearing the form in different direction and of different magnitude.

Page 43: 573608 yee ann tan part b

B-42

Design Species 10: Voronoi pattern along the vertices

115116

Page 44: 573608 yee ann tan part b

B-43

Design Species 10: Voronoi pattern along the vertices

Figure 115- 117: Shows the different iterations generated using the 3D Voronoi of the base vertices.

These images shows the iteration that I achieved through plugining in the 3D Voronoi component over the vertices of the model.

117

Page 45: 573608 yee ann tan part b

B-44

Design Species 11: Vonornoi Cull Pattern

This base pattern is created by projecting the vertices of the modelled Digital Origami project onto a plane and using cull pattern to generate pattern design using the random QPJOUTHFOFSBUFE 8JUIUIFDVMMFEQPJOUT*ran it into a voronoi function generating the following designs.

Figure 118: Shows the different iterations of a voronoi cull pattern of the vertices projected on a plane

Figure 119: Shows the projection of vertices on a plane

Figure 120 Shows the projection of vertices on a plane

Page 46: 573608 yee ann tan part b

B-45

Design Species 12: Attempt with Kangaroo

Figure 121: Planes of the mesh created after running through the Kangaroo Physics component

Figure 122: Planes of the mesh created after running through the Kangaroo Physics component

Figure 123: Planes of the mesh created after running through the Kangaroo Physics component

Page 47: 573608 yee ann tan part b

cvvvvcvvvv

Page 48: 573608 yee ann tan part b

cvvvv

B-47

B5 Technique Prototypes

For this segment, I would provide theoretical basis for the construction of the Dodeahedron structure prototype.

For construction of the actual Conceptual Design in Part B6, I would consider the use of a steel frame. The steel frame would use either Circular hollow sections or Square hollow sections and will be connected via welded joints for construction. The pods will then be cladded with concrete textured boards in the interior and Solar panels on the external face of the pods. Seats within the pod would be made of Timber. In Part C this would be further investigated when the Design is established.

If the Prototype model is to be constructed I would utilise the CNC card cutter for the fabrication. To execute this I would make tabs on the surfaces of an unrolled Dodeahedron module and cut the shapes out while scoring the lines that are to be bent.

Page 49: 573608 yee ann tan part b

B-48

For the construction of the Dodeaheadron pods for the Conceptual Design in Part B6 , I would recommend the use of a Steel Frame as it would be hanging from great heights BOEIBWFUPXJUITUBOEUIF8JOEGPSDFT5IFstructure would be then clad with Concrete sheets in the interior and Solar panels on the exterior. The faces without solar panels would be clad with Steel. Between the 2 claddings it shall be insulation.

The connections of the cladding shall be bolted and hung on the frame, while the steel frame shall be welded together.

Detail Consideration

Figure 124: Dodeahedron structure

'JHVSF8FMEFETUFFMKPJOU

Page 50: 573608 yee ann tan part b

B-49

4

&ĂďƌŝĐĂƟŽŶdŽŽůϬϯDĂŬĞdĂďƐͲdLJƉĞϬϭͲ^ŝŵƉůĞ

dŚŝƐĐůƵƐƚĞƌĞĚĐŽŵƉŽŶĞŶƚƚĂŬĞƐĂŶƵŶƌŽůůĞĚƉŽůLJƐƵƌĨĂĐĞ;ŽƌĂƐĞƌŝĞƐŽĨƚŚĞŵͿĂŶĚĂĚĚƐƚĂďƐƚŽĂůůŽǁĨŽƌƚŚĞϯĚŝŵĞŶƐŝŽŶĂůĂƐƐĞŵďůLJŽĨϮĚŝŵĞŶƐŝŽŶĂůĨĂďƌŝĐĂƚĞĚĞůĞŵĞŶƚƐ

&ŽƌĞĸĐŝĞŶĐLJ ƚŚŝƐĚĞĮŶŝƟŽŶĚŽĞƐŶŽƚĐŚĞĐŬƚŚĂƚƚĂďƐĂƌĞĐƌĞĂƚĞĚŽŶƚŚĞŽƵƚƐŝĚĞŽĨƚŚĞƐŚĂƉĞůƚŚŽƵŐŚƚŚŝƐŝƐŵŽƐƚĐŽŵŵŽŶƌĞƐƵůƚƚŚĞĚŝƌĞĐƟŽŶŽĨƚŚĞƚĂďƐĐĂŶďĞŇŝƉƉĞĚǁŝƚŚĂůĞĂŶƚŽŐŐůĞdĂďǁŝĚƚŚŝƐĚĞĮŶĞĚǀŝĂĂŶƵŵďĞƌŝŶƉƵƚ;ĂƐƐƵŵŝŶŐĚŝŵĞŶƐŝŽŶĂůƵŶŝƚƐĨƌŽŵƚŚĞŽƉĞŶZŚŝŶŽĮůĞͿdĂƉĞƌŝƐĚĞĮŶĞĚĂƐĂĨĂĐƚŽƌǁŚŝĐŚƐĐĂůĞƐĨƌŽŵƚŚĞŽƌŝŐŝŶĂůŽīƐĞƚůĞŶŐƚŚDŽƐƚĐŽŵŵŽŶůLJƚŚŝƐǁŝůůďĞĂƌŽƵŶĚϬϳ;ϳϬйŽĨŽƌŝŐŝŶĂůůĞŶŐƚŚͿƚŚŽƵŐŚƟŐŚƚŐĞŽŵĞƚƌŝĞƐŵĂLJƌĞƋƵŝƌĞůĞƐƐ

t f

w

t f

w

lp

EŽƚĞƐdĞƐƟŶŐŝƐŽŌĞŶƌĞƋƵŝƌĞĚƚŽĞŶƐƵƌĞƚŚĂƚƚĂďƐŝnjĞ;ǁŝĚƚŚͿŝƐĂĚĞƋƵĂƚĞĨŽƌĮdžŝŶŐĂŶĚƚŚĂƚƚĂďƐĂƌĞƚĂƉĞƌĞĚƐƵĸĐŝĞŶƚůLJĨŽƌĂĐƵƚĞĐŽƌŶĞƌƐKĐĐĂƐŝŽŶĂůůLJƐŚĂƩĞƌŝŶŐƚŚĞŽƌŝŐŝŶĂůŽƵƚůŝŶĞŽĨƚŚĞƵŶĨŽůĚĞĚŐĞŽŵĞƚƌLJĐĂƵƐĞƐĞƌƌŽƌƐĂŶĚĐŚĂŶŐŝŶŐƚŚĞůĞǀĞůŽĨĚŝƐĐŽŶƟŶƵŝƚLJ;ĨƌŽŵƚŚĞĚĞĨĂƵůƚŽĨϯƚŽϮͿĮdžĞƐƚŚŝƐ

4

&ĂďƌŝĐĂƟŽŶdŽŽůϬϯDĂŬĞdĂďƐͲdLJƉĞϬϭͲ^ŝŵƉůĞ

dŚŝƐĐůƵƐƚĞƌĞĚĐŽŵƉŽŶĞŶƚƚĂŬĞƐĂŶƵŶƌŽůůĞĚƉŽůLJƐƵƌĨĂĐĞ;ŽƌĂƐĞƌŝĞƐŽĨƚŚĞŵͿĂŶĚĂĚĚƐƚĂďƐƚŽĂůůŽǁĨŽƌƚŚĞϯĚŝŵĞŶƐŝŽŶĂůĂƐƐĞŵďůLJŽĨϮĚŝŵĞŶƐŝŽŶĂůĨĂďƌŝĐĂƚĞĚĞůĞŵĞŶƚƐ

&ŽƌĞĸĐŝĞŶĐLJ ƚŚŝƐĚĞĮŶŝƟŽŶĚŽĞƐŶŽƚĐŚĞĐŬƚŚĂƚƚĂďƐĂƌĞĐƌĞĂƚĞĚŽŶƚŚĞŽƵƚƐŝĚĞŽĨƚŚĞƐŚĂƉĞůƚŚŽƵŐŚƚŚŝƐŝƐŵŽƐƚĐŽŵŵŽŶƌĞƐƵůƚƚŚĞĚŝƌĞĐƟŽŶŽĨƚŚĞƚĂďƐĐĂŶďĞŇŝƉƉĞĚǁŝƚŚĂůĞĂŶƚŽŐŐůĞdĂďǁŝĚƚŚŝƐĚĞĮŶĞĚǀŝĂĂŶƵŵďĞƌŝŶƉƵƚ;ĂƐƐƵŵŝŶŐĚŝŵĞŶƐŝŽŶĂůƵŶŝƚƐĨƌŽŵƚŚĞŽƉĞŶZŚŝŶŽĮůĞͿdĂƉĞƌŝƐĚĞĮŶĞĚĂƐĂĨĂĐƚŽƌǁŚŝĐŚƐĐĂůĞƐĨƌŽŵƚŚĞŽƌŝŐŝŶĂůŽīƐĞƚůĞŶŐƚŚDŽƐƚĐŽŵŵŽŶůLJƚŚŝƐǁŝůůďĞĂƌŽƵŶĚϬϳ;ϳϬйŽĨŽƌŝŐŝŶĂůůĞŶŐƚŚͿƚŚŽƵŐŚƟŐŚƚŐĞŽŵĞƚƌŝĞƐŵĂLJƌĞƋƵŝƌĞůĞƐƐ

t f

w

t f

w

lp

EŽƚĞƐdĞƐƟŶŐŝƐŽŌĞŶƌĞƋƵŝƌĞĚƚŽĞŶƐƵƌĞƚŚĂƚƚĂďƐŝnjĞ;ǁŝĚƚŚͿŝƐĂĚĞƋƵĂƚĞĨŽƌĮdžŝŶŐĂŶĚƚŚĂƚƚĂďƐĂƌĞƚĂƉĞƌĞĚƐƵĸĐŝĞŶƚůLJĨŽƌĂĐƵƚĞĐŽƌŶĞƌƐKĐĐĂƐŝŽŶĂůůLJƐŚĂƩĞƌŝŶŐƚŚĞŽƌŝŐŝŶĂůŽƵƚůŝŶĞŽĨƚŚĞƵŶĨŽůĚĞĚŐĞŽŵĞƚƌLJĐĂƵƐĞƐĞƌƌŽƌƐĂŶĚĐŚĂŶŐŝŶŐƚŚĞůĞǀĞůŽĨĚŝƐĐŽŶƟŶƵŝƚLJ;ĨƌŽŵƚŚĞĚĞĨĂƵůƚŽĨϯƚŽϮͿĮdžĞƐƚŚŝƐ

For the construction of these Dodeaheadron pods model I would use CNC card cutter XIJMFQVUUJOHUIFnBUUFOTVSGBDFTJOUPUIJTcluster to create parts for the construction.

Model Fabrication Method

Figure 126: Grasshopper plug-in

Figure 127: Tabs created on the surface.

Page 51: 573608 yee ann tan part b

cvvvvcvvvv

Page 52: 573608 yee ann tan part b

cvvvv

B-51

As part of the assignment requirements of incorporating solar energy technology into my design, I drew inspiration from site & solar panel researches and conceived a Carbon Neutral Star Gazing Platform that can generate clean energy for Copenhagen.

Utilizing Computation design Techniques I have learnt from Case Study 1 , 2 and the weekly Algorithm Practices. I have conceived a Conceptual design which employs Stripping and Folding techniques. By Amalgamating the various elements explored I appropriated it for my conceptual design.

This section showcases a preliminary idea of the design I am working on.

This section’s breakdown1. Site Analysis 2. Solar panel research and decision. 3. Program 4. Design concept that drives the project 4. Precedent for my project. 5. Description and diagrams of how I achieved my design via the computation design. 6. Material Choice7. Plan , Elevation8. Draft Images and renders on the structure.

B6 Technique Proposal

Page 53: 573608 yee ann tan part b

B-52

Site Analysis

Sonder Hoved Pier is a man-made island, which used to be a MBOEmMMTJUF*UJTMPDBUFEBUUIFBU$PQFOIBHFO)BSCPS 3FGTIBMFFO3FGTIBMFFOIBTBCFOJHOUFNQFSBUFDMJNBUFXJUINJMETVNNFSTBOEDPPMXJOUFST JOnVFODFECZUIFXFTU(VMG4USFBNDVSSFOUXJOEsystem. In addition, Copenhagen also experiences distinct seasons 5 ,in Summer (July and August) the temperature reaches a high of 22 oC and a low of 13 oC at night. In winter (December to Febuary) the temperature varies from 4 oC to -1 oC , this information can be see from (Figure 128).

Copenhagen has a low level of pollution with air pollution with index of 26.46, water pollution with index of 25.00 and light pollution index of 23.33. 8 From (Figure 131) we can see that Copenhagen has a relatively clear skies through the year. 6

Copenhagen is a city that strives to reduce carbon emissions. The City of Copenhagen Technical and Environmental Administration prepared CPH 2025, which strive for carbon neutrality by 2025. Supplementarily, this report it states how the climate of Copenhagen has experienced increasing rainwater and increment of sea levels. 7 Hence a need to grade the landscape of the site to drain the water away.

'PSUIF-"(*CSJFGXFBSFUPVUJMJTFUIFMBOEmMMTJUFBOEQSPQPTFBprogram that would attract people to the site while generating clean renewable Solar energy for the city, within the boundary and (125 meters) height limitations.

* (For this Subject we are tasked to focus on Solar energy. )

Figure 129 : Annual Rainfall of Copenhagen 5

Figure 128 : Annual Temperature for Copenhagen 5

Figure 130 : Annual daylight of Copenhagen 6

Figure 131 : Annual Cloud cover of Copenhagen 6 Figure 132 : Annual Cloud cover of Copenhagen 6

Page 54: 573608 yee ann tan part b

B-53

Solar Panel Research and Choice

The Desire to draw visitors to the site, with Copenhagen’s naturally clear skies and Low light pollution level inspired my proposition to build a Carbon Neutral Star gazing platform. To generate clean solar energy for this public space I had to investigate different solar panel systems and decide a suitable method for the Program and Design (Subsequent Section).

I have decided to use the Multi-Junction cells (Figure 133), due to its IJHIFOFSHZFGmDJFODZPGBOEJUTDMJNBUJDBQQSPQSJBUFOFTT9

5IF.VMUJ+VODUJPODFMMFGmDJFODZJTEVFUPJUTBCJMJUZUPDBQUVSFNVMUJQMFwavelength. 9

During my research on solar panels, I stumbled upon 2 solar panels that inspired my design process.

1. Thermal concentrated panel Sterling Dish (Figure 134)This system is not appropriate for Temperate climates, however its Solar Tracking design system inspired me to incorporate this Tracking system JOUPNZ#VJMEJOHTZTUFN8IFSFUIFTPMBSQBOFMTBUUBDIFEUPUIFQPET(Figure 136) would rotate in accordance to the sun’s angle.

5IF1IPUPWPMUBJD%DFMMT'JHVSFXJUIBDPOWFSTJPOFGmDJFODZPG5IF1IPUPWPMUBJD%DFMMIBTBnFYJCMFGPSN*UJTTUJMMVOEFSEFWFMPQNFOUhence I did not utilized it. However, the study of it inspired me to consider how if Solar panels were in smaller units the structure could still maintain BSFMBUJWFMZnVJEGPSNCZAGPMEJOHUIFTVSGBDF*OBEEJUJPONPEVMBSTPMBSpanel unit would make the construction even more feasible.

For my conceptual design the Multi-Junction cells QBOFMTXPVMECFmYFEalong the Skywalk way and the pods ( Figure 136). The Branches holding the pods would rotate in accordance to the angle of the sun via an axial core structure. This Solar tracking function would increase the degree of sunlight capture This would be explored in greater detail in Part C.

The energy generated by the solar panels will be used to heat the pods at night, rotate the structure and light the path way with small Led Light strips at night.

Figure 135 : Photovoltaic 3D cell 9

Figure 136 : Rendered image of the Proposed design XJUIDJSDMFTEFOPUJOHXIFSFTPMBSQBOFMTNBZCFmYFEon to.

Figure 134: Thermal Concentrated Panel Sterling Dish9

Figure 133: Multi-Junction Cells 9

Page 55: 573608 yee ann tan part b

B-54

Program: Star Gazing

The program that I propose is a Carbon Neutral Star Gazing Platform Structure which generates Clean Solar Energy. This Structure seeks to become Copenhagen’s New Iconic Public space which would be open 24/7 for people to gather in the day and experience the wonders of the Stars at night. This attraction would attract visitors from all around the world. The JODSFBTFJOnVYPGWJTJUPSTXPVMEGBDJMJUBUFUIFFYJTUJOHQSPHSBNTPOTJUFnFBNBSLFUBOEUIFSFUBJMCVTJOFTT

Figure 137: Stars in Space 10

Figure 138 : Flea Market in the Existing Site 12

This structure seeks to become Copenhagen’s new Iconic public space that would attract visitors from around the world to experience nature in its fullness. This gazing platform is going to be open 24/7. In the day it would act as a public space for people to gather and meet and emphasizing on its nights functions to star gaze. This program would lead to more visitors coming to the site which would generate more revenue for the existing nFBNBSLFUBOESFUBJMCVTJOFTTPOTJUF

Page 56: 573608 yee ann tan part b

B-55

'HVLJQ&RQFHSW7KH,QÀQLW\3ODWIRUP

'JHVSF5IF*OmOJUZ1MBUGPSN

The concept is inspired by the experience of Gazing at the Stars situated in the Vast and endless depth of space, which invokes a profound sense of awe.

Similarly I seek to recreate this humbling emotion through Architecture. The structure would induce a sense of humility via the scale and material of the structure.

5IF$PODFQUOBNFEA5IF*OmOJUZ1MBUGPSNJTEFSJWFEGSPNthe endless space and the slow and continous motion of the rotation.

Page 57: 573608 yee ann tan part b

B-56

Precedent: Super Trees of Singapore

The design was inspired by Singapore’s Marina Bay Super trees which is both functional and aesthetically pleasant. (Figure 128) It is used to release the heat and cool the air for the conservatories as well as collect rainwater for irrigation and the water features. In addition the scale of the Super Trees, triggered the sense of humility.

4JNJMBSMZGPS5IF*OmOJUZ1MBUGPSN UIF.FHB5SFFTXPVMECFCPUIAesthetic and functional. The scale of the infrastructure would certainly make it one of Copenhagen’s icon. These Trees serve to elevate the pods which are clad with solar panels. The arms would CFSPUBUJOHJOEFmOJUFMZJOUIFEBZUPDBQUVSFUIFPQUJNVNBNPVOUPGsunlight and be stationary at night to demarcate the constellations in the sky. This would be further examined in Part C as well.

*ODPOUSBTU UIFMJHIUJOHGPSUIF*OmOJUZ1MBUGPSNXPVMECFLFQUUPBminimum. Only the foot paths would be lighted with Led light strips.

Figure 140 : Singapore Marina Bay Super trees 11

Figure 141 : Singapore Marina Bay Super trees 11

Page 58: 573608 yee ann tan part b

B-57

Here is some of my rough preliminary sketches which I doodle bearing in mind the algorithmic process that could be used. From this I then proceeded to generate them in Grasshopper.

'JHVSF$PODFQUVBM4LFUDIFTPG5IF*OmOJUZ1MBUGPSN XIJDIJTMBUFSrealized via Grasshopper algorithms

Preliminary Conceptual Sketches

Page 59: 573608 yee ann tan part b

B-58

The Grasshopper plug-in facilitated me in creating the pods that can respond to the sunlight. I would continue to research on this and improve on the star gazing pods in Part C.

Elements which Grasshopper is used:1. The Pods -Opening size -Branching of the Dodeahedron module2. The Branching structure of the ‘Mega Trees’3. The Skywalk path and the peripheral solar panels4. The Grading of the hollowed landscape

Using the folding technique To execute the Design concept inspired by nature (tree).The Folding approach enable me Multi-Junction cell panel on the facade of the structure. Folding also enabled me to grade the landscape such that water can drained off the site and also to raise the structure.

Folding Technique

Figure 146: Dodeahedron modules of Star Gazing pods which uses folding technique.

Figure 145: Panelised Sky-walk way with a fold one each side of the walkway.

Page 60: 573608 yee ann tan part b

B-59

Folding Technique inspired by Biomimicry

Figure 153 & 154 : Experimentation of different forms for the Pods used for the structure. The openings correspond to the point charges i created affecting the opening. However I have yet to resolve the use of the Point charge and how it would be used to increase the perfor-mance of the structure.

Figure 147-149: Experimentation of different forms for the Grading of the landscape

Figure 150-152: Experimentation of different Lofted panels. These panels are lofted along lines instead of arch.

Figure 155 & 156 : Experimentation for branching. I selected the branch which has an angle of 120 degrees branching in 3 direc-tions evenly.

Page 61: 573608 yee ann tan part b

B-60

Materiality

1. Corten or Rusted Steel to be used for the main structure of the trees2. Concrete for the ground3. Glass for the balustrades4. Cream Stones for the entrance walls.5. Dark Concrete Cladding for the interior of the pods.6. Dark metal for the pod’s exterior7. Multi-Junction Cells to be clad on the surface of the skywalk way and the pods(SBTTUPCFPOUIFHSPVOEnPPSTUSVDUVSF9. Metal mesh used for the skywalk way.

The use of rusted/weathered material for the Mega Tree, Metal Mesh for the Sky-walk and glass for balustrades brings a sense of fragility in the visitor’s experience. This correlates to the humbling effects of the cosmos to humanity.

1. Corten

2. Concrete for the ground

4. Cream Stones

2. Concrete for ground

8. Metal mesh for sky walkway

1. Rusted steel

3. Glass for the Balustrades

8. Grass

Figure 157-165: Materials used for the DPOTUSVDUJPOPG5IF*OmOJUZ1MBUGPSN

5. Dark Concrete cladding

Page 62: 573608 yee ann tan part b

B-61

Plan and Perspective view of the Preliminary design

Grasshopper facilitated me in creating the cells that can respond to point charges. I would continue to research on this to think of away that these point DIBSHFTDPVMEIFMQGBDJMJUBUFUIFFGmDJFODZBOEperformance of the star gazing pods.

Figure 166: Plan view of the proposed conceptual structure

Figure 167: Perspective view of the proposed conceptual structure

5IF*OmOJUZ1MBUGPSNDPNQSJTFTPG

.FHB5SFFT8JUI7JFXJOHQPET4LZXBML1BUI1 Large room1 Court yard/Atrium

Figure 168: Perspective view of the proposed conceptual structure

Page 63: 573608 yee ann tan part b

B-62

Plan and Elevation of the Conceptual Design

Figure 168: Elevation of the Structure

Figure 167: Plan of the Structure

N

0100

200

400

FEET

METERS

100

50

0

100

SCALE

Page 64: 573608 yee ann tan part b

B-63

Images of Conceptual design

The entrance opens up to a dark and large enclosed space which opens up to the side. This room has small openings on the top platform.This image also shows the BSUJmDJBMUFSSBJOTDSFBUFE

Sky-walk is made of Metal Mesh and balustrade built with glass. The transparency and ‘fragility’ of the material induces the sense of scale of the user to the structure and instill the sense of humility in face of the structure.

After leaving the main entrance and reemerging to the central open space. The Tall Mega trees structures with Dodeahedron Pod Modules branching out from the Central Core column overhanging the Court yard.

Figure 169: Entrance to the Structure

Figure 170: Sky walk with solar panels at the edge and Glass Balustrades

Figure 171: Courtyard area

Page 65: 573608 yee ann tan part b

B-64

Images of Conceptual design

Figure 172: Image of the Pod like structures when view from the Court yard

Figure 173: View from within the pod and gazing upon the constala-tions

In addition the height separation of the pod facilitates in disconnecting to the rest of the society allowing the user to fully immerse themselves to the views of the stars. The images on the left shows views of the structure at night from the court yard and the pod.

Page 66: 573608 yee ann tan part b

B-65

Figure 174-176: Several views of the structure.

Images of Conceptual design

Page 67: 573608 yee ann tan part b

B-66

Figure 177: Entrance Figure 178: Stair way up to the Sky-walk and the 1st Mega Tree

Figure 179: Internal Room (dark room with light holes) Spiral stair in middle of the room.

Figure 180: Room Exit (In relation to the site)

Figure 181: Room Exit Figure 181: Graded Landscape: Place to lie and interact with the site Metal Mesh Sky-walk way. The graded landscap also ensure water does not reach and damage the main structure and ensures the water drains.

Images of Conceptual design

Page 68: 573608 yee ann tan part b

B-67

Figure 182: Metal Mesh Sky-walk way

Figure 184: Path/ Structural element leading to the Spiral stairs up the

Figure 183: Path/ Structural element leading to the Courtyard Atrium with massive Mega Spiral stairs up the Mega tree

Figure 185: Courtyard Atrium with massive Mega Spiral stairs up the Mega tree tree and pods overhanging above

Images of Conceptual design

Page 69: 573608 yee ann tan part b

cvvvvcvvvv

Page 70: 573608 yee ann tan part b

cvvvv

B-69

From this segment of the course, I was able to look at designs and replicate the general form of the design using Grasshopper. 8JUI(SBTTIPQQFSQMVHJOOPUPOMZBN*BCMFUPHFOFSBUFEFTJHOTiterations quickly, but also generate different iteration species that can look inherently different from the original precedent project.

I hope that in the next segment (Part C) I would be able to sharpen NZTLJMMTJOUIFUFDIOJDBMBTQFDUBOEQSPEVDFmOFSRVBMJUZEFTJHOTIn addition, I would like to develop and enhance my presentation and rendering skills to attain professional standards thus, gearing NZTFMGGPSUIFXPSLGPSDF8JUISFTPVSDFTGSPNUIFDPVSTFBOETFMGdirected learning, I hope to be able to meet the learning objectives I have set.

Moving forward to Part C, I aim to resolve issues the algorithm to produce a more integrated design. Based on feedbacks I have received, my design had comments on its practicality/constructability and seemed divided. Hence, in my design EFWFMPQNFOU *TFFLUPSFDUJGZUIJTBSFBTBOESFmOFNZEFTJHO

Continuing I will have to consider the details of the how the structure would connect and work together.

B7 Learning Objectives and Outcomes

Page 71: 573608 yee ann tan part b

cvvvvcvvvv

Page 72: 573608 yee ann tan part b

cvvvv

B-71

This segment showcases some of the tutorials examples I BUUFNQUFE*EPDVNFOUFEUIFEJGmDVMUJFT*GBDFEBOEEFTJHOiterations that I have created and expanded from the online videos.

B8 Algorithmic Sketchbook.

Page 73: 573608 yee ann tan part b

B-72

Week 5: Exercise 1 and 2 (Labeling)

Labeling the points on a sphere surface with tag. To further simplify the tag what I learnt next was to simplify the data to remove empty branch indexes on the point

This is the image of the mapped out lines on the surface. This was the only step I was unable to panel the surface.

In another exercise we are to label points using series and domain components. This image shows the mapping of points in a surface

Page 74: 573608 yee ann tan part b

B-73

Week 6: Exercise 1(Cull Patterning)

In this exercise I used a base circle and a graph mapper to get a spatial uneven offset. After which I divided the circles to distinct points I used the Voronoi component to make cells. Using cull pattern I was able to cull certain points creating unique cellular patterns. Alternatively for the last imagery I used a rectangular base geometry to create the points which created the pattern as shown.

Page 75: 573608 yee ann tan part b

B-74

5SBWFMMJOH4BMFTNBOQSBDUJDF*UmOETUIFTIPSUFTUSPVUFCFUXFFOpoints. Using the Closest point function and remove the used points that is used to prevent repeating the same points.

Week 7: Traveling Salesman

Page 76: 573608 yee ann tan part b

B-75

5SBWFMMJOH4BMFTNBOQSBDUJDF*UmOETUIFTIPSUFTUroute between points. Using the Closest point function and remove the used points that is used to prevent repeating the same points.

Week 7: AA Pavilion practice

Page 77: 573608 yee ann tan part b

B-76

Week 8: Fractal form

The base curves for the branching of the curves

The branching of the curves and piping them

In this exercise I added an additional branch for the cluster such that I could have more than one branch. This was used for my project for the branching of the ‘Super Trees’.

Page 78: 573608 yee ann tan part b

B-77

Page 79: 573608 yee ann tan part b

cvvvvcvvvv

Page 80: 573608 yee ann tan part b

cvvvv

B-79

B9 Part B References & Appendix

Page 81: 573608 yee ann tan part b

B-80

B1Research Field:

1. Iwamoto, Lisa, Digital Fabrications : Architectural and Material Techniques / Lisa Iwamoto (New York : Princeton Architectural Press, c2009, 2009) <https://search-ebscohost-com.ezp.lib.unimelb.edu.au/login.aspx?direct=true&db=cat00006a&AN=melb.b3353228&scope=site; http://catdir.loc.gov/catdir/toc/ecip0823/2008029765.html>

2 Cruz, Paulo J., Hans Ulrich Buri and Yves Weinand, Origami-Geometry of Folded Plate Structures, Structures and Architecture, 400 vols (CRC Press/Balkema Taylor & Francis Group, 2010)

3HWHUV%UDG\¶5HDOLVLQJWKH$UFKLWHFWXUDO,QWHQW&RPSXWDWLRQDW+HU]RJ'H0HXURQ·$UFKLWHFWXUDODesign, 83, 2, pp. 56-61

5LWX9DVX3¶%LRPLPLFU\2QWKH)URQWLHUVRI'HVLJQ·9LODNVKDQ7KH;,0%-RXUQDORI0DQDJHPHQW139-148 <https://search-ebscohost-com.ezp.lib.unimelb.edu.au/login.aspx?direct=true&db=bth&AN=90712907&scope=site>

Site Analysis:

5.Numbeco, Pollution in Copenhagen, Denmark, http://www.numbeo.com/pollution/city_result.jsp?country=Denmark&city=Copenhagen edn, 2014 vols (2014)

7KH&LW\RI&RSHQKDJHQ7HFKQLFDODQG(QYLURQPHQWDO$GPLQLVWUDWLRQ¶&3+&OLPDWH3ODQ·

7. weatherspark, Average Weather for Kastrup Near Copenhagen, Denmark, http://weatherspark.com/averages/28823/Kastrup-near-Copenhagen-Capital-Region-of-Denmark edn, 2014 vols (2014)

8.worldweatheronline, Copenhagen Yearly Weather Summary, http://www.worldweatheronline.com/Copenhagen-weather-averages/Hovedstaden/DK.aspx edn, 2014 vols (2014)

)HUU\5REHUW0(OL]DEHWK¶$)LHOG*XLGHWR5HQHZDEOH(QHUJ\7HFKQRORJLHV·

B6 Technique Proposal:

10. FWS Wallpaper, Space Wallpaper 7680, http://freewallsource.com/space-wallpaper-7680.html edn, 2014 vols (2014)

11.visualnews, Supertrees of Singapore, http://www.visualnews.com/2012/07/31/supertrees-of-singapore/ edn, 2014 vols (2014)

12.Leth, Christopher, Flea Market, http://crleth.blogspot.com.au/2012_09_01_archive.html edn, 2014 vols (2012)

References

Page 82: 573608 yee ann tan part b

B-81

Iteration 8

Iteration 9 & 10

(SBTTIPQQFS%FmOJUJPOGPSUIFEFTJHOGPS$BTF4UVEZ*UFSBUJPO.FSHJOHPGBEEJUJPOBMmFMEQPJOUT

(SBTTIPQQFS%FmOJUJPOGPSUIFEFTJHOGPS$BTF4UVEZ*UFSBUJPOBOE"SDIFTBOE6NCSFMMB

B2 Case Study 1.0 (Biothing)

Appendix

Page 83: 573608 yee ann tan part b

B-82

Second Attempt in creating a Grasshopper Algorithm to amulate DIgital Origami. (Included Translation and a generative pattern)

B3 Case Study 2.0 (Reverse Engineering)

First attempt in creating a Grasshopper Algorithm (creating the base module for the structure and attaching them manually in rhino)

Attempt 1

Attempt 2

Appendix

Page 84: 573608 yee ann tan part b

B-83

Third attempt image of the algorithm for the generation of the structure with cluster functions

Culled tetrahedral clusterCluster for Off-setted structure

Cluster for offsteface

Attempt 3

Appendix

Page 85: 573608 yee ann tan part b

B-84

B4 Technique Development

Iteration 6

Iteration 7

Appendix

Page 86: 573608 yee ann tan part b

B-85

Iteration 11

Appendix

Page 87: 573608 yee ann tan part b

B-86

Grading surface

Skywalk way

B6 Technique: Proposal

Appendix

Page 88: 573608 yee ann tan part b

B-87

Branching

Branching

Appendix

Page 89: 573608 yee ann tan part b

B-88

B8 Algorithmic Sketchbook

8FFL

8FFL5SBWFMMJOHTBMFTNBO

Mapping out and labing of the sphere Mapping out and labing of the suface.

Appendix

Page 90: 573608 yee ann tan part b

B-89

Mapping out and labing of the suface.

8FFL""1BWJMJPO1SBDUJDF

Mapping out and labing of the suface.Mapping out and labing of the suface.Mapping out and labing of the suface.

Appendix

Page 91: 573608 yee ann tan part b

B-90

8FFL'SBDUBM1BUUFSO

The Fractal branching patter Grasshopper edited and developed. By adding extra branch which orient and scale by the same scale factor

5IF'SBDUBMCSBODIJOHQBUUFS(SBTTIPQQFSEFmOJUJPOGSPNUIFUVUPSJBMFYFSDJTF

Appendix

Page 92: 573608 yee ann tan part b

B-91