7 el - defense technical information center taking af equal to that value given by the onsager...

19
AD-A098 277 ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND FO ETC FG 7/4 SIMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DAYA.(U) MAR 81 M SALOMON UNCLASSIFIED DELET-TR-81-6 NL El MhENOMOEIE "'.7

Upload: nguyenminh

Post on 11-Mar-2018

223 views

Category:

Documents


4 download

TRANSCRIPT

AD -A098 277 ARMY ELECTRONICS RESEARCH AND DEVELOPMENT COMMAND FO ETC FG 7/4

SIMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DAYA.(U)MAR 81 M SALOMON

UNCLASSIFIED DELET-TR-81-6 NL

El MhENOMOEIE"'.7

1111 II 1 11112.5

'401 32 [&

"- 6 IIIII'll' nl l.8

III .2 HII~ II .

N I6N . t~r

LEVEL /2'RESEARCH AND DEVELOPMENT TECHNICAL REPORT

DELET-TR-81-6' I

SIMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DATA

MARK SALOMON

ELECTRONICS TECHNOLOGY & DEVICES LABORATORY

MARCH 1981

DISTRIBUTION STATEMENT

Approved for public release:distribution unlimited.

ERADCOMUS ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND

~ FORT MONMOUTH, NEW JERSEY 07703

~i '±

NOTIC E S

Disclaimers

The findings in this report are not to be construed as anofficial Department of the Army position, unless so desig-nated by other authorized documents.

The citation of trade names and names of manufacturers inthis report is not to be construed as official Governmentindorsement or approval of commercial products or servicesreferenced herein.

Disposition

Destroy this report when it is no longer needed. Do notreturn it to the originator.

l i ...... ..... .. ................. • . .. ir .... ....... ....... ... ,,, lII

UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE fthen De IESNeeed4

REPMR DO MENTATION PAGE BK C , P.TORMI~~~2 3vaox.MVmR-. ACESUOM no: S. RECIPIENT'S CATALOG NUMBER

DELFT-TR-81 -6 A_________rJmrTl (and Uubtfile) S. TYPE OF REPORT I PERIOD COVEREo

( 1IMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DATA Technical Report

S- - "- . PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 41. CONTRACT OR GRANT NUMBER(s)

MarkSalomon Q j9. PERFORMING ORGANIZATION N E AND ADDReSS I. PROGRAM ELEMENT. PROJECT. TAS

r .

USA Electronics Technology & Devices Lab(ERA , AREAA WORK UNIT NUMBERS

ATTN: DELET-PR / 1ILC627)05AH94 11-251Fort Monmouth, New Jersey 07703/

It. CONTROLLING OFFICE NAME AND ADDRESS 12. ,AW G - ....

USA Electronics Technology & Devices Lab(ERADCOM) [J JMaradn*81ATTN: DELET-PR 1:.N.MOMMR Of PAGES

Fort Monmouth, New Jersey 07703 1114. MONITORING AGENCY NAME & ADDRESS(Il dtitrent Ia Contrellind Office) IS. SECURITY CLASS. (of thie report)

- Unclassified

r LL 42 i-4. DECLASSIFICArtoti/oo NRAOING64 SCHEDULE

16. DISTRIBUTION STATEMENT (of Cuia Report)

Approved for public release;distribution unlimiLed.

I7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It differet from Report)

Il. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere side itn.ce e, adident ir b. block mbe)

ConductivityIon PairsLithium Batteries

20. ABStACT (Contin..e m, reverse side it necsssasy and Identify by block nue~he)

A simplified method is presented for the analysis of conductivity datafor complex situations which involve ion pairing. The method was tested bycomparing results with more elaborate analyses using published data for anumber of salts in various solvents. The method is then used to analyze theconductivity data for several salts in thionyl chloride. These latteranalyses are important for selecting electrolytes for lithium primary batterie

jA~ 73 EOITION O I NOV065 IS OBSOLETE UNCLASSIFIED &1C e 9 ?KSECURITY CLASSIFICATION OF THIS PAGE (U1hn Dae Ent ad

SECURITY CLASSIFICATION OF THIS PAGE(IWha, Date EaIero)

CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

TABLES

1. RESULTS OF ANALYSES OF CONDUCTIVITY DATA BY VARIOUS METHODS . 6

2. RESULTS OF ANALYSES BASED ON EQUATION (18) FOR SALTSIN SOC12 . . . . . . . . . . . . . . . . . . . . . . . . . ..

APPENDIX

A. TI-59 PROGRAM FOR SOLUTION OF EQUATION (15) .... ......... 8

Accession ForNTIS GRA&I .

DTIC TAB

U n n n ou n~ c e d E

Justi ict ionl-

ByDistribt!orn2/

Availabilitv Codes

Avni,. or -DiSt p c,

ALI

SIMPLIFIED ANALYSIS OF COMPLEX CONDUCTIVITY DATA

INTRODUCTION

Conductivity measurements constitute some of the most accurate data whichcan be obtained in the laboratory. There is a long history of the theory andexperimental techniques of conductivity data, and one of the most importantfeatures of this data is that it allows one to analyze the complex behaviorof electrolyte solutions in solvents possessing a large range of dielectricconstants. The development of the mathematical treatments of these data,particularly in analyzing for ion pair formation, has reached the point wheresophisticated computational facilities are required. The purpose of thisreport is to present a method which simplifies the computational analyses,and at the same time retain the essential features of modern theory. A briefintroduction to the analytical expressions for conductivity data for 1:1electrolytes developed over the years will be given first.

iThe first expression developed by Onsager which applies to very dilute

solutions is:

A = A' - (A'a, + B2) c? = A* - S c (1)

Here A is the experimental molar conductivity for a completely dissociatedsalt at concentration c mol dm-3 , A' is the molar conductivity at infinitedilution, and al and a2 are constants which reflect upon ion-ion interactions.As early as 1883, Arrhenius proposed that the reason why A values for certainelectrolytes were much smaller than expected was due to the association ofions. Arrhenius thus expressed the degree of ionization, a , of a salt interms of conductivities as:

a= A/A' (2a)

The equation holds at very high dilutions, and a more accurate expression fora is defined as the ratio of the experimental molar conductivity, A , to themolar conductivity Af, which would be observed if the salt was completelyionized.

a = A/Af (2b)

The chemical equation involving ion pairing of M cations and X anions isgiven by

MX M + X (3)

where MX is the undissociated ion pair. The thermodynamic dissociat.on

1L. Onsager, Z. Physik 27, 388 (1926): 28, 277 (1927).

constant for reactiv.. (3) is given by:

0 [M+]i[X-]y/[MX]y (4a)

where y+ and y are, respectively, the mean molar activity coefficients forthe ionf and the neutral species MX. In terms of the degree of dissociation,Equation (4a) becomes:

2 C y 2(1 -a)yn (4b)

and rearranging,

2 2 0aI a c y+ /% Yn (40

Taking Af equal to that value given by the Onsager Equation (1), the equationfor the experimental conductivity connected for ion pairing is obtained bycombining Equations (1), (2b), and (4c):

A = - S(C) - Aacy+/K Yn (5)

A semiempirical form of Equation (5) has been developed by Fuoss and Kraus2

and by Shedlovsky:3

I IF_ + A Fz)yc (6)

AF(z) IF RO (A )PT2

In Equation (6), the activity coefficient Yn is assumed to equal unity, andthe function F(z) is defined as follows:

F(z) = (z/2)+ [1 + (z2)2(7)

and

z = S (ac) (A-) 3 / 2 (8)

I.qu,,tion (6), which suggests that A' and K0 (Am) 3 can be obtained from a

plot of /AF() against F(z)y+ c, was used as the primary method of analysisfor several decades. its use is now being restricted since it still applies

0to very dilute solutions, and accurate A' and KD values are obtained onlywhen KO is in the range of 10- 1 to 10- 3 mol dm-3. A major problem associatedwith the use of the Onsager Equation (1) is that it fails to account forhigher order terms involving relaxation fields and electrophoretic velocity.

2R. M. Fuoss and C. A. Kraus, .1. Am. Chem Soc. 55, 476 (1933).

1'. Shedlovsky. .1. Franklin Inst. 225. 739 (1938).

2

One of the first attempts to produce a more accurate relation for expressingconductivity data was by Fuoss and Onsager:

4

A = A S + E c Xn c + J c (9)

where E is a constant dependent upon the nature of the solvent, and J is aconstant dependent in part on the distance (R) of approach of the free ions.Combining Equations (2b), (4c), and (9) yields:

A= - S (ac)! + E ac kn(ac) + J ac - Aacy2 2 / (10)

Later work5 produced a more accurate expression which takes the form6 '7

A = A' - S c + E c knc + J1c - J2 c3 /2 (11)

Combining this equation with Equations (2b) and (4c) yields

S(ac) + E ac in(ac) + Jl c - 3/2A acy2 (12)S~ct)1 1 J2(c -ccy/ n

Both Jl and J are complex functions of the distance R, and complete analysisof Equation (f2) requires the use of high speed computers. There is littledoubt that both Jl and J2 terms are significant and essential for highaccuracy. In solving Equation (12) for A' and Ko, it is generally assumedthat the extended Debye-Huckel relation (13) can be used for the mean molaractivity coefficient,

log y = -A 00 / 1 + BR (ac) (13)

and that Yn is unity. In Equation (13), B is a constant and R is thedistance of closest approach of the free ions. Since Justice8 has presentedconvincing evidence that the distance R should be associated with the Bjerrum

9

critical distance q defined by

R = q = z2 q2 /( 2 EkT), (14)

much controversy 10,11 has been centered on the correct value for R. It isto be noted that if R is associated with q which has values about 10 times

4 M. Fuoss and L. Onsager, J. Phys. Chem. 61, 668 (1957).6R. M. Fuoss and K. L. Hsia, Proc. Nat. Acad. Sci. 57, 1550 (1967).

61: Pitts, Proc. Roy Soc. (London) A217, 43 (1953).7 : Pitts, B.F. Tabor, and J. Daly, Trans. Faraday Soc. 65, 849 (1969).R. Fernandez-Prini, "Physical Chemistry of Organic Solvent Systems,"

8A . K. Covington and T. Dickinson, eds., Plenum Press, London, 1973.9 J.-C. Justice, J. Chim. Phys. 65, 353 (1968): Electrochim Acta 16, 701 (1971).

10 N. Bjerrum, K. Danske Videnskab Selskab; Mat.-Fys.-Medd. 7, 9 (1926).

1R. Fernandez-Prini and J. E. Prue, Trans. Faraday Soc. 62, 1257 (1966).J.-C. Justice, R. Bury, and C. Treiner, J. Chim. Phys. 65, 1708 (1968).

3

greater than that required by Debye-Huckel theory, then by increasing y±(seeEquation (13)),compensating changes will occur in the numerical values of Jland J2. In order to simplify the analysis of Equation (12) and avoid thecontroversy involving the correct magnitude of R, a method has been developedwhich can be used with a hand-held calculator such as the TI-59 pocket calcu-lator. The details of this method are discussed below and applications tonumerous electrolytes and solvents are discussed which include analyses ofconductivity data for systems of importance in lithium primary battery develop-ment.

METHOD

The Fuoss-Hsia Equation (12) is recast into an empirical form

A A - S(cc) + E ac n(Wac) + J c tc + J9 (ac) 3/2 A cy (15)

where J and J2 are now empirical constants. The mean molar activity coeffi-cient for the ions is also calculated empirically using the Davies equation

log y± = -A(ac) /[1 + (ac) 21 + 0.3 Aac (16)

For the activity coefficient of the neutral ion pair, it is assumed that

log Yn = 0.3 Aac (17)nJEquation (17) appears to hold well for aqueous solutions. Equation (15) canbe rearranged in the form

Y = Jl + J; (ac) (18)

where

= A {i1+2y c(I n}/ { S )= -c/(% Yn c S(ac) + Ea c? n(ac)}/ac (19)

0In evaluating Equation (18) by least squares, values of A-" and KD are varieduntil the erroro, in the observed conductivities is minimized. oA Sdefined by

oA = 0 (Aobs - A cal) 2/(N-3)} (20)

where N is the number of data points. To perform the calculations, initialguesses at A' and KB are made, and a calculated by an iteration method usingEquations (4b) and (16). The calculations are then repeated until0A is

0minimized by the appropriate A' and KD values. All calculations are begunby evaluating S, E, and the Debye-HUckel constants A and B:

A/mol1 dm3/2 1.8246 x 106/(cT) 3 /2 (21)

4

B/cm mol- dm3/2 = 5.029 x 10 7 /(cT) (22)

For the Onsager constant S = A OI + 82

S/mol -dm 3/2 = 8.2046 x 10 5/(cT)3/2 (23)

2 /S cm 2mo1- 3/2d/ = 82.487/1ti (LT)'21 (24)

For the Fuoss-Onsager constant E = AOE - E1 2'

El/mol-ldm3 = 2.94257 x II2 /(cT)3 (25)

E 22S cm mol-dm = 4.33244 x 10 /{in (cT) (26)

Finally, the present method of treatment of conductivity data also permits a

simple solution of Equation (10) by the least squares method; i.e.,

Y = J, - A2y/K (27)

where

Y ={A -AO + S (ac) - E ac tn(ac)}/c (28)

RESULTS

To test the accuracy of the present method for evaluatiap A and K0, theconductance data for various electrolytes in solvents having --electricconstants varying from C = 78.3 D toe = 9.53 D were analyzed and compared toprevious results. The results of these analyses are given in Table 1 whereall data refer to 250C. The use of Equation (18) is seen to lead to equiva-

lent values for A' and Kg when comparisons are made with the results obtainedfrom the direct analyses of Equations (10) and (12). In several cases, thepresent method appears superior as indicated by much smaller GA values.

In Table 2 results are given for the analyses of conductivity data for saltsin thionyl chloride. These salts are all of interest for improvement oflithium primary batteries (Note: Pr4N refers to the tetrapropylammonium ion(C3H7 )4N+). The program written for the TI-59 calculator to solveEquation (15) is given in Appendix A.

L5

.0 r(4 mC m 1 C00 -V u

0 000 .0 - 0 00

000 c) 00 0 000 00 0 C C.

I':- OD 0 IV

71C C0. r c0 .04

.0~ ~~~ 000 r 1

0 00CI 0 0 UC 2-.v

m .0 *.0-

7~ 7" 70 ." 7. 7' 74 .4 m. -. 01 z u0 c E

:.d 10 10 In - 0 aI( I 0 0. V ,2

0I-~ 0 0 0 0 (N(4NCN(4 INr l14 1 4-

0c .* .. . 2I I

cy0m 00 co~ m 00 00 en -

C4. C401 r-. 0. 0* 0___ ____ ____ __

144-4 &)'( .. 4 -I .-

0 v-co10 1'. N * N U .

f0 10 a, . 2. '

0I ,- C~-.0

00n C' , c c

9.1 101 O2' M~22' .n (Nen. (

cow 01 .1

2JCIA'a 0 (N .2' 0 (.,. -00 1 0 co"T

co~~~~0. 4 F.- -4 - 2-'- 10 -

p4 14

0 (8 10

14) ~ L UN .4' 02'2' LNNI M 0 %a 10 4 t -1 fn M-. en fn). M.0 0c04 .14 0' 050 CDI4- OD0 &nIT7 rT 4

94 ~ ~~~ ..4 m l0 -

a, .1.C l4

49U U) (2114 4

41 04 co ao . 14 co .a, 1-4 '1

2- (( 00 10 1.022 4, r. u 0C 14

IN: 2).W0 U

-2) V.

IA 007 C.) U 4 1 4 L. 0

C14 cN mC L0 cC~C m 0 7 0r

w r4)1, 4 c 0. f c2 2-4 C O c- .4- 2. U2).Iw

M E3 co ))021>

01 0- 0 00

N ~ C' C C'

z0- V0C) C 0 C0

0-

0

00 C- en 0 a

r-4r-4 C4

z -o 0

En u

C) Q

Lf)

-4 *-4 a: ,-

0 ~ 8~'0

C/)

W 8C114

* 0 CD 0N4 4-4

'-44ON LO -4 C

-T 1- -1

-4

1-4 1-4U~ U -

7

APPENDIX A. -- TI-59 PROGRAM FOR SOLUTION OF EQUATION (15)

Solution of equation 15 PAGE-OF TI RogrommoblePROGRAMMER V- Sa3czn DATE 198D Program Record"Ptit"fl (Op 17) 16 .3 j9 Ubranuy Module NIA Pnnter Cards

USER INSTRUCTIONS

STEP PROCEDURE ENTER PRESS DISPLAY

I Enter Debye-Wickel and Onsager constants __ A_ A_ -- -A-

f 8 2 • - / s -, _

1 / S _ _ _ _

02 R/S E 2

2 Enter_ A_ _ A- 2d 'A

3 Enter ___ . __ __

4 Enter data for i 1. .,n ....- A. C_ A€i R/S_ c€i _

. - trisl a -- R/S refined -a

If desired, read activity coefficients: R/S y

_ _ _P, 3JS Yn

5 Compute constants J and J2 and the D - -J.j-

_orrelation coefficient, r R-S_ -_ J__

R/S r

6 Calculate standard deviations. E 0

_________ ___ _(-) -_.. A -. . I/S ___

...... ___ (c) refined ;._ . ./S - i

* .a

./S o(A)

7 Reset pointer to step 6(a) -- 2nd E'

a Remove last set of _N, _c _dc: from step 6. 2nd Z'

9 After step 6 completed, to recalculate nd----....d___o(A)

the std deve, press 2nd D' -- (-;1

RI/S. a (A"

-' 'i ... .. .. . ... .. ". .. .im . ..

...... II ll ... ... : .. . - LI I I~l ..... ...

0('1 7u LEL C159 4 S.Tl D , 1! 11 177 4: PCLf 1 I r1. D 25 t 2::5 91 P I ,' _' ,

0..? 4 .ST[ .0 1 7 1 ' ;F 1'0 43 F.R.L 19 34 F::0n_ (ii Fi0 06 23 Ltl:: 1: 13 : 3J - 5400 91 R. 0..3 71 .:,F 1' 91 F: ' 151 9,005 42 .TO 064 33 " 123 43 PC:L 1I2 2 III"006 01 (1 065 75 124 14 14 13 2$ LOG007 91 F'S 066 43 FR(L 1 5 91 P/. I:4 42 STE008 42 STO 067 25 .2, 1.:.6 76 LE:L I 1' :2,009 0 021 06 95 19 2 1:6 0010 91 R.'S 069 50 1'1i 1 01 1 1. 65 .'.:011 43 32 T 070 22 I|I',' 12? 5-2 EE 1 ., . . F(L012 03 03 071 77 GE 1 0 06 i. I ?' i 12,013 91 P'S 072 00 CID1 94 + -014 42 STU 073 86 eE. 1 Z 32 .1 1 191 4 RC:L015 04 0- 074 43 RCL 1 3 9.2 PTH 19 4 440IE. 91 R-. 075 11 11 1z4 76 L.L 193 q5017 76 LE:L 076 66 PHI) 1-5 '5 CLi 194 42 ST018 16 A, 077 65 1,:6 00 0 195 15 15019 42 STD 07 43 RCL 1l- 42 STD 19E 92 RTII020 05 05 079 10 1( 1 34 3 197 76. LEL021 65 -::0 95 1 9 42 STO 19S 59 I[IT02 43 RfCL r1 42 STD I0 1 35 3'5 199 4,2 STO0 01 01 00 12 12 141 42 STD 2If 09 (1C4024 85 + C1 .0-: E. GTD 1,;2 3.. 31. I I.E-0Z5 423 CL 0- '34 On O2 1-2 42 LTD . "016 0202 0 C, .- , 5 -7 1 4 37 , 100T 95 = 0S 7 71 SE$: 145 42 TD '"i -1 FTSO0 -4 3 7 0 " T o :: - I " 3 . - ' "0 06 0, 0.: 4 FPC:L 1 42 TD '030 43 :CL ci 09 (c 14:I 2:9 39 20- A

9

0C:1 05 05 0 '0 65"5 1 92- FTtJ 40 4- FC:L032 65 - 09 .o . 150 76 LE:L 29 10 10(323, 43 RCL 0 92 01 1 151 2,? LIl 20 .9t =034 03 0:-: 09Z 85 + 1.-.2 43 R:L 2: 1 42 STU035 75 - 094 43 F:L 153 00 OCt 212 12 2206 43 RCL 095 15 15 154 65 213 Z T.. I037 04 04 (96 55 155 43 RC:L 214 76 LBL038 95 097 43 F:C:L 15E. 12 12 215 45 7'¢:039 42 STD 09, (0 03 157 65 x 216 53 :040 07 07 099 54 ) 158 93. 2:7 43R:L041 1 S1 IEF. ID 7 '159 0 Z 2 18 05 05042 25 CLF: 101 4? P.CL 160 95 = 219 "1,75 -04: 91 F:.' 102 16 16. 161 22 1.I' 220 .7 PrC:L044 76 LE:L 103 95 162 20 L1G 221 06 06045 12 C 104 55 1.: 42 STU 2:2 65(:46 42 ST 105 4 Pr:L 16.4 14 14 22--3 4-3 .=(:L041 08 ('8 106. 12 12 165 28 LOG 224 12 Z048 71 SEP 107 95 166 75 - 2.25 34 F',049 25 CLF: I Cf*' 42 $TO 167 43 RCL 85 +050 91 F,'s 109 19 is I i4 00 (0 2.=7 43 FC:L051 76 LE:L I10 43 FC:L 1.6.9 65 :22 2 12052 13 c: 111 12 170 43 RCL I #5053 71 SLP 112 34 1 1 12 12 230 20 L W:o5d 59 PIT 1. 3 " 42 .SiU 172 34 r: 2.1 65C'55 71 SP 1 4 20 2' 17: 55 " ... F.(.L05c, 32 N: 115 71 sEr: 1,'4 53 , 23-, 07('57 43 F.CL 1 6 44 .lll, 17"5 01 1 234 95058 11 II 1;7 43 P.CL 176 85 ,"5 42' STD

9

2"6 16 16 25 95 42 3E 4C3 U237 54 296 44 SUM ... 18 ,_ . 4;4 91 F $.2-8 92 RN 297 3 34 356 91 F,. 45 71 1 F:239 76 LE:L 298 43 C 37 43 PCI 4.1 59 1N

o240 3 299 19 19 358 17 17 417 7 1 ; ,E:F:241 53 300 44 SLIM 359 91 F.R 418 45 ,;242 43 PC:L 301 38 :3"": 360 43 RCL 419 -7 1 3E:F243 08 08 302 53 36 36 C. 42'' 23244 65 -X 303 44 StII 36 55 - 421 43 -C:L245 43 RCL 304 39 39 3632: 43 RC:L 422 16 16-,E. 14 14 305 92 P.TII 364 . 42'

247 55 - 3506. 76 LE:L 365 7 - 424 4, RC:L248 43 RCL 307 14 I 366 53 K ":_ 1 18249 13 13 38 43 "C-,' SE? 43 Pct 42 E5250 33 XE 309 34 33 3t.E: 35 5 421 43 RC:L251 95 = 310 65 369 55 4... 1, I1252 42 STO 311 43 RCL 370 43 RC:L 4Q 85253 21 21 312 36 E. 37-1 34 34 430 43 RC:L254 33 x 313 75 372 54 4 431 17 17255 85 + 314 43 RCL 373 33 432 65256 04 4 315 35 35 374 95 4 5' .25? 65 316 33 "' 375 34 4.4 43 P:i258 43 RPCL 31? 95 = 376 42 STfl 435 12 12259 21 21 318 42 STO 377 ,-- 436 45260 65 3- 22 22 378 4$ RcL 4:7 0?261 43 RC:L 320 35 1 .::: 37 9 3q 4-: 54262 10 10 321 65 " 380 55 - 439 3,263 95 = 322 5 .5 381 43 P'.L 440 95 =264 34 4 4" 55 52 6 5 7 5 4 4 Z 5 --

E 6 43 P L 325 65 :34 44"2.7 21 -" 326 43 C:L. 35: 4- RC: 4*4 L5 +268 95 323 36 445 43 RC:L269 55 38 -75 387 55 - 446 15 15270 02 23 .2. 43 FPC:L 388 43 'C:L 44,-7 5 +5271 55 - 3 0 38 3E: 3c89 34 4 44, 43 C.:L272 43 RC:L 331 65 ", 390 54 ) 449 08 08273 10 10 332 43 C:L. 391 3? .4 54274 95, = 33 "9 35 392 954.-.. 5 ... - " 4 5 1 95 =275 42 STD :2.4 , 4 ? . 34, 45 75276 11 11 335 95 = 394 35 1 95 45. 43 RC:L27 7 54 ) Z'6 42 STU 395 65 454 09 C'9. .'.t ST[.I39565 4 : 3 : 454O~278 92 RTl 3:. 17 17 396 4 PrL 455 Q. =279 76 LE:L 3: . 43 PC:L 37 1- 47 45E 3t 3.280 44 SUM9 E. 36 9t. 39E : -5 457 42 TO281 01 1 30 65 39 42 RCL 45 2.,- 27282 44 SLIM -31 4U MCL 400 2.- e. 459 A4 4 t1283 34 342 38 Z:3:: 401 95 = 460 30 30284 43 RC:L 3:1 75 -- 4(02 9 IRE 41 403 1 '285 20 20 3-4 43 P:L 403 76 LE:L 4.2 09 0928. :6 44 Stll 345 35 = 4f4 15 F 463 65 -.

28:7 35 35 3 6 65 . 405 O0 (i 464 43 -CL288 33 M. 3C 4? P L 406 42 .'t 4'.. , 15 152.9 44 SLIM 3: - 37 .' 407 L ., 4i 5290 36 36 349 95 40,: 4 FTO .7 5. ,291 34 r;, 350 55 409 0l 4o- 4 2'CL292 65 ' 351 43 PC:L 410 42 -.TU 4t. ' 16 E.293 43 FC:L 35,2 22 22 411 31 31 470 .: t294 19 19 3-: 95 4 412 42 STE 471 43 rdL

10

4 658I 7 65 59 0 31- !474 43 "C[ 5.2 43 ,:CL 591 55 -44 1~ z 5C 2 . 592 43. RC:L475 12 12 4 34 -x 5 a ,476 85 + 5': 54 5477 43 RC.L

594 9547CS 43 L 536 85 + 595 34 7:479 65 " 5 43 R:L 596 91 R "4,0 53 " 538 02 02 597 43 RtL4 31 3 R 539 65 4481 43 R L 540 43 RL 598 32 24 E:2 12 54 1212 599 55483 45 V: 542 3 4 x600 33 R:3543600 43 R4403 543 95 = 602 95 -3

485 54 ) 544 55 604 95 =46 3 '603 34 ':

4E.6 74.5 . 545 53 604 91 R.S43? 75 - 546 01 1 605 76 LEL48 43 RCL 547 75 -606 I E B4E'9 09 (19 548 43 RCL 606 17 so490 54 ) 549 01 Ol 608 2? 2-491 95 = 550 65 .609 94 +-551 43 RCL 610 44 SlI493 43 RCL 552 12 12 610 30494 08 08 553 34 -k: 611 30 30495 95 =612 43 RCLS =554 54 613 28 28496 00

555 75 64497 42' .'-'TO 556 43 C:L6494+"498 2 556 43 615 44 SUIM498 282 55? 05 05 616 31 3]49 44 SUN'1 558 95 = 61? 01 1500 3 3131 559 33 .4 6 9 7..-501 43 RCL 560 4 4 AIN 9550.60

;t 09 619 44 :&LItI

503 09 09 561 32 32 620 29 -9562 43 RCL 621 61 GTD504 53 563 34 3 632 04 04505 01 1 564 32 ;N:T 623 14 14506 85 + 565 01 1 624 76 LE:L507 43 RCL. E 44 SLI25508 15 15 567 29 29 6265 6 0TO509 55 + 568 43 RCL 62? 04 04510 43 RCL 569 29 29 627 4 14511 08 08 570 67 EQ 6-29 76 LEL512 54 ) 571 05 05 630 19 I'

513 75 - 572 19 6 1514 43 RCL 573 94 +.-' , 1 G515 12 12 574 61 GTO 622 05 05516 65 04 04 633 01 01517 2" 3 LIt::*: 576 14 14518 65 xC 577 75 -519 43 R:I 578 03 3520 0? 07 579 95 =521 75 - 50 42 TU522 4-: RCL 581 33 ...52, 12 12 532 35 1,'2524 65 x 583 65 x525 53 < 584 43 R%:L526 43 RCL 585 30 3052? 18 18 586 95 =528 85 + 587 34 72529 43 RCL 5V:e 91 Rx,"S530 17 17 589 43 RCIL

HISA-FM-529-B1

I