6 mmc - icecube.wisc.edudima/work/bkp/dcs/paper_mmc/poster.pdf · ice 0.259 0.357 3.7% 6.6% fr....

1
Continuous part of the energy losses: x x dx i f The stochastic part: . Probability to suffer a catastrophic loss on at is The above equation can be solved for : (energy integral), and then the corresponding displacement is found: (tracking integral). choose so small that For small , distributions are the same central limit theorem can be applied Here was replaced with average expectation value of energy at , . As , the second term disappears. The lower limit of the integral over can be replaced with zero, since all of the cross sections diverge slower than . Then, Propagate Particle Medium Cross Sections Decay Ionization Photonuclear Epair production i, b, p or e continuous stochastic Bremsstrahlung Output Scattering Energy2Loss E X Applications Amanda Frejus Applets MMC Integral Interpolate FindRoot StandardNormal mmc Physics model Math. model medium a, b, av. dev. max. dev. ice 0.259 0.357 3.7% 6.6% fr. rock 0.231 0.429 3.0% 5.1% medium a, b, av. dev. ice 0.268 0.470 3.0% fr´ ejus rock 0.218 0.520 2.8% 1 TeV v cut -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 x 10 -3 10 -3 10 -2 10 -1 100 TeV v cut -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 x 10 -3 10 -3 10 -2 10 -1 Average final energy deviation from the purely “continuous” prediction energy [GeV] muons survived 1 10 10 2 10 3 10 -1 1 10 10 2 10 3 distance traveled [km] muons [x 10 3 ] 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 muons with energy 9 TeV propagated through 10 km of water: regular (dashed) vs. “cont” (dotted) Survival probabilities “cont” 1 TeV 3 km 9 TeV 10 km TeV 40 km 0.2 no 0 0 0.153 0.2 yes 0.010 0.057 0.177 0.05 no 0 0.035 0.143 0.05 yes 0.045 0.039 0.139 0.01 no 0.030 0.037 0.142 0.01 yes 0.034 0.037 0.139 no 0.034 0.037 0.140 yes 0.034 0.037 0.135 dE/dx=a+bE a=0.259425 [ GeV/mwe ], b=0.000357204 [ 1/mwe ] energy [ GeV ] total energy losses [GeV g-1 cm2] 10 -3 10 -2 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 energy [ GeV ] χ 2 10 -2 10 -1 1 10 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 Fit to the energy losses in ice plot for energy losses in ice dE/dx=a+bE a=0.217798 [ GeV/mwe ], b=0.000520421 [ 1/mwe ] energy [ GeV ] average displacement [ mwe ] 10 -2 10 -1 1 10 10 2 10 3 10 4 10 5 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 energy [ GeV ] χ 2 10 -2 10 -1 1 10 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 Fit to the average range in Fr´ ejus rock plot for average range in Fr´ ejus rock 30 GeV entries 7 10 3 GeV 1.7 10 6 GeV 4 10 8 GeV distance [ m ] 20 30 40 50 60 0 2000 4000 0 5000 10000 0 10000 20000 in Fr ´ ejus rock: solid line designates the value of the range evaluated with the second table (continuous and stochastic losses) and the broken line shows the range evaluated with the first table (continuous losses only). Parametrization errors: ioniz brems photo epair decay energy [GeV] energy losses [GeV g-1 cm2] 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 energy [GeV] precision of parametrization (total) 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 1 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 energy losses in ice Interpolation precision Final energy distribution of the muons that crossed 300 m of Fr ´ ejus Rock with initial energy 100 TeV: energy [TeV] muons with that energy 1 10 10 2 10 3 10 4 10 5 0 10 20 30 40 50 60 70 80 90 100 -0.1 0 0.1 0.2 0.3 0.4 0 10 20 30 40 50 60 70 80 90 100 energy [TeV] muons with that energy 1 10 10 2 10 3 10 4 10 5 0 10 20 30 40 50 60 70 80 90 100 -0.1 0 0.1 0.2 0.3 0.4 0 10 20 30 40 50 60 70 80 90 100 Comparison of (dotted- dashed) with =10 TeV (dotted). Also shown is the relative difference of the curves. Comparison of paramerized (dashed-dotted) with exact (non- parametrized, dotted) versions for . Final energy distribution of the muons that crossed 300 m of Fr ´ ejus Rock with initial energy 100 TeV: energy [TeV] muons with that energy 10 2 10 3 10 4 10 5 10 6 0 10 20 30 40 50 60 70 80 90 100 energy [TeV] muons with that energy 10 2 10 3 10 4 10 5 10 6 70 75 80 85 90 95 100 (solid), (dashed-dotted), and “cont” option (dotted) no “cont”: (dashed), (solid), (dot- ted), (dashed-dotted) energy [TeV] muons with that energy 10 2 10 3 10 4 10 5 10 6 70 75 80 85 90 95 100 ioniz brems photo epair energy [GeV] secondaries with that energy 1 10 10 2 10 3 10 4 10 5 1 10 10 2 10 3 10 4 with “cont” option: (dashed), (solid), (dotted), (dashed- dotted) ioniz (upper solid curve), brems (dashed), photo (dotted), epair (dashed-dotted) spectra for =10 TeV in the Fr´ ejus rock Photonuclear losses, LPM effect and Moli ` ere scattering 1 2 3 4 energy [GeV] photon-nucleon cross section b] 0 200 400 600 800 1000 10 -2 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 1 BB 2 BB 3 BB 4 BB ALLM energy [GeV] photonuclear energy losses per energy [g-1 cm2] 10 -7 10 -6 10 -1 1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 different photon-nucleon cross sections implemented in MMC, Bezrukov Bugaev parametrization photonuclear energy losses (di- vided by energy), according to dif- ferent formulae. epair brems epair brems energy [GeV] energy losses per energy [g-1 cm2] 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5 10 -1 10 10 3 10 5 10 7 10 9 10 11 10 13 10 15 10 17 10 19 10 21 distance traveled [km] of ice deviation from shower axis [cm] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 LPM effect in ice (higher plots) and Fr ´ ejus rock (lower plots, multiplied by ) Moli ` ere scattering of 100 10 TeV muons going straight down through ice

Upload: trankien

Post on 08-Feb-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6 mmc - icecube.wisc.edudima/work/BKP/DCS/PAPER_MMC/poster.pdf · ice 0.259 0.357 3.7% 6.6% fr. rock 0.231 0.429 3.0% 5.1% medium a, Û Û b, Ø av. dev. ice 0.268 0.470 3.0% frejus´

� � � � � ��� � � �� � � � � � ��� � ������� � ��� � �� � � � � � ��� � � ����� � � ��� � � ����� �� � ������� "!#�$��%&�('*),+.-0/21 35476985:;'<8 = !<3&><?@-)BADCFEHGJILKNMOE$P(Q RTS UWVYXZE.S[R\K]C;E^V VJP*_`ILKOabIcXdILQfe�Ahg�i- _jILKlkJEHM[m]noI ADCFEpGYILKNMOE$PbqVJP`rsI]M[V\t Ppn�R�m]nuMvm]nw�XxI y w�z{z;IcKLP9VYX|e`rsILK]t VYC;Q

}�~[���Z�����,���Y� �\���T�������������d�������@����~Continuous part of the energy losses: �f����Z�B�5� �¢¡�£

x xdxi f

The stochastic part: ¤p¥ �¢¡��§¦^¨.£©£]�<ª �¢¡\�«¦(¨.£©£ ¤ ¦ . Probability to suffera catastrophic loss on ¤ ¦ at ¦9¬ is�©­ �®¤p¥ �¢¡\�«¦(¨¯£©£°£²±H³´³µ³d±H�©­ �®¤p¥ �¢¡\�«¦ ¬ £©£©£¶± ¤H¥ �¢¡\�«¦ ¬ £©£�¸·º¹H»l� �[¤p¥ �¢¡��§¦(¨¯£©£©£¶±H³´³´³¼±�·º¹H»l� �[¤p¥ �¢¡\�«¦ ¬ £°£©£²± ¤p¥ �¢¡\�«¦ ¬ £©£�®·º¹H»�½ ��¾ �¶¿�ÁÀ ¤p¥ �¢¡\�«¦Â£°£.Ãı ¤p¥ �¢¡\�«¦ ¬ £©£� ¤ ¬ ½ � ·º¹H»Â� � ¾ � ¿� À ªT�¢¡�£� � �¢¡�£ ± ¤ ¡�£ à � ¤ � �LÅ £ÇÆ ÅfÈ �«ÉHÊZ­ºËThe above equation can be solved for ¡[¬ :¾ � ¿� À ªT�¢¡�£� � �¢¡�£ ± ¤ ¡<� �@ÌÎÍ�Ï � Å £ (energy integral),

and then the corresponding displacement is found:

¦l¬f�¸¦(¨ � ¾ �²¿�9À ¤ ¡� �¢¡�£ (tracking integral).Ð �\�Y�,���{��\�@ÑÒ���Ó�@Ô��\����Õc���,�Ö�\�choose ¤ ¦ so small that ×ÂØ �ÚÙÜÛ°ÝÎÞ¯ßÛ°à × �§á�ʺ¡�£ ¤ á]± ¤ ¦bâ�­ã á�äc� ¾ Û ÝåÞ¯ßÛ à áL± × �§á¼Êº¡�£ ¤ áL± ¤ ¦ ã á�æLäc� ¾ Û ÝåÞ¯ßÛ à á�æ�± × �§á¼Êº¡�£ ¤ áN± ¤ ¦ã �§ç�áè£ æ äc� ã á æ ä � ã á�ä æFor small á�éëêèì , × �§á¼Êº¡�£Bí × �§á¼Êº¡O¨¯£fî distributions × �§á¼Êº¡�£ are thesame î central limit theorem can be appliedã �§ç\�§ç�¡�£©£ æ äc�Úï�ðòñ ã á æð ä � ã á ð ä æ|ó �ï�ðõôHö ¾ Û ÝåÞ¯ßÛ÷à á æð ± × �§á ð ʺ¡N¨¢£ ¤ á ðHø ¤ ¦ ð � ö ¾ Û ÝåÞ¯ßÛ÷à á ð ± × �§á ð ʺ¡N¨¯£ ¤ á ðHø æ ¤ ¦ æð¼ùí ¾ �x¿��À ¤ ¦²± ô7ö ¾ Û÷ÝåÞ¯ßÛ÷à á�æ�± × �§á¼Êº¡\�«¦Â£©£ ¤ á ø � ö ¾ Û÷ÝåÞ¯ßÛ÷à á]± × �§á¼Êº¡\�«¦Â£©£ ¤ á ø æ ¤ ¦ ùHere ¡N¨ was replaced with average expectation value of energy at¦ , ¡��«¦9£ . As ¤ ¦bî`É , the second term disappears. The lower limit ofthe integral over á can be replaced with zero, since all of the crosssections diverge slower than ­�údáèû . Then,ã �§ç\�§ç�¡�£°£.æLäcí ¾ � ¿� À ¤ ¡� �ü�¯¡�£ ± ö ¾ Û ÝåÞ¯ßØ á�æ�± × �§á¼Êº¡�£ ¤ á ø

ý ý Ð Ñü�T�����N�,��,~

Propagate

Particle

Medium

Cross Sections

Decay

Ionization

Photonuclear

Epair production

i, b, p or e

continuous

stochastic

Bremsstrahlung

Output

Scattering Energy2LossE

X

Applications

Amanda Frejus

Applets MMC

Integral

Interpolate

FindRoot

StandardNormal

mmc

Physics model Math. model

þÿ~vÑÜ�@���TÑmedium a, � Û ���� Û b,

� Ø����� Û av. dev. max. dev.ice 0.259 0.357 3.7% 6.6%fr. rock 0.231 0.429 3.0% 5.1%

medium a, � Û ���� Û b,� Ø ������ Û av. dev.

ice 0.268 0.470 3.0%frejus rock 0.218 0.520 2.8%

� �Ö�f�������� @� ~[���,����Ñ1 TeV

vcut

-0.8-0.6-0.4-0.2

00.20.40.60.8

x 10-3

10-3

10-2

10-1

100 TeV

vcut

-0.8-0.6-0.4-0.2

00.20.40.60.8

x 10-3

10-3

10-2

10-1

Average final energy deviation from the purely “continuous” prediction

energy [GeV]

muo

ns s

urvi

ved

1

10

10 2

10 3

10-1

1 10 102

103

distance traveled [km]

muo

ns [x

103 ]

2468

101214

1 2 3 4 5 6 7 8 9 10

� Ø�� muons with energy 9 TeV propagated through 10 km of water: regular(dashed) vs. “cont” (dotted)

Survival probabilities� é©êèì “cont” 1 TeV 3 km 9 TeV 10 km ­|É � TeV 40 km0.2 no 0 0 0.1530.2 yes 0.010 0.057 0.1770.05 no 0 0.035 0.1430.05 yes 0.045 0.039 0.1390.01 no 0.030 0.037 0.1420.01 yes 0.034 0.037 0.139­|É � û no 0.034 0.037 0.140­|É � û yes 0.034 0.037 0.135

� �Z�ÜÑÚ�T� �T�Ó�Ü�Ó�f~0��~[�,���`�Ö��ÑTÑ��Ó��Ô �L�\~[�����f~ ���f��f~dE/dx=a+bE

a=0.259425 [ GeV/mwe ],b=0.000357204 [ 1/mwe ]

energy [ GeV ]

tota

l ene

rgy

loss

es [G

eV g

-1 c

m2]

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

10-1

1 10 102

103

104

105

106

107

108

10910

10

energy [ GeV ]

χ2

10-2

10-1

1

10

1 10 102

103

104

105

106

107

108

10910

10

Fit to the energy losses in ice ��� plot for energy losses in ice

dE/dx=a+bEa=0.217798 [ GeV/mwe ],b=0.000520421 [ 1/mwe ]

energy [ GeV ]

aver

age

disp

lace

men

t [ m

we

]

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10-1

1 10 102

103

104

105

106

107

108

10910

10

energy [ GeV ]

χ2

10-2

10-1

1

10

1 10 102

103

104

105

106

107

108

10910

10

Fit to the average range in Frejusrock

� � plot for average range in Frejusrockþ �Ó��f~ Ô��ÖÑü�T���� �u�,���Y��Ñ

30 GeV

entr

ies 7 ⋅ 103 GeV

1.7 ⋅ 106 GeV 4 ⋅ 108 GeV

distance [ m ]

20 30 40 50 60 0 2000 4000

0 5000 10000 0 10000 20000

in Frejus rock: solid line designates the value of the range evaluated withthe second table (continuous and stochastic losses) and the broken lineshows the range evaluated with the first table (continuous losses only).

Parametrization errors:

ionizbremsphotoepairdecay

energy [GeV]

ener

gy lo

sses

[GeV

g-1

cm

2]

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

11010 210 310 410 510 6

10-1

1 10 10210

310

410

510

610

710

810

910

1010

11

energy [GeV]

prec

isio

n of

par

amet

rizat

ion

(tot

al)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10-1

1 10 10210

310

410

510

610

710

810

910

1010

11

energy losses in ice Interpolation precision � Û ��� � Û � �"! # Û �$�Final energy distribution of the muons that crossed 300 m ofFrejus Rock with initial energy 100 TeV:

energy [TeV]

muo

ns w

ith th

at e

nerg

y

1

10

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

energy [TeV]

muo

ns w

ith th

at e

nerg

y

1

10

10 2

10 3

10 4

10 5

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

Comparison of Û % &('*) ��+ (dotted-dashed) with Û % &(' =10 TeV (dotted).Also shown is the relative differenceof the curves.

Comparison of paramerized(dashed-dotted) with exact (non-parametrized, dotted) versions for, ÝåÞ¯ß ) Ø�- Ø � .

Final energy distribution of the muons that crossed 300 m ofFrejus Rock with initial energy 100 TeV:

energy [TeV]

muo

ns w

ith th

at e

nerg

y

10 2

10 3

10 4

10 5

10 6

0 10 20 30 40 50 60 70 80 90 100energy [TeV]

muo

ns w

ith th

at e

nerg

y

10 2

10 3

10 4

10 5

10 6

70 75 80 85 90 95 100

, ÝåÞ¯ß ) Ø�- Ø�. (solid), , ÝåÞ¯ß ) � Ø ��/(dashed-dotted), , ÝåÞ¯ß ) Ø�- Ø�. and“cont” option (dotted)

no “cont”: , ÝåÞ¯ß ) Ø�- Ø�. (dashed),, ÝÎÞ¯ß ) Ø- Ø � (solid), , ÝÎÞ¯ß ) � Ø �� (dot-ted), , ÝåÞ¯ß ) � Ø���/ (dashed-dotted)

energy [TeV]

muo

ns w

ith th

at e

nerg

y

10 2

10 3

10 4

10 5

10 6

70 75 80 85 90 95 100

ionizbremsphotoepair

energy [GeV]

seco

ndar

ies

with

that

ene

rgy

1

10

10 2

10 3

10 4

10 5

1 10 102

103

104

with “cont” option: , ÝåÞ¯ß ) Ø�- Ø�.(dashed), , ÝåÞ¯ß ) Ø�- Ø � (solid), , ÝåÞ¯ß )� Ø �� (dotted), , ÝåÞ¯ß ) � Ø ��/ (dashed-dotted)

ioniz (upper solid curve), brems(dashed), photo (dotted), epair(dashed-dotted) spectra for � + =10TeV in the Frejus rock

Photonuclear losses, LPM effect and Moliere scattering

1234

energy [GeV]

phot

on-n

ucle

on c

ross

sec

tion

[µb]

0

200

400

600

800

1000

10-210

-11 10 10

210

310

410

510

610

710

810

910

1010

11

1 BB2 BB3 BB4 BBALLM

energy [GeV]

phot

onuc

lear

ene

rgy

loss

es p

er e

nerg

y [g

-1 c

m2]

10-7

10-6

10-1

1 10 10210

310

410

510

610

710

810

910

10

different photon-nucleon crosssections implemented in MMC,Bezrukov Bugaev parametrization

photonuclear energy losses (di-vided by energy), according to dif-ferent formulae.

epair

brems

epair

brems

energy [GeV]

ener

gy lo

sses

per

ene

rgy

[g-1

cm

2]

10-10

10-9

10-8

10-7

10-6

10-5

10-1

10 103

105

107

10910

1110

1310

1510

1710

1910

21

distance traveled [km] of ice

devi

atio

n fr

om s

how

er a

xis

[cm

]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

LPM effect in ice (higher plots) andFrejus rock (lower plots, multipliedby

� ��� ) Moliere scattering of 100 10 TeVmuons going straight down throughice