715 sample

Upload: luis-murillo

Post on 04-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 715 Sample

    1/15

    v

    Contents

    Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

    1 National Electrical Safety Code Overview

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Rule 230. Clearances, General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Rule 231. Clearances of Supporting Structures From Other Objects. . . . . . . . . . . . . . . . . . . . . 5

    Figure 1-3. Clearances from railroad tracks. Rule 231C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Rule 232. Vertical Clearances of Wires, Conductors, and Equipment Above Ground,

    Roadway, Rail, or Water Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    Rule 233. Clearances Between Wires, Conductors, and Cables Carried on

    Different Supporting Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Rule 234. Clearance of Wires, Conductors, Cables, and Equipment from Buildings,

    Bridges, Rail Cars, Swimming Pools, and Other Installations . . . . . . . . . . . . . . . . . . . . . . . . . 23

    Rule 235. Clearance for Wires, Conductors, or Cables Carried on the

    Same Supporting Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Rule 236. Climbing Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    Rule 237. Working Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    Rule 238. Vertical Clearance Between Certain Communications and

    Supply Facilities Located on the Same Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    Rule 239. Clearance of Vertical and Lateral Facilities From Other Facilities and

    Surfaces On the Same Supporting Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Application of the NESC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    2 Pole Line Design

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    Route Selection and Control Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    NESC Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    Conductor Loading Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    Conductor Tensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    Ruling Spans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    Conductor Sag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    Weight Span (Load Span) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    Negative Load Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    Wind Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    Horizontal Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    Total Bending Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    Vertical Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

  • 7/29/2019 715 Sample

    2/15

    DISTRIBUTION DESIGN GUIDELINES

    vi

    Extreme Wind Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    Slack Spans (Reduced Tension Spans) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    Pole Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    Selection of Pole Top Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Pole Line Design Parting Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    3 Wood, Steel, and Concrete Poles

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    Wood Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    Wood Pole Specifications, Codes, Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    Steel Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    Concrete Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    4 Fiber Optic Cable

    General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Basics of Optical Fiber Communications Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    Fiber Optic Transmission Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    Fiber Optic Cable Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    Overall Design and Construction Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    5 Street Lighting

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    Factors Contributing to Roadway Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

    Roadway Lighting Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

    Roadway Lighting Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

    State Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    Example of Roadway Lighting System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    Power Supply and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

    Street Lighting Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    Voltage Drop Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    Lighting System Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Closing Thoughts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    6 Line Protection

    General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

    Distribution Transformer Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

    Fuse-Fuse Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

  • 7/29/2019 715 Sample

    3/15

    vii

    Reclosers and Breakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

    Recloser Recloser Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

    Sectionalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

    Recloser Sectionalizer Fuse Coordination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

    Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

    Surge Arresters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

    7 System Grounding

    General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

    Types of Grounding Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

    Earth as a Grounding Medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

    The Grounding Electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

    Pole Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

    Grounding of System Neutral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    Pole Grounding for Line Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

    Improving System Grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

    Substation Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

    Electric Shock and the Human Being . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

    8 Capacitors

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

    Power Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

    Capacitor Installations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260Capacitor Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

    Distribution Line Capacitor Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

    Design of Line Capacitor Installations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

    Substation Capacitor Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

    9 Protective Relaying

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

    Fault Current Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

    Transformer Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301Relay Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

    Instrument Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

    Overcurrent Relaying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

    Zone/Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

    Differential Relaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

    Miscellaneous Relaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

    Other Transformer Protection Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

  • 7/29/2019 715 Sample

    4/15

    10 Distribution Automation

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

    Basics of Distribution Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

    SCADA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

    Fault Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

    Power Quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

    Distribution Sensing, Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

    Distribution Automation Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

    Communication Systems for Distribution Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

    Automation Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

    Benefits of Distribution Automation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

    Environmental Conditions to Consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

    11 Underground DistributionIntroduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

    Overhead vs. Underground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

    Engineering URD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

    Code Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

    Design of URD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

    Installation of URD Facilities Some Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

    Operating the URD System Some Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

    12 Transformer ConnectionsIntroduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

    Transformer Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

    Paralleling Single-Phase Distribution Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

    Phase Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

    Ferroresonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

    Single-Phase Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

    Considerations for Polyphase Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

    Common Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

    Banks With Two Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

    13 Metering

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490

    Basic Construction and Operation of an Induction Watthour Meter . . . . . . . . . . . . . . . . . . 490

    Demand Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

    Reactive Power Metering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

    DISTRIBUTION DESIGN GUIDELINES

    viii

  • 7/29/2019 715 Sample

    5/15

    ix

    Standard Metering Installations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

    Special Metering Installations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

    Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

    Automated Meter Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

    Safety Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

    14 Dispersed Generation

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

    Distribution Generation Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

    Commonly Applied Distributed Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

    New and Emerging Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

    Switching and Protection Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

    Overview of the DG Utility Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

    Requirements of IEEE 1547 Standard for Interconnecting Distributed Resourceswith Electric Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

    Glossary of Interconnection Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

    DG Interconnection Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

    15 Engineering Economics

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

    Cost Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

    Cost Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

    Introduction to Engineering Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557Time Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

    Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

  • 7/29/2019 715 Sample

    6/15

    DISTRIBUTION DESIGN GUIDELINES

    12

    18. For uncontrolled water flow areas, the surface area shall be that enclosed by its annual high-water mark.

    Clearances shall be based on the normal flood level; if available, the 10-year flood level may be assumed as the

    normal flood level.

    19. The clearance over rivers, streams, and canals shall be based upon the largest surface area of any 1-mile-long

    segment that includes the crossing. The clearance over a canal, river, or stream normally used to provide access for

    sailboats to a larger body of water shall be the same as that required for the larger body of water.20. Where an overwater obstruction restricts vessel height to less than the applicable reference height given in

    Table 232-3 in the NESC, the required clearance may be reduced by the difference between the reference height

    and the overwater obstruction height, except that the reduced clearance shall not be less than that required for the

    surface area on the line-crossing side of the obstruction.

    21. Where the US Army Corps of Engineers, or the state, or surrogate thereof has issued a crossing permit, clearances

    of that permit shall govern.

    22. See Rule 234I for the required horizontal and diagonal clearances to rail cars.

    23. For the purpose of this Rule, trucks are defined as any vehicle exceeding 8 feet in height. Areas not subject to truck

    traffic are areas where truck traffic is not normally encountered nor reasonably anticipated.

    24. Communication cables and conductors may have a clearance of 15 feet where poles are back of curbs or other

    deterrents to vehicular traffic.

    25. The clearance values shown in this table are computed by adding the applicable Mechanical and Electrical (M&E)

    value of Table A-1 to the applicable Reference Component of Table A-2a of Appendix A in the NESC.

    26. When designing a line to accommodate oversized vehicles, these clearance values shall be increased by the

    difference between the known height of the oversized vehicle and 14 feet.

    Vertical Clearances of Service Conductors

    Shown below is a summary diagram of the most commonly required vertical clearances for

    service conductors, limited to 300 V to ground.

    Vertical clearances shall not be less than those shown in Figure 1-4, and shall be applied asdescribed earlier in Rule 232A. Application. The clearances shown here are as designed and are

    not clearances under ambient conditions.

    Figure 2.4. Vertical clearances of service conductors.

    Street

    Residentialdriveway

    Not less than16.5 ft (open wire)16.0 ft (multiplex)

    See Table 1-2.Not less than

    16.5 ft (open wire)16.0 ft (multiplex)

    See Table 1-2.Not less than

    12.5 ft (open wire)12.0 ft (multiplex)

    Accessible areapedestrians only

  • 7/29/2019 715 Sample

    7/15

    DISTRIBUTION DESIGN GUIDELINES

    70

    Figure 2-3. Point of maximum sag and low point can be different.

    Horizontal distance:

    and

    Vertical distance:

    Where:

    X = horizontal distance to low point in sag from the lower support, ft

    Y = vertical distance to low point in sag from the lower support, ft

    L = span length, ft

    H = difference in attachment elevations, ft (if higher, the value is positive

    and if lower, it is negative)S = conductor sag in question (any sag), ft

    Note: If the value of (1 H/4S) is negative, the low point in sag (theoretical) occurs beyond the

    lower support and thus not in the given span. In this case, the low point in sag is at the

    attachment point of the conductor at the lower support.

    Anatomy of a Span

    Figure 2-4 depicts the important terminology associated with components of conductor sag.

    These components are used constantly when designing overhead utility lines.

    Y = S 1 H

    4S

    2

    X = 1 L2

    H4S

    Low point on sag

    S

    H

    Y

    L

  • 7/29/2019 715 Sample

    8/15

    DISTRIBUTION DESIGN GUIDELINES

    76

    Wind Loading on the Conductors

    The horizontal loading due to the wind force on a conductor is defined by this equation:

    FWC = WH LW OFT

    Where:FWC = horizontal load due to wind force on each conductor, lbs

    WH = horizontal wind factor, lbs/ft

    LW = wind span, ft

    OFT = overload factor for transverse wind as required by NESC Table 253-2.

    Wind Loading on the Structure (Pole)

    For manual calculations, the wind loading on the structure (pole) is to be applied to that

    portion of the pole above the support level, see Figure 2-8. For an unguyed pole the support

    level is the ground line and for a guyed pole the support level is defined as the top guy level.

    The wind loading on that defined pole section is found by using the following formula:

    FWS = WPH DA L OFT

    Where:

    FWS = wind load on structure (pole), lbs

    WPH = horizontal wind pressure for given loading conditions, lbs/ft2

    DA = average diameter of pole (above pole support level) ft

    L = length of pole section above pole support level, ft

    OFT = overload factor for transverse wind as required by NESC Table 253-2.

    Figure 2-8. Wind loading on a structure.

    Guyed pole support level

    Unguyed pole support leve

    L (guyed) (guyed)

    L (unguyed

    (unguyed

    WS (unguyed

    FW (guyed)

  • 7/29/2019 715 Sample

    9/15

    DISTRIBUTION DESIGN GUIDELINES

    122

    Figure 3-8. Prestressed spun concrete pole.

    Here are brief descriptions of the major components that make up a prestressed concrete pole:

    Prestressed Strands

    Prestressed strands are the main strength members of a concrete pole. The number of

    prestressed strands, their size and location depends on the manufacturer and the class and/or

    strength requirement of the pole. For ease of drilling, the location of these prestressed strands

    can be specified. The prestressed strands are loaded to a specific tension to insure the concrete

    stays in compression. Strands are generally located symmetrically, which makes it fairly easy to

    avoid them when drilling. Prestressed strands are made of high strength carbon steel and can

    only be cut with a torch. Due to their importance in the overall strength of the pole, they

    should never be drilled, cut, or left exposed. Poles with this type of damage should be removed

    from service.

    Spiral Wrap

    Spiral wrap wires are smaller than the prestressed strands and are made of mild steel. They arewrapped helically around the prestressed strands for the full length of the concrete pole.

    Although they provide some strength to the concrete pole, cutting the spiral wrap wires for

    boltholes does not generally have a significant effect on the strength of the pole.

    Non-Tensioned Reinforcement

    Non-tensioned reinforcement is nothing more than mild steel rebar. It is often used at the

    ground line to provide extra strength in this area. It is placed beside the prestressed strand and

    normally will not be located where it might be cut.

    Concrete cover

    Concrete cover

    Spiral wire isc oser toget er

    at each en

    Longitudinal

    Longitudinal wire(if required)

    Prestressed str

    Prestressed s

    Spiral wire

    Spiral wire

    Non-tensionedreinforcement(if required

    on-tens one ren orcem(if required) Seam line

    s requ re

    5 8 in. minimum

  • 7/29/2019 715 Sample

    10/15

    DISTRIBUTION DESIGN GUIDELINES

    150

    Figure 4-8. Typical hardware for optical ground wire (OPGW). Courtesy: Preformed Line Products.

    Figure 4-9. Typical hardware for ADSS cable. Courtesy: Preformed Line Products.

    Air flow spoiler Dielectricdamper

    ADSScoronaTM

    coil

    Downleadcushion &mountingaccessories

    Splice casewithin steelballistic shield

    Dielectricdeadends

    or litetension

    deadend

    Cable abrasionprotector

    In spanstorage system

    Verticalcablestorage

    Closure orsplice case

    Dielectricsupport,aluminum

    support, orlite support

    Dielectricsuspension or

    aluminumsuspension

    Air flow spoiler

    Spiral vibration damper

    Support

    Downleadcushion & lattice

    tower clamp

    Formed wire deadend

    OR

    Suspension

    Cushion clamp

    OR

    U-Bolt deadend

    Defender& vertical

    cable storage

    Splicecase/

    closure

  • 7/29/2019 715 Sample

    11/15

    DISTRIBUTION DESIGN GUIDELINES

    180

    Figure 5-6. Street lighting example.

    From Table 5-5, we determine the roadway surface classification as R1. The residential area in

    question is classified as a low pedestrian conflict area as listed in Table 5-3. From Table 5-6 we

    see that the average maintained illuminance value (footcandles) for a major roadway in a low

    pedestrian conflict residential area is 0.6 footcandles.

    To calculate the average maintained footcandles, we assume the Lamp Depreciation Factor to

    be 90% and the Luminaire Dirt Depreciation to be 80%. Using Figure 5-3 (American Electric

    Roadway Luminaire) photometric data, the Coefficient of Utilization graph shows the CU to

    be 43%, based on this calculation:

    Street sideHouse side

    CL of luminaire

    Sidewalk

    30'

    Sidewalk

    45'

    39'6'

    P2

    P2

    Points P1 and P2avg. maint. 0.6 FC

    P1

    P1

    160.52'

  • 7/29/2019 715 Sample

    12/15

    LINE PROTECTION

    203

    Figure 6-7. Inrush and damage curves.

    Fuse-Fuse CoordinationFuse link coordination can be achieved by the use of TCC curves, coordination tables, or

    industry established rules of thumb. When fuses are installed in series on a power system, the

    down-line fuse is referred to as the protecting link and the up-line fuse is referred to as the

    protected link. To achieve coordination, the protecting link should operate for faults in its zone

    of protection without causing damage to the protected link.

    0.01 0.6

    0.02 1.2

    0.03 1.8

    0.04 2.4

    0.05 3

    0.06 3.60.07 4.20.08 4.80.09 5.40.1 6

    0.2 12

    0.3 18

    0.4 24

    0.5 30

    0.6 360.7 420.8 480.9 54

    1 60

    2 120

    3 180

    4 240

    5 300

    6 3607 4208 4809 540

    10 600

    20 1200

    30 1800

    40 2400

    50 3000

    60 360070 420080 480090 5400

    100 6000

    0.5

    0.6

    0.7

    0.80

    .9 1 2 3 4 5 6 7 8 910

    20

    30

    40

    50

    60

    70

    80

    90

    100

    200

    300

    400

    500

    Current in Amperes: x 1 at 12.5 kV.

    TimeinSeconds

    TimeInCycles(60-Hz

    Basis)

    Damage CurveInrush Curve

    Transformer Fuse

  • 7/29/2019 715 Sample

    13/15

    DISTRIBUTION DESIGN GUIDELINES

    248

    Deep Driven Ground Rods

    Using longer rods or sectional ground rods to drive the rod deeper into the earth usually

    decreases the electrode resistance. In addition, with the ground electrode down further into the

    earth it is more likely to exhibit lower levels of resistance due to water tables and constant soil

    temperatures. It may also encounter soil with a lower resistivity. A rule of thumb is thatdoubling the length of the ground rod will lower the resistance by 40%.

    Multiple Ground Rods

    Paralleling multiple ground rods can achieve lower resistances by providing multiple paths for

    the current to divide. However, paralleling two rods will not reduce the resistance by one-half

    as is usually the case with parallel conductors. The reason for this is that the rods are not

    widely separated from one another and the rods will mutually interact on each other through

    their common resistances to remote earth. Separation of the rod grounds will greatly influence

    the reduction in resistance. It is recommended that the rods be spaced from one another at a

    distance of two times the length of the rods and tied together with a #6 or #4 copperconductor. If they are spaced in this manner, the reduction in resistance using two ground rods

    is about 60%, three reduces it to 40%, and four reduces it to 33%.

    Install Ground Away From the Pole

    Ground rods installed adjacent to poles are typically in soil which was disturbed when the pole

    was installed. This can result in a relatively high ground resistance. Installing the rod 2 to 3 feet

    from the pole may reduce the resistance considerably. This is especially true when installing

    ground rods for padmounted equipment.

    Chemical TreatmentsIn some extreme cases, the soil surrounding the ground electrode must be chemically treated to

    reduce the ground resistance. This method also helps to reduce the change in soil resistivity

    during wet and dry seasons. The major disadvantages of this method are that it is expensive

    and is not generally permanent (chemicals are washed away by rain). However, it may be the

    only solution for areas with underlying rock layers preventing the use of deeper or even

    multiple rods. The materials used for this purpose are generally referred to as Grounding

    Enhancement Material or GEM, and this abbreviation is used in some trade names. Buried

    electrodes are sometimes placed in Bentonite clay which has a favorable resistivity.

    Substation GroundingThe function of a substation ground is to provide proper operation of electric equipment and

    to provide personnel safety. These functions can be met by using the lowest practical resistance

    between the circuit neutrals and the earth. Typically, a ground grid that is designed to meet the

    safety standards for personnel will also be satisfactory for equipment operations.

    The substation ground grid generally consists of driven ground rods tied together with buried

    cables and equipment ground mats, which are all tied to the system neutral. Current flows into

    the ground from lightning surges, ground faults. Switching surges can cause potential

  • 7/29/2019 715 Sample

    14/15

    PROTECTIVE RELAYING

    333

    Figure 9-17. Line breaker with instantaneous relay.

    As can be seen, the two are properly coordinated. However, instantaneous relaying can be

    applied at breaker A to increase its sensitivity without mis-coordinating with breaker B. This is

    accomplished by setting the instantaneous relay to see 80-85% of the distance to B. This can

    be easily calculated as a ratio of fault current decrease to line length since this can be approxi-

    mated as a linear relationship.

    IInst = 8000 - [(8000 6000) 0.8] = 6,400 amps

    The instantaneous relay can, for all practical purposes, be drawn as a vertical line at the 6,400

    amps location. This time-overcurrent curve can be indicated with a dashed line for all currents

    greater than the instantaneous setting.

    Figure 9-17 has been redrawn in Figure 9-18 with a tap at point C that is protected by a fuse.

    Source20 miles

    80-85

    Current

    ime

    6000 A 6400 A

    6,400=

    IF @ B IF @ A

  • 7/29/2019 715 Sample

    15/15

    DISTRIBUTION DESIGN GUIDELINES

    Figure 9-18. Radial line with fused tap.

    As can be seen, for a fault with a magnitude of 7,200 amps on the tap at C just beyond the fuse,

    the instantaneous trip setting on breaker A will operate faster than the fuse. The only way to

    alleviate this problem is to set the instantaneous relay above 7,200 amps or to remove the

    instantaneous relay. However, this greatly reduces the sensitivity of the breaker relay scheme to

    high-magnitude, close-in faults.

    Application of instantaneous relaying can be accomplished by utilizing a reclosing relay with

    an instantaneous trip lockout feature. After a preset number of reclosers (usually one or two),

    this device locks out the instantaneous relay from operation. Thus, breaker A can be set tooperate twice on instantaneous and then revert to time delay for two additional operations. As

    a result, an intermittent (transient) fault on the tap at C can be cleared without the fuse

    blowing. It is estimated that two-thirds of all faults are transient in nature, this results in a

    considerable reduction in outage time for the consumer. If the fault is persistent, the instanta-

    neous relay will be locked out and, under time delay at breaker A, the fuse will clear the fault

    providing correct coordination.

    For a persistent fault on the main feeder, the time delay of the final two operations can be

    undesirable. However, due to the small percentage of persistent faults and, by liberal

    application of fuses on all taps off the main feeder, this problem can be reduced to an

    acceptable level.

    Ground Overcurrent Relaying

    Though all of the principles above are applicable to relaying for ground faults, ground fault

    protection requires special consideration. The magnitude and detection of ground faults

    depends upon transformer connection (delta or wye) and the presence of a ground impedance

    in the case of a wye system. The following discussion will concentrate on the solidly grounded

    wye system prevalent in most distribution systems.

    C

    6400 A

    Tim

    e

    A

    7200 A

    ource

    8000 A

    IF @ B IF @ AIF @ C