75509 2 supp 1624250 72n8s8 - academic commons

13
Suppleme microelec recorded f electrodes electrodes microelect entary Figu ctrode arra rom a singl on the arra on the arra trode array ure 1. Progr ay that was e microelec ay during th ay during th channels du ression of s not recruit ctrode durin he seizure in he seizure in uring the se seizure acti ted into th ng a seizure n a.(b) Aver n a.(d) Mult eizure in a. ivity record e ictal core .(b) Averag raged multi tiunit raster ded from a e. (a) Raw L ged high‐gam unit firing r r plot over a LFP traces mma over rate over

Upload: others

Post on 22-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 75509 2 supp 1624250 72n8s8 - Academic Commons

Supplememicroelecrecordedfelectrodeselectrodesmicroelect

entaryFiguctrodearrafromasinglonthearraonthearratrodearray

ure1.Prograythatwasemicroelecayduringthayduringthchannelsdu

ressionofsnotrecruitctrodedurinheseizureinheseizureinuringthese

seizureactitedintothngaseizurena.(b)Averna.(d)Multeizureina.

ivityrecordeictalcore.(b)Averagragedmultitiunitraster

dedfromae.(a)RawLgedhigh‐gamunitfiringrrplotover

aLFPtracesmmaoverrateover

Page 2: 75509 2 supp 1624250 72n8s8 - Academic Commons

SeinacrrhKasa(Tdc

Supplemenelectrophysntervals(IDadjacentECocorrespondiightoftheIecordedonhistogramsaKullback‐LieandECoGareizure.TheaccordinglydifferentcoThedottedldivisionbetwcoefficiento

taryFiguresiologicalsDI)foraseizoGelectrodengcolorsfoIDIplotsthrtheMEA(dareagainshebler(K‐L)dreshownabseizureinwhasahigheolors)duringinesforeacweenpost‐rfvariationo

e2.Inter‐dscalesandazurerecordee(orangecioreachrecoroughtime.dottedlines)howntothedivergencesbovethesehwhichtheMrK‐LdiverggasinglesechcorresponrecruitmentoftheIDIs.

dischargeinarerelatededfrompatircles).Ictalordingmoda(b)IDIsfor)andnearerightasdotsbetweendhistogramsuMEArecordigence.(c)IDeizure,withndinglycolotandpre‐te

ntervalsaredtoseizuretient5withlhighgammality.AnIDIrallictalcorestECoGeletted(MEA)distributionsusingthecongwascurtDIsdetermihIDIhistogroredECoGerminatione

econsistenestage.(a)ItheMEA(b

matracesarhistogramreseizuresectrodes(soandsolidlisofIDIsrecorrespondintailedisshonedfromearamsagainselectrodeinepochsoccu

ntacrossInter‐dischablackcircleseshowninisshownto(differentcolidlines).IDnes(ECoG)cordedonthngcolorforowninpinkachECoGelshowntothndicatewherurred,based

arges),andan

otheolors)DI.TheheMEAeachkandlectrodeheright.rethedonthe

Page 3: 75509 2 supp 1624250 72n8s8 - Academic Commons

SupplementaryFigure3.Alternativemeasuresoftravelingwavespeedacrosstheelectrodearray.(a)Meanmagnitudeofthevelocityvectorquantifiedoversixrecruitedseizuresinthreeepochs(color‐codedasinFigure1).(b)Meantravelingwavespeedquantifiedoversixrecruitedseizuresinthreeepochs(color‐codedasinFigure1).Asterisksindicatesignificantcomparisons.Barsindicatestandarderror.

Page 4: 75509 2 supp 1624250 72n8s8 - Academic Commons

SupsynshopairofEand(c)seizprinthedetforandmic(gra

pplementarnchrony.(aowninblue.rsofmicroeECoGandmdCwererecThreechanzureasinAncipalcomppre‐terminerminethetheexampldmeanamocroelectrodeay).

ryFigure4)TheendoMedianmuelectrodesisicroelectrodcorded.ColonnelsofLFPandarepreponent,acronationepochslopeoftheeseizure.(duntofvariaesimplante

4.Large‐scafaseizurerutualinformsshownbeldelocationsoredelectrorecordedfresentativeinossallECoGh.Theblackevarianceed)Scatterpanceexplaindintheicta

alepre‐termrecordedonmationformlowforthesforthepatodescorrespromECoGencreaseinvGelectrodeskdottedlinexplaineddulotofpre‐tenedforeachalcore(blac

minationinnthemicroemultiunitevesameseizurtientfromwpondtovoltlectrodesdvarianceexponthegrideshowslineuringtheprerminationhseizureinck)andout

ncreasesinelectrodearenttimingare.(b)Recowhomseizurtagetracesiuringthesaplainedbytdshowninbearregressire‐terminatiincreasesinpatientswioftheictalc

nLFPrrayisamongonstructionresinAinaandc.amethefirstb,duringontoionepochnvariance,ithcore

Page 5: 75509 2 supp 1624250 72n8s8 - Academic Commons

SupplementaryFigure5.IllusoryhypersynchronyinlowfrequencyLFP.(a)LowfrequencyLFPrecordedfromgridECoGelectrodesduringadischargethatoccurredearlyinthepre‐terminationphaseoftheseizure.Eachcoloredtracerepresentsadifferentelectrode.(b)LowfrequencyLFPrecordedfromgridECoGelectrodesduringthefinaldischargeintheseizure.Eachcoloredtracerepresentsadifferentelectrode.

Page 6: 75509 2 supp 1624250 72n8s8 - Academic Commons

SuppcorreacrosoccurrateothesabetwactiviHistodetertermiof0.0

plementaryespondingsstheMEA,r.ColorsranoneachchaameMEAcheenMEAchitypeaksacogramofp‐vrminedfrominationdisc05.Allofthe

yFigure6.Tmultiunitacoloredbyngefromconnelina.Mhannels.(c)hannelrankcrossallprevaluesforWmtravelingwchargesfromep‐valuesw

Travelingwactivitydelwhentheirpper(earlie

MatchingcolHistogramsdetermine‐terminatio

Wilcoxonsigwaveslopesmallseizureweregreater

wavesacrolays.(a)Exapointsofmer)toblackorsindicateofz‐valuesedfromtravondischargegned‐ranktesandmultiues.Thedottrthan0.05.

ossMEAmicampleLFPd

maximumde(later).(b)ethesignalsforWilcoxovelingwaveesfromallsestsbetweeunitactivityted‐lineindi

croelectroddischargesrescent(greeNormalizedswererecoonsigned‐reslopesandseizures.(d)enMEAchanypeaksacroicatesacriti

desandrecordedencrosses)dfiringrdedonanktestsdmultiunit)nnelranksossallpre‐icalvalue

Page 7: 75509 2 supp 1624250 72n8s8 - Academic Commons

SupplementaryTable1.Computationalmodelparameters

Parameter Notation ValueInputresistance 1/ 125MΩRestingmembranepotential ‐68mVMeanmaximalintra‐networksynapticconductance

60nS

Meanintra‐networksynapticconductancereversalpotential

‐30mV

Extra‐networkfeedforwardinput 0~3nSReversalpotentialofextra‐networkfeedforwardinput

0mV

Synapticdepressionconstant 200msSynapticdepressionratio 0.6Meanmaximalfiringrate 100HzSpikingthreshold ‐42mVSpikingthresholdstandarddeviation 4.5mVSynaptictimeconstant 25ms

Page 8: 75509 2 supp 1624250 72n8s8 - Academic Commons

SupplementaryTable2.ClinicaldetailsfromstudypatientsPatient(Age/Gender)

1(30/F) 2(30/M) 3(32/F) 4(19/F) 5(24/M)

ArrayRecruitedintoictalCore?

No(penumbral)

No(penumbral)

Yes Yes Yes

MEAlocation Leftsupplementarymotorarea,3cmsuperiortoBroca’sarea

Leftlateralfrontal,2cmsuperiortoBroca’sarea

Leftinferiortemporalgyrus,2.5centimetersfromtemporalpole

Rightposteriortemporal,1cminferiortoangulargyrus

Leftmiddletemporalgyrus3cmfromtemporalpole

Clinically–DefinedSeizureOnsetZone

Leftsupplementarymotorarea(includingMEAsite)

Leftfrontaloperculum(includingMEAsite)

Leftbasal/anteriortemporal(includingMEAsite)

Rightposteriorlateraltemporal(includingMEAsite)

Leftmesialtemporallobespreadtolateraltemporallobe(includingMEAsite)

NumberofSeizuresexamined

7 3 3 1(MEArecordingcurtailedduringpost‐recruitmentepoch)

2

SeizureTypes

Complexpartial

Complexpartial

Complexpartial

Complexpartialwithsecondarygeneralization

Complexpartial

Pathology N/A(multiplesubpialtransectionsperformed)

Nonspecific MildCA1Neuronalloss;lateraltemporalnonspecific

Nonspecific Nonspecific(nohippocampalsclerosis)

Outcome EngelIII Engel1a Engel1a Engel1a Engel1a

Page 9: 75509 2 supp 1624250 72n8s8 - Academic Commons

SupplementaryNote1

LFPsynchronyincreasestowardtheendofseizures

WeobserveddecreasedMUAdesynchronizationovertheMEA

(SupplementaryFigure4A),andcorrespondingdecreasesinhighgammaoverictal

coreECoGsitesinallfivepatientsleadinguptoseizuretermination.Weinterpreted

thesesignalstobeindicativeofaprogressivedesynchronizationleadingupto

seizuretermination,whichisincontrasttotheincreasedsynchronyobservedin

previousECoGstudies1‐4.Inordertoconfirmlarge‐scale(centimetersofbrain

area)pre‐terminationsynchronyinthecurrentdataset,andcontrolforthe

possibilitythattheseizuresexaminedherehavedifferentdynamicsthanthose

reportedintheliterature,weexaminedsynchronyinthebroadbandLFPrecorded

acrosstheECoGgridsoverlyingeachMEAchannel.Synchronywasmeasuredina

similarmannertopreviousstudies1,5,byexaminingtheamountofvariancethatcan

beexplainedbythesinglelargestcovariancedimensionusingprincipalcomponents

analysis.WefoundthatsynchronyincreasedacrosstheECoGgridspriortoseizure

termination,consistentwithpreviousobservations.However,thisincreasein

synchronywasapparentonECoGelectrodesinpatientswiththeMEAineitherthe

ictalcoreorthepenumbra(SupplementaryFigure4Band4C).Therewasalsono

significantdifferenceamongpatientsinthepre‐terminationincreaseinsynchrony

(Mann‐WhitneyU,p=0.12,SupplementaryFigure4D).Theseresultssuggestthat

previouslyobservedincreasesinsynchronyaredominatedbythelowfrequency

Page 10: 75509 2 supp 1624250 72n8s8 - Academic Commons

LFP,whichaccountsforanexponentiallylargeportionoftheECoGsignalvariance,

comparedtohighgamma.

SupplementaryNote2

ComputationalModel

Wemodeledmacrocolumnsofcellsintheictalcoreusingameanfield

approach,wherethefiringrateofatypicalcellwasusedtoapproximatetheentire

macrocolumn.Cellsreceivedintra‐networkrecurrentsynapticinputandextra‐

networkcurrentinput.Thetypicalcellmembranepotential,V,wasmodeledwith

thefollowingsetofequations:

∗ ∗ D ∗ f V ∗ ∗∗ D ∗ f V

∗ D ∗ f V

Where istheeffectivetimeconstantforchangeinthemembranepotentialover

timeand isthesteadystatemembranepotential.Inputtothenetworkofcells

wasrepresentedwiththe termandrecurrentconnectionsamongcellswere

Page 11: 75509 2 supp 1624250 72n8s8 - Academic Commons

treatedasintra‐networksynapticinput,whichwasmodeledwiththe ∗ D ∗

f V ∗ term.Inthisterm, andf V standformaximalintra‐network

recurrentsynapticconductanceandfiringprobabilityasafunctionofmembrane

potential,respectively.Firingprobabilityfollowedthefollowingerrorfunction

1

√2/

Synapticdepressionevokedbyrepeatedactivationswasincludedinthe

model.Becauserepetitivesynaptictransmissionsinthecerebralcortexhasbeen

foundtoinduceshort‐termsynapticdepression(STD)6,theeffectivesynaptic

strengthDwasmodeledwiththefollowingsetofequations:

11 1 ∗ ∗ ∗

Where representsthesynapticdepressionratio(i.ehowmuchapostsynaptic

potentialisdepressedfollowingaprecedingpotential)and representsatypical

cell’smaximalfiringrate. ∞wasobtainedbyassumingapre‐synapticPoisson

spikingproperty7.Notethatverysophisticated,biologicallyinspiredmodelsexhibit

similarproperties8.

Page 12: 75509 2 supp 1624250 72n8s8 - Academic Commons

TableS1showsparametersusedforcomputationalsimulation.The

parameterswerechosenbasedonexperimentaldatafromlayer5pyramidal

neurons9,10.Twoexceptionswerethemeanmaximalrecurrentconductanceand

averagereversalpotential, and respectively.Thevalueof waschosen

byaveragingthereversalpotentialsofGABAandglutamatereceptorsinorderto

modelbothinhibitoryandexcitatoryintra‐networkconnections.Thevalueof

waschosentomakethetypicalcellsdemonstratetonicfiringwhilereceiving

maximalrecurrentinput.NumericalresultswerecalculatedbyXPPwitha0.1ms

timestepusingtheRunge–Kuttafourthordermethod11.

Thecomputationalmodelwasthusestablished,anddecreasinginputwas

appliedinordertosimulatetheeffectsofaprogressivelyweakeningormovingictal

wavefront.Thevalueof wasthereforedecreasedlinearlyfrom3to0nS,with

seizuredynamicsbeingreproducedbetweenapproximately2.7and2.2nS.

CorticalreconstructionandECoGalignment

Corticalreconstructionandvolumetricsegmentationwasperformedwith

theFreesurferimageanalysissuite,whichisdocumentedandfreelyavailablefor

downloadonline(http://surfer.nmr.mgh.harvard.edu/).

SupplementaryReferences

1. Schindler,K.,Elger,C.E.&Lehnertz,K.Increasingsynchronizationmay

promoteseizuretermination:evidencefromstatusepilepticus.ClinNeurophysiol118,1955–1968(2007).

2. Kramer,M.A.&Cash,S.S.Epilepsyasadisorderofcorticalnetwork

Page 13: 75509 2 supp 1624250 72n8s8 - Academic Commons

organization.Neuroscientist18,360–372(2012).3. Kramer,M.A.etal.Coalescenceandfragmentationofcorticalnetworks

duringfocalseizures.JournalofNeuroscience30,10076–10085(2010).4. Jiruska,P.etal.Synchronizationanddesynchronizationinepilepsy:

controversiesandhypotheses.JPhysiol(Lond)591,787–797(2013).5. Schindler,K.,Leung,H.,Elger,C.E.&Lehnertz,K.Assessingseizuredynamics

byanalysingthecorrelationstructureofmultichannelintracranialEEG.Brain130,65–77(2007).

6. Dobrunz,L.E.&Stevens,C.F.Heterogeneityofreleaseprobability,facilitation,anddepletionatcentralsynapses.Neuron18,995–1008(1997).

7. Dayan,P.&Abbott,L.F.Theoreticalneuroscience.(2001).8. Markram,H.,Wang,Y.&Tsodyks,M.Differentialsignalingviathesameaxon

ofneocorticalpyramidalneurons.ProcNatlAcadSciUSA95,5323–5328(1998).

9. Tripathy,S.J.,Savitskaya,J.,Burton,S.D.,Urban,N.N.&Gerkin,R.C.NeuroElectro:awindowtotheworld'sneuronelectrophysiologydata.FrontNeuroinform8,40(2014).

10. Williams,S.R.&Stuart,G.J.SiteindependenceofEPSPtimecourseismediatedbydendriticI(h)inneocorticalpyramidalneurons.JNeurophysiol83,3177–3182(2000).

11. Ermentrout,B.Simulating,Analyzing,andAnimatingDynamicalSystems:AGuidetoXPPAUT...‐BardErmentrout‐GoogleBooks.(2002).