8 chemical kinetics

Upload: ranny-r-rusman

Post on 01-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 8 Chemical Kinetics

    1/49

    8. Chemical Kinetics

    objectives of chemical kinetics

    1) Determine empirical rate laws

    H2+ I2−→ 2 HI

    How does the concentration of  H2,  I2, and HI change

    with time?

    2) Determine the mechanism of the reaction

    H2+ I2−→ 2 HI

    is a stoichiometric statement

    reactants −→ intermediates −→ products

    elementary reaction: the stoichiometric equation

    reflects what actually happens to the molecules

    mechanism: series of elementary reactions that

    constitute the stoichiometric equation

    PChem I 8.1

  • 8/8/2019 8 Chemical Kinetics

    2/49

    example

    2 H2+O2−→ 2 H2O

    some intermediate steps:

    H2+O2−→HO2+H

    H2+HO2−→OH+H2O

    OH+H2−→H2O+H

    O2+H−→OH+O

    H2+O−→OH+H

    3) Empirical study of elementary reactions

    important intermediates are often unstable, short-

    lived species:  H, OH, . . .

    4) Predict rates of reactions

    theoretical calculations

    5) Chemical dynamics

    study the dynamics of collisions and reactions of indi-

    vidual molecules; high vacuum

    PChem I 8.2

  • 8/8/2019 8 Chemical Kinetics

    3/49

    reaction rates

    2 NO+O2−→ 2 NO2

    time dependence:   −d[NO]

    dt ,   −

    d[O2]

    dt ,

      d[NO2]

    dt 

    ambiguity: NO reacts twice as fast as  O2

    chemical reaction νJJ= 0νJ  positive for products

    νJ  negative for reactants

    extent  of the reaction ξ

    dn J≡ νJdξ

    Using numbers of moles in the definition of the extent

    of the reaction, we ensure that it is general and that

    it applies even to non-constant volume reactions.

    dn NO=−2dξ

    dn O2 =−dξ

    dn NO2 = 2dξ

    PChem I 8.3

  • 8/8/2019 8 Chemical Kinetics

    4/49

    reaction rate:   ξ̇= dddξdddt 

    (rate of conversion)

    dn J= νJdξ   =⇒dn J

    dt 

    =νJξ̇

    ξ̇=  1

    νJ

    dddn J

    dddt single  rate for reaction

    can follow the time-dependence of any component

    If  V  = const, then the reaction rate can be expressed

    by the rate of concentration change

    v  ≡ 1

    V ξ̇   for   V  = const

    v  = reaction velocity

    dn J

    dt = νJξ̇

    1V PChem I 8.4

  • 8/8/2019 8 Chemical Kinetics

    5/49

    1

    dn J

    dt =

    d(n J/V )

    dt =νJ

    V ξ̇   if    V  = const

    v J≡d[J]

    dt =

    dc J

    dt =νJ

    V ξ̇= νJv    reaction velocity of species J

    ξ̇=V 

    νJv J

    v J=νJv 

    rate law:   v  = f   (concentrations)

    If   v   depends on the concentration of some species

    that does not appear in the stoichiometric equation,

    then that species is called a catalyst  if 

    v    as   [catalyst]

    and an inhibitor   if 

    v    as   [inhibitor]

    If   v   depends on one or more products, then the re-

    action is  autocatalytic   if  v    as [product], and the

    reaction is self-inhibiting if  v  as [product].

    PChem I 8.5

  • 8/8/2019 8 Chemical Kinetics

    6/49

    often   v = k [A]x [B] y [C]z · · ·

    k :  rate constant  (depends on T ), k > 0

    x , y ,z , . . .:   order of the reaction, typically but not al-

    ways integers

    x + y + z +·· ·   = overall order 

    For   elementary reactions, the   x ,   y , . . . are   inte-

    gers.

     A −→D   v = k [A]   unimolecular

     A +B−→D   v = k [A][B]   bimolecular

     A +B+C−→D   v = k [A][B][C]   termolecular (rare)

    Reactions that behave kinetically just like a single-

    step, elementary reaction are called  kinetically sim-

     ple: order of reactant Ji  =νi . Such reactions are also

    said to obey the Law of Mass Action action or to have

    PChem I 8.6

  • 8/8/2019 8 Chemical Kinetics

    7/49

    mass action kinetics. That means, the stoichiometric

    equation looks like an elementary reaction, but gen-

    erally it is not elementary.

    Example:

    H2+ I2−→ 2 HI

    empirical rate law:   v  =  k [H2][I2], i.e., the equationis kinetically simple and looks like a bimolecular el-

    ementary reaction but

    H2+Br2−→ 2HBr

    empirical rate law:

    v = k   [H2][Br2]

    3/2

    [Br2]+k [HBr]

     The reaction is first order in H2; no order is definablefor Br2  or HBr, and no overall order is definable.

     The reaction is self-inhibiting.

    PChem I 8.7

  • 8/8/2019 8 Chemical Kinetics

    8/49

    Further examples of empirical rate laws:

    C2H4O−→CH4+CO   v = k [C2H4O]

    CH3CHO−→CH4+CO   v = k [CH3CHO]3/2

    2 O3N2O5−−−−→ 3 O2   v = k [O3]

    2/3[N2O5]2/3

    2 SO2+O2Pt−→ 2 SO3   v = k [SO2][SO3]

    −1/2

    2 N2O  Pt−−−−−→741◦C

    2 N2+O2   v =  k [N2O]

    1+k [N2O]

    Experimental determination of rate laws

    One cannot measure v J  directly.

    measurements: [J](t); make connection between [J](t)

    and   ˙[J](t )

    two possibilities: differentiate the data or integrate

    the rate law

    1) Differential method

     A −→ P

    PChem I 8.8

  • 8/8/2019 8 Chemical Kinetics

    9/49

    d[A]

    dt ≈

    [A](t 2)− [A](t 1)

    t 2− t 1=∆[A]

    ∆t 

    v  A ([A])=−∆[A]

    ∆t average velocity

    [A]=1

    2

    [A](t 1)+ [A](t 2)

    If the rate law has a simple order, say  v  A = k [A]n 

    , thenlnv  A = lnk +n ln[A]; so to determine n , plot lnv  A  ver-

    sus ln[A].

    Method has a major inherent difficulty:

    d[A]

    dt ≈∆[A]

    ∆t if    ∆

    t   is small

    but then ∆[A] is small also: division of two small num-

    bers   =⇒  need very high precision in the concentra-

    tion measurement

    2) Method of initial velocities (variant of the differen-

    tial method)

    example: say   v  A = k [A]x [B] y 

    PChem I 8.9

  • 8/8/2019 8 Chemical Kinetics

    10/49

    t  = 0 :   v  A,0= k [A]x 0[B]

     y 

    0

    lnv  A,0= lnk +x ln[A]0+ y ln[B]0

    keep   [B]0   fixed and vary   [A]0: slope of   lnv  A,0   versus

    ln[A]0  is equal to  x 

    keep   [A]0   fixed and vary   [B]0: slope of   lnv  A,0   versus

    ln[B]0  is equal to  y 

    problems with this method:

    H2+Br2−→ 2HBr

    v 0= k   [H2]0[Br2]

    3/20

    [Br2]0+k  [HBr]0     =0

    = k [H2]0[Br2]1/20

    •method does not work for multistep mechanisms

    •method does not work for complex reactions with ini-

    tial transients and induction periods

    3) Method of integrated rate laws

    d[J]

    dt = v J=νJ f   (concentrations)

    PChem I 8.10

  • 8/8/2019 8 Chemical Kinetics

    11/49

    rate law = differential equation

    solve (integrate) the differential equation (analytical-ly or numerically); then fit data

     Zero-order reaction

     A   k −→ P   v = k 

    d[A]

    dt  = ν A v =−v =−k 

    d[A]=−k dt [A](t )[A]0

    d[A]=−k 

    t 0

    dt 

    [A](t )− [A]0=−kt 

    [A](t )= [A]0−kt 

    For a zero-order reaction, a plot of   [A](t )   versus   t 

    yields a straight line.

    Note:  Reactions cannot be of zero order for all times

    — there are no true zero-order reactions — because

    the reactant concentration cannot become less than

    zero, which would occur at  t  = [A]0/k . A zero-order is

    PChem I 8.11

  • 8/8/2019 8 Chemical Kinetics

    12/49

    an approximation, which is valid only as long as the

    reactant is in excess.

    First-order reaction

     A   k −→ P   v = k [A]

    d[A]

    dt = ν A v =−v =−k [A]

    d[A]

    [A]=−k dt [A](t )

    [A]0

    d[A]

    [A]=−

    t 0

    k dt 

    ln[A](t )[A]0 =−kt [A](t )= [A]0 exp(−kt )

    For a first-order reaction, a plot of  ln([A](t )/[A]0)  ver-

    sus t  results in a straight line with slope −k .

    Second-order reaction

     A   k −→ P   v = k [A]2

    PChem I 8.12

  • 8/8/2019 8 Chemical Kinetics

    13/49

    d[A]

    dt = ν A v =−v =−k [A]

    2

    d[A]

    [A]2 = −k dt 

    [A](t )[A]0

    d[A]

    [A]2 = −

    t 0

    k dt 

    −  1

    [A](t )+

      1

    [A]0=−kt 

    [A](t )=  1

    1

    [A]0+kt 

    =  [A]0

    1+kt [A]0

    For a second-order reaction, a plot of  1/[A](t ) versus t 

    results in a straight line with slope  k .

    Note: If the reaction is

     A + A   k −→ P   v = k [A]2

    then

    d[A]

    dt = ν A v =−2v =−2k [A]

    2

    PChem I 8.13

  • 8/8/2019 8 Chemical Kinetics

    14/49

    and   k   has to be replaced by   2k   in the expressions

    above.

     A +B  k −→ P   v = k [A][B]

    d[A]

    dt 

    = ν A v =−v =−k [A][B]

    [A](t )= [A]0− z (t ), [B](t )= [B]0− z (t )

    d[A]

    dt =−

    dz 

    dt 

    dz 

    dt = k ([A]0− z ) · ([B]0− z )

    dz 

    ([A]0− z ) · ([B]0− z )= k dt 

    z (t )0

    dz 

    ([A]0− z ) · ([B]0− z )= kt 

    z (t )

    0

    1

    [B]0− [A]0   1

    [A]0− z −

      1

    [B]0− z dz = kt 1

    [B]0− [A]0

    − ln

    [A]0− z (t )

    [A]0

    +   ln

    [B]0− z (t )

    [B]0

    = kt 

    PChem I 8.14

  • 8/8/2019 8 Chemical Kinetics

    15/49

    1

    [B]0− [A]0ln

    [A]0 · [B](t)

    [A](t ) · [B]0= kt If    [B]0= [A]0,   then

    d[A]

    dt =−k [A]2

    Reactions of other orders

     A    k −→ P   v = k [A]x 

    d[A]

    dt = ν A v =−v =−k [A]

    d[A]

    [A]x  = −k dt 

    [A](t )[A]0

    d[A][A]x 

     = −t 

    0

    k dt 

    [A](t )[A]0

    d[A][A]−x =−

    t 0

    k dt 

    1

    1−x [A](t )1−x − [A]1−x 0 =−kt ,   x = 1

    1

    x −1

      1

    [A](t )x −1−

      1

    [A]x −10

    = kt ,   x = 1

    PChem I 8.15

  • 8/8/2019 8 Chemical Kinetics

    16/49

    For more complicated rate laws, use the   method

    of isolation   or   method of “flooding” . Focus on one

    species; prepare all other species in large excess.

    Example:

     A +B  k −→ P   v = k [A][B]3/2

    [B]0 [A]0 :

    d[A]

    dt =−k [A][B]3/2

    −k [B]3/20   [A]

    =−k eff [A]   pseudo-first order

    [A]0 [B]0 :

    d[A]

    dt =−k [A][B]3/2

    −k [A]0[B]

    3/2

    =−k eff [B]3/2

    pseudo-one-and-a-half order

    PChem I 8.16

  • 8/8/2019 8 Chemical Kinetics

    17/49

    Information on rate laws from half-life data

    half-life t 1/2 : [A](t 1/2)= 12

    [A]0

    First-order reaction, A −→ P:

    ln

    12[A]0

    [A]0 =−kt 1/2

    t 1/2=ln 2

    k = 0.693k −1

    Second-order reaction, A −→ P:

    1

    2

    [A]0=  [A]0

    1+kt 1/2[A]0

    kt 1/2[A]0= 1

    t 1/2=  1

    k [A]0

    Reactions of order x   (x = 1), A −→ P:

    t 1/2=  2x −1−1

    (x −1)k [A]x −10

    PChem I 8.17

  • 8/8/2019 8 Chemical Kinetics

    18/49

     Temperature dependence of reaction rates

    k =  A exp− E 

    a

    RT 

      Arrhenius law

    E a  activation energy;  A  pre-exponential factor

    In the Arrhenius law,  E a   and   A   are considered to be

    constants, though in applications they are often not

    strictly constant but vary slowly with temperature.

    if  E a   is large, then  k   is very sensitive to changes in

    temperature

    if   E a   is zero, e.g., radical recombination reactions,

    then the rate is largely independent of temperature

    Include backward reactions

    Reversible first-order reaction

     A k 1−−−−k −

    1

    B

    Reversible has a different meaning in kinetics than in

    thermodynamics!

    PChem I 8.18

  • 8/8/2019 8 Chemical Kinetics

    19/49

    All chemical reactions are reversible to some extent,

    but if  K  > 100, this fact can usually be ignored for pur-

    poses of chemical kinetics.

    d[A]

    dt = ν

     f  

     A v  f   +ν

    b  A v b 

    ν f  

     A =−1,   v  f   = k 1[A]

    νb 

     A =+1,   v b = k −1[B]d[A]

    dt =−k 1[A]+k −1[B]

    d[B]

    dt =ν

     f  

    Bv  f   +νb Bv b 

    d[B]

    dt  = k 1[A]−k −1[B]

    Add the two rate equations:

    d[A]

    dt +

    d[B]

    dt =−k 1[A]+k −1[B]+k 1[A]−k −1[B]

    ddt 

    [A]+ [B]

    = 0

    [A](t )+ [B](t )= const= [A](0)+ [B](0)=C 

    PChem I 8.19

  • 8/8/2019 8 Chemical Kinetics

    20/49

    [B](t )=C  − [A](t )

    d[A]dt 

    =−k 1[A]+k −1{C  − [A](t )}

    d[A]

    dt = k −1C  − (k 1+k −1)[A]

    equilibrium:

    d[A]eq

    dt = 0

    0=−k 1[A]eq+k −1[B]eq

    [B]eq

    [A]eq=  k 1

    k −1=K c 

    C  − [A]eq

    [A]eq=  k 1

    k −1=K c 

    [A]eq=  k −1

    k 1+k −1C 

    d[A]

    dt  = k −1C  − (k 1+k −1)[A]

    =−(k 1+k −1)

    [A]−

      k −1

    k 1+k −1C 

    PChem I 8.20

  • 8/8/2019 8 Chemical Kinetics

    21/49

    d[A]

    dt =−(k 1+k −1)[A]− [A]eq[A](t )

    [A]0

    d[A]

    [A]− [A]eq=−(k 1+k −1)t 

    ln

    [A](t )− [A]eq

    [A]0− [A]eq

    =−(k 1+k −1)t 

    [A](t )− [A]eq

    [A]0− [A]eq= exp−(k 1+k −1)t 

    [A](t )= [A]eq+[A]0− [A]eq

    exp

    −(k 1+k −1)t 

    relaxation methods: relaxation = return of a system

    to equilibrium

    Relaxation methods are used to measure rate con-

    stants. Apply a sudden perturbation to the equilib-

    rium, e.g., a   temperature jump   or a   pressure jump,

    and monitor the relaxation.

    Let x  be the deviation from equilibrium. Then for a re-

    versible first-order reaction  A −− B, our results show

    PChem I 8.21

  • 8/8/2019 8 Chemical Kinetics

    22/49

    that

    x (t )= [A](t )− [A]eq= x (0)exp(−t /τ)

    with

    τ=  1

    k 1+k −1

    i.e., after a temperature jump at t  = 0, the system re-

    laxes exponentially with a rate  1/τ = k 1+k −1. Com-

    bine the measurement of the equilibrium constant

    K c   =  k 1/k −1   with a measurement of the relaxation

    time τ  to obtain the forward and backward rate con-

    stants k 1  and k −1.

    Parallel first-order reactions

    Assume the reactions are irreversible for the moment.

     A   k 1−→B

     A   k 

    2−→C

    d[A]

    dt =−k 1[A]−k 2[A]

    PChem I 8.22

  • 8/8/2019 8 Chemical Kinetics

    23/49

    d[B]

    dt = k 1[A]

    d[C]

    dt = k 2[A]

    add the three equations:

    d

    dt [A]+ [B]+ [C]= 0[A](t )+ [B](t )+ [C](t )= const

    = [A](0)+ [B](0)+ [C](0)= [A]0

    if initially only the reactant A  is present

    conversion of reactant into products:

    [A](t )= [A]0 exp{−(k 1+k 2)t }

    d[B]

    dt = k 1[A]= k 1[A]0 exp{−(k 1+k 2)t }

    [B](t )= k 1[A]0

    k 1+k 2 1−exp[−(k 1+k 2)t ][C](t )=

     k 2[A]0

    k 1+k 2

    1−exp[−(k 1+k 2)t ]

    PChem I 8.23

  • 8/8/2019 8 Chemical Kinetics

    24/49

    •yield (t  →∞)

    Y  B

    irr=[B](∞)

    [A]0=

      k 1

    k 1+k 2

    Y  C

    irr=[C](∞)

    [A]0=

      k 2

    k 1+k 2

    •selectivity

    S  irr=[B](t )

    [C](t )=k 1

    k 2for all times

    What happens if the reactions are reversible?

     A k 1−−k −1

    B

     A k 2−−k −2

    C

    d[A]

    dt  =−k 1[A]+k −1[B]−k 2[A]+k −2[C]

    d[B]

    dt = k 1[A]−k −1[B]

    PChem I 8.24

  • 8/8/2019 8 Chemical Kinetics

    25/49

    d[C]

    dt = k 2[A]−k −2[C]

    [A](t )+ [B](t )+ [C](t )= const= [A]0

    can eliminate on variable, say [C]:

    [C](t )= [A]0− [A](t )− [B](t )

    Consider the case  t  →∞. The reaction reaches equi-

    librium, i.e., the concentrations no longer change with

    time:

    d[A]

    dt =−k 1[A]+k −1[B]−k 2[A]+k −2[C]= 0

    d[B]dt 

    = k 1[A]−k −1[B]= 0

    d[C]

    dt = k 2[A]−k −2[C]= 0

    k 1[A]eq= k −1[B]eq

    k 2[A]eq= k −2[C]eq[B]eq

    [A]eq=  k 1

    k −1=K c ,1

    PChem I 8.25

  • 8/8/2019 8 Chemical Kinetics

    26/49

    [C]eq

    [A]eq=  k 2

    k −2=K c ,2

    [A]eq+ [B]eq+ [C]eq= [A]0

    [A]eq+K c ,1[A]eq+K c ,2[A]eq= [A]0

    [A]eq=  [A]0

    1+K c ,1+K c ,2

    [B]eq= K c ,1[A]0

    1+K c ,1+K c ,2

    [C]eq=K c ,2[A]0

    1+K c ,1+K c ,2

    •yield (t  →∞)

    Y  B

    rev=[B]eq

    [A]0=

    K c ,1

    1+K c ,1+K c ,2

    Y  C

    rev=[C]eq

    [A]0=

    K c ,2

    1+K c ,1+K c ,2

    PChem I 8.26

  • 8/8/2019 8 Chemical Kinetics

    27/49

    •selectivity

    S  rev=[B]eq

    [C]eq=K c ,1

    K c ,2=  k 1

    k −1·k −2

    k 2=k 1

    k 2·k −2

    k −1

    S  rev=S  irr ·k −2

    k −1

     The selectivity

    S    =[B]

    [C]=k 1

    k 2=S  irr

    will be observed for short times, as along as the back-

    ward reactions are negligible:   The reaction is un-der   kinetic control .

    For long times, the selectivity approaches the equilib-

    rium value

    S    =

    [B]

    [C] −−−−−→t  →∞

    K c ,1

    K c ,2 =S  rev

    The reaction is under  thermodynamic control .

    PChem I 8.27

  • 8/8/2019 8 Chemical Kinetics

    28/49

    Example:   k 1 = 1 s−1

    ,  k −1 = 0.01s−1

    ,  k 2 = 0.1s−1

    ,  k −2 =

    0.0005s−1

    Initially B is formed ten times faster than  C, however

    K c ,1=  1 s−1

    0.01s−1= 100

    K c ,2=  0.1s−1

    0.0005s−1= 200

    and C is the more stable product.

    1000 2000 3000 4000 5000 6000 7000

    t

    0.2

    0.4

    0.6

    0.8

    1.

    conc

    Figure 1: Parallel first-order reversible reactions.   [A]:

    solid line, [B]: dashed line, [C]: dot-dash line.

    PChem I 8.28

  • 8/8/2019 8 Chemical Kinetics

    29/49

    1 2 3 4 5 6 7 8 9 10

    t

    0.2

    0.4

    0.6

    0.8

    1.

    conc

    Figure 2: Parallel first-order reversible reactions: Ini-

    tial stage.   [A]: solid line,   [B]: dashed line,   [C]: dot–

    dash line.

    PChem I 8.29

  • 8/8/2019 8 Chemical Kinetics

    30/49

    0.01 0.1 1 10 100 1000 10000

    t

    0.2

    0.4

    0.6

    0.8

    1.

    conc

    Figure 3: Parallel first-order reversible reactions: con-

    centrations versus   log t .   [A]: solid line,   [B]: dashed

    line, [C]: dot-dash line.

    In the above parallel-reaction mechanism   C   can be

    converted into B only via A . What happens if there is

    the additional reaction

    Ck 3−−k −3

    B

    (An example are the isomerization reactions be-

    tween ortho-xylene, meta-xylene, and para-xylene:

    PChem I 8.30

  • 8/8/2019 8 Chemical Kinetics

    31/49

    o-xylene−− m-xylene, m-xylene−− p-xylene, p-xylene

    −− o-xylene.) Let us assume that the three steps are

    the mechanism of the reaction, i.e., all reactions are

    elementary.

    Is it then possible to establish equilibrium by the

    cyclic reaction mechanism below?

     A 

    B

    C      

          

    d[A]

    dt =−k 1[A]+k −2[C]

    d[B]

    dt = k 

    1

    [A]−k −3

    [B]

    d[C]

    dt = k −3[B]−k −2[C]

    [A](t )+ [B](t )+ [C](t )= const= [A]0

    stationary state:

    k 1[A]= k −2[C] =⇒  [C]

    [A]=  k 1

    k −2

    PChem I 8.31

  • 8/8/2019 8 Chemical Kinetics

    32/49

    k 1[A]= k −3[B] =⇒  [B]

    [A]=  k 1

    k −3

    k −3[B]= k −2[C],   which follows from the previous two equations

    [B]=  k 1

    k −3[A]

    [C]=  k 1

    k −2[A]

    [A]+  k 1

    k −3[A]+

      k 1

    k −2[A]= [A]0

    [A]=  [A]0

    1+  k 1k −3+

      k 1k −2

    We have determined the stationary concentrations

    [A],   [B], and   [C]   in terms of   [A]0   and the three rate

    constants.

     This stationary state is   not   an equilibrium state!! It

    violates the principle of detailed balance.

     The principle of microscopic reversibility :

    In a system at equilibrium, any molecular pro-

    PChem I 8.32

  • 8/8/2019 8 Chemical Kinetics

    33/49

    cess and the reverse of that process occur, on

    the average, at the same rate.

    implies the principle of detailed balance:

    In a system at equilibrium, each collision has its

    exact counterpart in the reverse direction, so

    that the rate of every chemical process is ex-

    actly balanced by that of the reverse process.

    =⇒

    In a system at equilibrium, every elementary forward

    reaction is balanced by its own backward reaction.

    In other words, in a system at equilibrium each ele-

    mentary reaction must be individually at equilibrium.

    Principle of detailed balance implies that all elemen-

    tary reactions must be reversible.

    Application to the scheme

     A k 1−−k −1

    B

    PChem I 8.33

  • 8/8/2019 8 Chemical Kinetics

    34/49

     A k 2−−k −2

    C

    Ck 3−−k −3

    B

    equilibrium:

    k 1[A]eq= k −1[B]eq =⇒ K c ,1=[B]eq

    [A]eq=  k 1

    k −1

    k 2[A]eq= k −2[C]eq =⇒ K c ,2=[C]eq

    [A]eq=  k 2

    k −2

    k 3

    [C]eq= k 

    −3[B]

    eq =⇒ K 

    c ,3=

    [B]eq

    [C]eq=  k 3

    k −3

     The product of the second and third equilibrium con-

    stants is

    K c ,2K c ,3= [C]eq[A]eq

    [B]eq[C]eq

    = [B]eq[A]eq

    =K c ,1

    =⇒

    PChem I 8.34

  • 8/8/2019 8 Chemical Kinetics

    35/49

    k 1

    k −1=  k 2

    k −2

    k 3

    k −3

    or

    k 1k −2k −3= k −1k 2k 3

     This condition on the six rate constants has been de-

    rived by considering chemical equilibrium, but rate

    constants are concentration independent. Therefore,

    this relation is general for this mechanism; it also

    holds for all nonequilibrium conditions. We see that

    the rate constants can never be chosen independent-

    ly, and the cyclic mechanism is impossible, since it

    requires  k −1 = k 2 = k 3  = 0, which is forbidden by the

    relation.

    Consecutive first-order reactions (series reactions)

     A k 1−−→B

    k 2−−→C

    Assume the reactions are first order and irreversible.

    d[A]

    dt =−k 1[A]

    PChem I 8.35

  • 8/8/2019 8 Chemical Kinetics

    36/49

    d[B]

    dt = k 1[A]−k 2[B]

    d[C]

    dt = k 2[B]

    Assume again   [A](0) = [A]0,   [B](0) = 0,   [C](0) = 0, and

    add the three equations:

    [A](t )+ [B](t )+ [C](t )= const= [A]0

    [A](t )= [A]0 exp(−k 1t )

    d[B]

    dt = k 1[A]0 exp(−k 1t )−k 2[B]

    [B](t )= k 1[A]0

    k 2−k 1{exp(−k 1t )−exp(−k 2t )}

    [C]= [A]0− [A](t )− [B](t )

    = [A]0

    1+

      1

    k 2−k 1[k 1 exp(−k 2t )−k 2 exp(−k 1t )]

    Consider the case:  k 2 k 1.

     Then

    exp(−k 2t ) exp(−k 1t )

    PChem I 8.36

  • 8/8/2019 8 Chemical Kinetics

    37/49

    and

    k 2−k 1≈ k 2

    [C]≈ [A]0

    1+

      1

    k 2· (−k 2)exp(−k 1t )

    = [A]0{1−exp(−k 1t )}

     The formation of  C  depends only  on the rate constantof the first step A −→B.

     A −→B is the rate-determining step.

    Motivation for the

    Steady-State Approximation: After an initial induction

    period, the concentration and the rate of change of all reaction intermediates are negligibly small.

    Illustrate for the consecutive scheme:

    [B](t )

    [A](t )=

    k 1[A]0

    k 2−k 1{exp(−k 1t )−exp(−k 2t )}

    [A]0 exp(−k 1t )

    =  k 1

    k 2−k 1{1−exp[−(k 2−k 1)t ]}

    PChem I 8.37

  • 8/8/2019 8 Chemical Kinetics

    38/49

    For k 2 k 1:

    [B](t )

    [A](t )≈k 1

    k 2{1−exp[−k 2t ]      

    ≈0 for t 1/k 2

    }=k 1

    k 2

    [B](t )=k 1

    k 2[A](t ) [A](t )

    d[B]

    dt  =

    k 1

    k 2

    d[A]

    dt 

    d[A]

    dt 

    If we apply directly the steady-state approximation

    (SSA), also known as the quasisteady-state approxi-

    mation (QSSA), to the intermediate B, we obtain

    0≈d[B]

    dt = k 1[A]−k 2[B]

    =⇒

    [B]=k 1

    k 2[A]

    d[C]

    dt = k 2[B]= k 2

    k 1

    k 2[A]= k 1[A]

    PChem I 8.38

  • 8/8/2019 8 Chemical Kinetics

    39/49

    = k 1[A]0 exp(−k 1t )

    [C](t )= [A]0{1−exp(−k 1t )}   (same as above)

    Application: decomposition of ozone

    2 O3−→ 3 O2

    empirical rate law (M is an inert gas):

    v =−1

    2

    d[O3]

    dt 

    =1

    3

    d[O2]

    dt 

    =  k [O3]

    2[M]

    [O2][M]+ [O3]

    proposed mechanism:

    stoichiometric number

    O3+Mk 1−−→O2+O+M 2

    O2+O+Mk −1−−→O3+M 1

    O+O3k 2−−→ 2 O2   1

    PChem I 8.39

  • 8/8/2019 8 Chemical Kinetics

    40/49

    2 O3+2 M+O2+O+M+O+O3−→

    2 O2+2 O+2 M+O3+M+2 O2

    2 O3−→ 3 O2

    intermediate  O: steady-state approximation

    d[O]

    dt = 0

    Intermediates do not appear in the rate law!!

    d[O]

    dt = k 1[O3][M]−k −1[O2][O][M]−k 2[O][O3]= 0

    [O]=  k 1[O3][M]

    k −1[O2][M]+k 2[O3]

    d[O3]

    dt  =−k 1[O3][M]+k −1[O2][O][M]−k 2[O][O3]

    =−k 1[O3][M]+k −1[O2][M]−k 2[O3]

    [O]

    PChem I 8.40

  • 8/8/2019 8 Chemical Kinetics

    41/49

    d[O3]

    dt =−k 1[O3][M]+

    +k −1[O2][M]−k 2[O3]

      k 1[O3][M]k −1[O2][M]+k 2[O3]

    =  1

    k −1[O2][M]+k 2[O3]×

    ×−k 1[O3][M]k −1[O2][M]−k 1[O3][M]k 2[O3]++k −1[O2][M]k 1[O3][M]−k 2[O3]k 1[O3][M]

    =−

      2k 1k 2[O3]2[M]

    k −1[O2][M]+k 2[O3]

    =−2

      k 1[O3]2[M]

    k −1k 2

    [O2][M]+ [O3]

    =−2v    empirical rate law:k = k 1, k = k −1/k 2

    If initially we have pure ozone, then

    k −1[O2][M] k 2[O3]

    PChem I 8.41

  • 8/8/2019 8 Chemical Kinetics

    42/49

    and

    d[O3]dt 

    =−2k 1[O3][M]

    =⇒ the first step is rate-determining

     The reaction is self-inhibiting in O2, v  as [O2]

    Another approximation method

    Pre-equilibrium or fast-equilibrium approximation

     A +Bk 1−−−−k −1

     X k 2−−→C

    k 1 k 2,   k −1 k 2

     A , B, and X  are in equilibrium:

    k 1[A][B]= k −1[X]

    [X]=   k 1k −1

    [A][B]=K [A][B]

    (Note:  K  =K c !!)

    PChem I 8.42

  • 8/8/2019 8 Chemical Kinetics

    43/49

    d[C]

    dt = k 2[X]= k 2K [A][B]= k [A][B]

    k = k 2K  =k 2k 1

    k −1

    enzyme reactions

    Michaelis-Menten mechanism

    E+Sk 1−−−−k −1

    (ES)k 2−−→ P+E

    d[P]

    dt = v = k 2[(ES)]

    Apply the steady-state approximation:

    d[(ES)]

    dt = k 1[E][S]−k −1[(ES)]−k 2[(ES)]= 0

    [(ES)]=k 1[E][S]

    k −1+k 2=

    [E][S]

    K M

    K M=k −1+k 2

    k 1Michaelis constant

    PChem I 8.43

  • 8/8/2019 8 Chemical Kinetics

    44/49

    d[P]

    dt = k 2

    K M[E][S]

    conservation of total enzyme concentration:

    [E]0= [E]+ [(ES)]

    = [E]+

    [E][S]

    K M

    = [E]

    1+

    [S]

    K M

    [E]=  [E]0

    1+ [S]K M

    d[P]

    dt = k 2

    K M[E][S]

    = k 2

    K M·

      [E]0

    1+ [S]K M

    [S]

    d[P]

    dt  = v =

    k 2[E]0[S]

    K M+ [S]

    Michaelis-Menten rate law

    PChem I 8.44

  • 8/8/2019 8 Chemical Kinetics

    45/49

    At high substrate concentrations, [S]K M,

    d[P]dt 

    k 2[E]0[S]

    [S]= k 2[E]0,

    the reaction is zero order, and the rate reaches its

    maximum:

    v max= k 2[E]0

    [Figure: rate versus substrate concentration; Atkins 9th ed., Fig. 23.3]

    PChem I 8.45

  • 8/8/2019 8 Chemical Kinetics

    46/49

     The Michaelis-Menten rate law can be written in terms

    of  v max:

    d[P]

    dt = v =

      v max

    1+K M/[S]

    We rearrange this expression into a form that is

    amenable to data analysis by linear regression:

    1

    v =

      1

    v max+

     K M

    v max

      1

    [S]

    A   Lineweaver-Burk plot   is a plot of the reciprocal

    of the velocity   v   versus the reciprocal of the sub-strate concentration   [S]   at fixed enzyme concentra-

    tion. If the enzyme obeys Michaelis-Menten kinetics,

    then the plot should yield a straight line, with slope

    K M/v max, that intercepts the ordinate axis at   1/v maxand the abscissa at −1/K M.

    PChem I 8.46

  • 8/8/2019 8 Chemical Kinetics

    47/49

    [Figure: Lineweaver-Burk plot; Atkins 9th ed., Fig. 23.4]

    At low substrate concentrations, [S]K M,

    d[P]

    dt 

    k 2[E]0[S]

    K M= k [S],

    the reaction is first order.

     The   turnover number   or   catalytic constant   of an

    enzyme,   k cat, is the number of catalytic cycles

    (turnovers) performed by the active site in a given

    PChem I 8.47

  • 8/8/2019 8 Chemical Kinetics

    48/49

    time interval divided by the duration of that inter-

    val. It has units of a first-order rate constant, and for

    the Michaelis-Menten mechanism is given by  k 2, therate constant for release of product from the enzyme-

    substrate complex.

    k cat= k 2=v max

    [E]0

     The catalytic efficiency , η, of an enzyme is given by

    η=k cat

    K M

     The higher the value of   η, the more efficient is the

    enzyme. For the Michaelis-Menten mechanism

    η=  k 2k −1+k 2

    k 1

    =  k 1k 2

    k −1+k 2

    η→ ηmax= k 1   if    k 2 k −1

    = rate of formation of the enzyme-substrate complex;

    diffusion-limited: < 108 – 109 M−1 s−1 for enzyme-sized

    molecules at room temperature

    PChem I 8.48

  • 8/8/2019 8 Chemical Kinetics

    49/49

    catalase (decomposition of hydrogen peroxide)   η  =

    4.0×108 M−1 s−1: “catalytic perfection”