8. frms implementation guide ~ draft

Upload: mashdi-mamdali

Post on 05-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    1/149

    1stEdition:2011

    Fatigue Risk Management

    Systems (FRMS)

    Implementation Guide

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    2/149

    2

    NOTE

    DISCLAIMER. The information contained in this publication is subject to constant review in the light

    of changing government requirements and regulations. No subscriber or other reader should act on the

    basis of any such information without referring to applicable laws and regulations and without taking

    appropriate professional advice. Although every effort has been made to ensure accuracy, the

    International Air Transport Association (IATA), and the International Civil Aviation Organization

    (ICAO) shall not be held responsible for any loss or damage caused by errors, omissions, misprints or

    misinterpretation of the contents hereof. Furthermore, the International Air Transport Association and

    the International Civil Aviation Organization expressly disclaim any and all liability to any person or

    entity, whether a purchaser of this publication or not, in respect of anything done or omitted, and the

    consequences of anything done or omitted, by any such person or entity in reliance on the contents of

    this publication.

    Opinions expressed in this publication do not necessarily reflect the opinion of the International AirTransport Association. The mention of specific companies, products in this publication does not imply

    that they are endorsed or recommended by the International Air Transport Association in preference

    to others of a similar nature which are not mentioned.

    International Air Transport Association 2011. All Rights Reserved. No part of this publication may be

    reproduced, recast, reformatted or transmitted in any form by any means, electronic or mechanical,

    including photocopying, recording or any information storage and retrieval system, without the prior

    written permission from:

    Senior Vice President

    Safety, Operations and Infrastructure

    International Air Transport Association

    800 Place Victoria, P.O. Box 113

    Montral, Qubec

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    3/149

    3

    IATA/ICAOFRMSImplementationGuideforOperators

    NOTE:

    ThisguideisajointdocumentcreatedthroughICAO/IATA collaboration

    ThisdocumenthasbeenapprovedbyIATAbutisyettobeapprovedbyICAOCouncilandisthereforesubject

    tochange.

    Thisdocumentisstillindraftform(preproduction)~somefootnotes,numberingmaybeincorrect

    Thisdocumentcontainscontentonly:prefaceandendorsementsarenotyetincluded

    Thisdocument,oncecomplete,willbeavailableonlinefreeofcharge

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    4/149

    4

    ContentsIATAFRMSImplementationGuide...........................................................................................................................1

    ChapterOne:IntroductiontoFatigueRiskManagementSystems(FRMS) .............................................................7

    1.1 WhatisaFatigueRiskManagementSystem?..........................................................................................7

    1.2WhytheAviationIndustryisIntroducingFRMS.............................................................................................8

    1.3 ICAORequirementsforFatigueRiskManagementSystems....................................................................9

    1.4StructureofthisManual...............................................................................................................................12

    ChapterTwo:ScienceforFRMS .............................................................................................................................15

    2.1IntroductiontoScienceforFRMS.................................................................................................................15

    2.2EssentialSleepScience.................................................................................................................................15

    2.2.1WhatisHappeningintheBrainDuringSleep .......................................................................................15

    2.2.2

    The

    Issue

    of

    Sleep

    Quality .....................................................................................................................19

    2.2.3ConsequencesofNotGettingEnoughSleep.........................................................................................21

    2.3IntroductiontoCircadianRhythms ..............................................................................................................24

    2.3.1ExamplesofCircadianRhythm..............................................................................................................24

    2.3.2TheCircadianBodyClockandSleep......................................................................................................26

    2.3.3SensitivityoftheCircadianBodyClocktoLight ....................................................................................28

    2.3.4ShiftWork..............................................................................................................................................29

    2.3.5JetLag ....................................................................................................................................................31

    2.4SummaryofEssentialScienceforFRMS ......................................................................................................35

    ChapterThree:FRMSPolicyandDocumentation..................................................................................................46

    3.1IntroductiontoFRMSPolicyandDocumentation........................................................................................46

    3.2FRMSPolicy ..................................................................................................................................................47

    3.2.1ScopeoftheFRMS.................................................................................................................................47

    3.3.2ThingsthattheFRMSPolicyMustCover ..............................................................................................48

    3.3ExamplesofFRMSPolicyStatements ..........................................................................................................49

    3.3.1FRMS

    Policy

    Statement

    for

    aMajor

    Air

    Carrier.....................................................................................50

    3.3.2FRMSPolicyStatementforaSmallerOperatorProvidingMedicalEvacuationServices......................51

    3.4 FRMSDocumentation.............................................................................................................................52

    3.4.1ExampleofTermsofReferenceforaFatigueSafetyActionGroup......................................................53

    ChapterFour:FatigueRiskManagement(FRM)Processes ...................................................................................55

    4.1IntroductiontoFRMProcesses ....................................................................................................................55

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    5/149

    5

    4.2FRMProcessesStep1:IdentifytheOperationsCovered.............................................................................59

    4.3FRMProcessesStep2:GatherInformationandAdditionalDataifNeeded................................................59

    4.4FRMProcessesStep3:HazardIdentification...............................................................................................62

    4.4.1PredictiveHazardIdentificationProcesses ...........................................................................................62

    4.4.2ProactiveHazardIdentificationProcesses ............................................................................................65

    4.4.3ReactiveHazardIdentificationProcesses..............................................................................................71

    4.5FRMProcessesStep4:RiskAssessment ......................................................................................................72

    4.6FRMProcessesStep5:RiskMitigation.........................................................................................................74

    4.7Example:SettingupFRMProcessesforANewULRRoute..........................................................................78

    4.7.1:Step1IdentifytheOperation............................................................................................................78

    4.7.2:Step2GatherandAnalyzeAvailableInformation ............................................................................78

    4.7.3:Step3IdentifyHazards......................................................................................................................81

    4.7.4:Step4AssessSafetyRisk ...................................................................................................................82

    4.7.5:Step5SelectandImplementControlsandMitigations....................................................................82

    4.7.5:Step6MonitorEffectivenessofControlsandMitigations ...............................................................83

    4.7.6:LinkingtoFRMSSafetyAssuranceProcesses.......................................................................................83

    ChapterFive:FRMSSafetyAssuranceProcesses ...................................................................................................85

    5.1IntroductiontoFRMSSafetyAssuranceProcesses ......................................................................................85

    5.2FRMSSafetyAssuranceProcessesStep1:CollectandReviewData ...........................................................89

    5.3FRMSSafetyAssuranceProcessesStep2:EvaluateFRMSPerformance.....................................................91

    5.4FRMSSafetyAssuranceProcessesStep3:IdentifyEmergingHazards ........................................................92

    5.5FRMSSafetyAssuranceProcessesStep4:IdentifyChangesAffectingFRMS..............................................93

    5.6FRMSSafetyAssuranceProcessesStep5:ImproveEffectivenessofFRMS ................................................94

    5.7AssigningResponsibilityforFRMSSafetyAssuranceProcesses ..................................................................94

    5.8ExamplesofFRMSSafetyAssuranceProcessesInteractingWithFRMProcesses.......................................95

    ChapterSix:FRMSPromotionProcesses .............................................................................................................104

    6.1 IntroductiontoFRMSPromotionProcesses ........................................................................................104

    6.2 FRMSTrainingPrograms ......................................................................................................................106

    6.2.1 WhoNeedstobeTrained.............................................................................................................106

    6.2.2 Curriculum ....................................................................................................................................106

    6.2.3FRMSTrainingFormatsandFrequency...............................................................................................110

    6.2.3 FRMSTrainingEvaluation.............................................................................................................110

    6.2.5 FRMSTrainingDocumentation.....................................................................................................111

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    6/149

    6

    6.3 FRMSCommunicationsPlan.................................................................................................................111

    ChapterSeven:FRMSImplementation ................................................................................................................1 13

    7.1 IntroductiontoFRMSImplementation ................................................................................................113

    7.2 PhaseI:Planning...................................................................................................................................114

    7.3 PhaseII:ImplementReactiveFRMProcesses......................................................................................115

    7.4 PhaseIII:ImplementProactiveandPredictiveFRMProcesses ...........................................................115

    7.5 PhaseIV:ImplementFRMSSafetyAssuranceProcesses .....................................................................116

    7.6 OperationalExampleofStagedFRMSImplementation.......................................................................116

    AppendixA:Glossary............................................................................................................................................119

    AppendixB:MeasuringCrewmemberFatigue ....................................................................................................124

    B1 CrewmembersRecallofFatigue..........................................................................................................125

    B1.1 FatigueReportingForms ..................................................................................................................125

    B1.2 RetrospectiveSurveys ......................................................................................................................127

    B2 MonitoringCrewmemberFatigueDuringFlightOperations ...............................................................128

    B2.1 SubjectiveFatigueandSleepinessRatings.......................................................................................128

    B2.2 ObjectivePerformanceMeasurement.............................................................................................132

    B2.3 MonitoringSleep ..............................................................................................................................133

    B2.4 MonitoringtheCircadianBodyClockCycle .....................................................................................140

    B3 EvaluatingtheContributionofFatiguetoSafetyEvents .....................................................................142

    AppendixC:ProceduresforControlledRestontheFlightDeck..........................................................................148

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    7/149

    7

    ChapterOne:IntroductiontoFatigueRiskManagementSystems(FRMS)

    The

    purpose

    of

    this

    FRMS

    Implementation

    Guide

    is

    to

    provide

    air

    operators

    with

    information

    for

    implementing

    anFRMSthatisconsistentwithICAOStandardsandRecommendedPractices(SARPs).AstheICAOprovisionsforFRMSevolve,everyeffortwillbemadetokeepthismanualuptodate.However,itisrecommendedthatoperators check the current SARPs to find out if anything important has changed since this version of themanualwasdeveloped.OperatorsalsoneedtoensurethattheirFRMSmeetstherequirementsoftheirStatesregulatoryauthority.

    AvarietyofoptionstoaddresstheICAOStandardsforanFRMSarepresentedthroughoutthisguide.Thesecanbeadaptedtotheneedsofdifferentsizesandtypesofoperators (international,domestic,passenger,cargo,etc)andtospecificoperations(UltraLongRange(ULR),longhaul,shorthauldomestic,oncall/charter,etc). Itis not necessary to implement all of these options to have an effective FRMS that meets regulatoryrequirements.

    1.1WhatisaFatigueRiskManagementSystem?Crewmemberfatiguecanbedefinedas:

    Aphysiological state of reducedmental orphysicalperformance capability resultingfrom sleep loss or

    extendedwakefulness, circadianphase, orworkload (mental and/orphysical activity) that can impair a

    crewmembersalertnessandabilitytosafelyoperateanaircraftorperformsafetyrelatedduties.

    Fatigueisamajorhumanfactorshazardbecauseitaffectsmostaspectsofacrewmembersabilitytodotheirjob.ICAOdefinesaFatigueRiskManagementSystem(FRMS)as:

    Adatadrivenmeansof continuouslymonitoringandmanagingfatiguerelated safety risks,basedupon

    scientific principles and knowledge as well as operational experience that aims to ensure relevant

    personnelareperformingatadequatelevelsofalertness.

    AnFRMSaims to ensure that flight andcabincrew members aresufficientlyalertso theycan operate toasatisfactorylevelofperformance. ItappliesprinciplesandprocessesfromSafetyManagementSystems(SMS)1tomanagethespecificrisksassociatedwithcrewmemberfatigue. LikeSMS,FRMSseekstoachievearealisticbalance between safety, productivity, and costs. It seeks to proactively identify opportunities to improveoperationalprocessesandreducerisk,aswellasidentifyingdeficienciesafteradverseevents.ThestructureofanFRMSasdescribedhereismodelledontheSMSframework.Thecoreactivitiesaresafetyriskmanagement(described in the SARPS as FRM processes) and safety assurance (described in the SARPs as FRMS safetyassuranceprocesses).ThesecoreactivitiesaregovernedbyanFRMSpolicyandsupportedbyFRMSpromotionprocesses,andthesystemmustbedocumented.

    BothSMSandFRMSrelyontheconceptofaneffectivesafetyreportingculture1,wherepersonnelhavebeentrainedandareconstantlyencouragedtoreporthazardswheneverobservedintheoperatingenvironment.To

    1 SeeICAOSafetyManagementManual(Doc9859)andIATAIntroductiontoSafetyManagementSystems(SMS),2nd

    Edition.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    8/149

    8

    encourage the reporting of fatigue hazards by all personnel involved in an FRMS, an operator must clearlydistinguishbetween:

    unintentionalhumanerrors,whichareacceptedasanormalpartofhumanbehaviorandarerecognizedandmanagedwithintheFRMS;and

    deliberateviolationsofrulesandestablishedprocedures.AnoperatorshouldhaveprocessesindependentoftheFRMStodealwithintentionalnoncompliance.

    Toencourageanongoingcommitmentbypersonneltoreportingfatiguehazards,theorganizationmusttakeappropriate action in response to those reports. When an effective safety reporting system exists, a largepercentageofsafetyreportsfromoperationalpersonnelrelateto identifiedorperceivedhazards, insteadoferrorsoradverseevents.

    1.2WhytheAviationIndustryisIntroducingFRMSThe traditional regulatory approach to managing crewmember fatigue has been to prescribe limits onmaximumdaily,monthly,andyearlyflightanddutyhours,andrequireminimumbreakswithinandbetween

    dutyperiods.Thisapproachcomesfromalonghistoryoflimitsonworkinghoursdatingbacktotheindustrialrevolution.Itenteredthetransportationsectorintheearly20thcenturyinaseriesofregulationsthatlimitedworking hours in rail, road and aviation operations2. The approach reflects early understanding that longunbrokenperiodsofworkcouldproducefatigue(nowknownastimeontaskfatigue),andthatsufficienttimeisneededtorecoverfromworkdemandsandtoattendtononworkaspectsoflife.

    Inthesecondhalfofthe20thcentury,scientificevidencebeganaccumulatingthatimplicatedothercausesoffatigue in addition to timeontask, particularly in 24/7 operations. The most significant new understandingconcerns:

    thevital importanceofadequatesleep (notjustrest)forrestoringandmaintainingallaspectsofwaking

    function;and

    dailyrhythmsintheabilitytoperformmentalandphysicalwork,andinsleeppropensity(theabilitytofallasleepandstayasleep),thataredrivenbythedailycycleofthecircadianbiologicalclockinthebrain.

    This new knowledge is particularly relevant in the aviation industry which is unique in combining 24/7operationswithtransmeridianflight.

    Inparallel,understandingofhumanerroranditsroleinaccidentcausationhasincreased.Typically,accidentsand incidents result from interactionsbetweenorganizationalprocesses (i.e. workplaceconditions that leadcrewmemberstocommitactivefailures),andlatentconditionsthatcanpenetratecurrentdefensesandhaveadverseeffectsonsafety1.TheFRMSapproachisdesignedtoapplythisnewknowledgefromfatiguescienceand safetyscience. It is intended to providean equivalent, or enhanced, level of safety, while alsoofferinggreateroperationalflexibility.

    Prescriptiveflightanddutytimelimitsrepresentasomewhatsimplisticviewofsafetybeinginsidethelimitsissafewhilebeingoutsidethelimitsisunsafeandtheyrepresentasingledefensivestrategy.Whiletheyare

    2GanderPH,HartleyL,PowellD,CabonP,HitchcockE,MillsA.PopkinS(2010).FatigueriskmanagementI:organizational

    factors.AccidentAnalysisandPrevention(inpress).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    9/149

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    10/149

    10

    Prescriptiveflightand

    dutytimelimitations

    Addressestransientandcumulativefatigue Sharedoperatorindividualresponsibility

    SMS

    Effectivesafetyreporting Seniormanagementcommitment Continuousmonitoringprocess Investigationofsafetyoccurrences Sharingofinformation Integratedtraining EffectiveimplementationofSOPs Continuousimprovement

    However,anFRMS,asamanagementsystem focusedon fatigue,alsohasadded requirementsbeyond thatwhich would be expected of an operator complying with prescriptive flight and duty time limitations andmanaging their fatiguerisks through theirSMS. InmeetingtheseadditionalFRMSspecificrequirements,anoperatorwithanapprovedFRMSmaymoveoutsidetheprescribedlimits. Therefore,thefatiguemanagementSARPs in Section 4.10, Annex 6, Part I, include particular Standards that enable the effective regulation ofFRMS.

    The following text box contains the SARPs in Annex 6 Part I that relate to Fatigue Management. States arerequiredtohaveregulationsforprescriptiveflightanddutytimelimitations,buttheyalsohavetheoptiontoestablishFRMSregulations. Inaddition,there isarequirementthatwhenFRMS isused,operationsmanualsreflecttheFRMSoption(Annex6,PartI,Appendix2).

    Appendix8hasbeenaddedtoAnnex6,PartItogivedetailedrequirementsforanFRMSwhichmustinclude,ataminimum,thefollowingcomponents.

    1. FRMSpolicyanddocumentation;2. Fatigueriskmanagementprocesses;3. FRMSsafetyassuranceprocesses;and4. FRMSpromotionprocesses.

    Table1.1showshowthesecomponentsmaptotherequirementsofSMS. Annex6,PartI,recommendsthat,whereanoperatorhasanFRMS,itisintegratedwiththeoperatorsSMS.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    11/149

    11

    Annex6PartI

    4.10FatigueManagement

    4.10.1 TheStateoftheOperatorshallestablishregulationsforthepurposeofmanagingfatigue.Theseregulationsshallbebaseduponscientificprinciplesandknowledge,withtheaimofensuringthatflightandcabincrewmembersareperformingatanadequatelevelofalertness.Accordingly,theStateoftheOperatorshallestablish:

    a) regulationsforflighttime,flightdutyperiod,dutyperiodandrestperiodlimitations;andb) whereauthorizinganoperatortouseaFatigueRiskManagementSystem(FRMS)tomanagefatigue,FRMS

    regulations.

    4.10.2 TheStateoftheOperatorshallrequirethattheoperator,incompliancewith4.10.1andforthepurposesofmanagingitsfatiguerelatedsafetyrisks,establisheither:

    a) flighttime,flightdutyperiod,dutyperiodandrestperiodlimitationthatarewithintheprescriptivefatiguemanagementregulationsestablishedbytheStateoftheOperator;or

    b) aFatigueRiskManagementSystem(FRMS)incompliancewith4.10.6foralloperations;orc) anFRMSincompliancewith4.10.6forpartofitsoperationsandtherequirementsof4.10.2a)fortheremainderof

    itsoperations.

    4.10.3 Wheretheoperatoradoptsprescriptivefatiguemanagementregulationsforpartorallofitsoperations,theStateoftheOperatormayapprove,inexceptionalcircumstances,variationstotheseregulationsonthebasisofariskassessmentprovidedbytheoperator.Approvedvariationsshallprovidealevelofsafetyequivalentto,orbetterthan,thatachievedthroughtheprescriptivefatiguemanagementregulations.

    4.10.4 TheStateoftheOperatorshallapproveanoperatorsFRMSbeforeitmaytaketheplaceofanyoralloftheprescriptivefatiguemanagementregulations.AnapprovedFRMSshallprovidealevelofsafetyequivalentto,orbetterthan,theprescriptivefatiguemanagementregulations.

    4.10.5 StatesthatapproveanoperatorsFRMSshallestablishaprocesstoensurethatanFRMSprovidesalevelofsafetyequivalentto,orbetterthan,theprescriptivefatiguemanagementregulations.Aspartofthisprocess,theStateoftheOperatorshall:

    a) requirethattheoperatorestablishmaximumvaluesforflighttimesand/orflightdutyperiods(s)andduty

    period(s),andminimumvaluesforrestperiods.Thesevaluesshallbebaseduponscientificprinciplesandknowledge,subjecttosafetyassuranceprocesses,andacceptabletotheStateoftheOperator;

    b)mandateadecreaseinmaximumvaluesandanincreaseinminimumvaluesintheeventthattheoperatorsdataindicatesthesevaluesaretoohighortoolow,respectively;and

    c) approveanyincreaseinmaximumvaluesordecreaseinminimumvaluesonlyafterevaluatingtheoperatorsjustificationforsuchchanges,basedonaccumulatedFRMSexperienceandfatiguerelateddata.

    4.10.6 WhereanoperatorimplementsanFRMStomanagefatiguerelatedsafetyrisks,theoperatorshall,asaminimum:a) incorporatescientificprinciplesandknowledgewithintheFRMS;b) identifyfatiguerelatedsafetyhazardsandtheresultingrisksonanongoingbasis;c) ensurethatremedialactions,necessarytoeffectivelymitigatetherisksassociatedwiththehazards,are

    implementedpromptly;d) provideforcontinuousmonitoringandregularassessmentofthemitigationoffatiguerisksachievedbysuch

    actions;ande) provideforcontinuousimprovementtotheoverallperformanceoftheFRMS.

    4.10.7 Recommendation.Statesshouldrequirethat,whereanoperatorhasanFRMS,itisintegratedwiththeoperatorsSMS.

    4.10.8 Anoperatorshallmaintainrecordsforallitsflightandcabincrewmembersofflighttime,flightdutyperiods,dutyperiods,andrestperiodsforaperiodoftimespecifiedbytheStateoftheOperator.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    12/149

    12

    Table1.1ComparingSMSandFRMSComponents

    SMSFramework FRMS

    1. Safetypolicyandobjectives 1. FRMSpolicyanddocumentation

    2. Safetyriskmanagement 2. FRMprocesses Identificationofhazards Riskassessment Riskmitigation

    3. Safetyassurance 3. FRMSsafetyassuranceprocesses FRMSperformancemonitoring Managementofoperationalandorganisational

    change ContinuousFRMSimprovement

    4. Safetypromotion 4. FRMSpromotionprocesses Trainingprograms FRMScommunicationplan

    ThecoreoperationalactivitiesoftheFRMSaretheFRMprocessesandtheFRMSsafetyassuranceprocesses.TheyaresupportedbyorganizationalarrangementsdefinedintheFRMSpolicyanddocumentation,andbytheFRMSpromotionprocesses.

    1.4StructureofthisManualFigure 1.1 shows a basic framework linking the required components of an FRMS. For ease of explanation,Figure 1.1 presents a single, central, functional group, designated as the Fatigue Safety Action Group,

    responsibleforalloftheseFRMScomponents. TheFatigueSafetyActionGroupincludesrepresentativesofallstakeholdergroups (management,scheduling,andcrewmembers)andother individualsasneededtoensurethat ithasappropriateaccesstoscientificandmedicalexpertise. However,dependingontheorganizationalstructure,someoftheFatigueSafetyActionGroupfunctionsasdescribedinthismanualmaybeundertakenbyothergroupswithintheorganization(discussedfurtherinChapter3). Theimportantthingisthat,irrespectiveofwhodoesthem,allofthecomponentfunctionsrequiredunderanFRMSbeperformed.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    13/149

    13

    Figure1.1:LinkingtherequiredcomponentsofanFRMS

    The Fatigue Safety Action Group coordinates the FRM processes (the daytoday fatigue risk managementactivities). The FRMS safety assurance processes monitor how well the FRMS is functioning from a systemperspective.TheyalsoprovideinputforadaptingtheFRMStomeetchangingoperationaldemandsandforitscontinuousimprovement.

    Communicationbetween theFRMSprocessesand theSMS (inbothdirections) isnecessary to integrate themanagementofthefatiguerisksintothebroaderriskmanagementactivitiesoftheSMS.

    The detailed structure of an FRMS, and the specific ways in which it links to an operators SMS, will varyaccordingto:

    thesizeoftheorganization; thetypeandcomplexityoftheoperationsbeingmanaged; therelativematurityoftheFRMSandtheSMS;and therelativeimportanceofthefatiguehazards.

    TheFRMS

    approach

    isbased

    onapplying

    scientific

    principles

    and

    knowledge

    to

    manage

    crewmember

    fatigue.

    ChapterTwointroducestheessentialscientificconceptsthatareneededtodevelopandimplementanFRMS.

    ChaptersThree,Four,Five,andSixeachdealwithoneoftherequiredFRMScomponents.ChapterSevensteps

    thoughastagedapproachforimplementinganFRMS.

    AppendicesA,BandCprovideextrainformationtosupportthatprovidedintheprecedingchapters. Forease

    ofreference,AppendixAprovidesaglossaryoftermsusedinthismanual. AppendixBprovidesmoredetailed

    information on methods of measuring fatigue as part of the FRM processes presented in Chapter Three.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    14/149

    14

    AppendixCalsosupportsChapterThreebyprovidingfurtherinformationontheuseofcontrolledrestonthe

    flightdeckasamitigatoroffatiguerisk.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    15/149

    15

    ChapterTwo:ScienceforFRMS

    2.1IntroductiontoScienceforFRMSThe FRMS approach represents an opportunity for operators to use advances in scientific knowledge toimprove safety and increase operational flexibility. This chapter reviews the scientific principles needed todevelopandimplementaneffectiveFRMS.

    InChapterOne,theICAOdefinitionofcrewmemberfatiguewasgivenas:

    Aphysiological state of reducedmental orphysicalperformance capability resultingfrom sleep loss or

    extendedwakefulness, circadianphase, orworkload (mental and/orphysical activity) that can impair a

    crewmembersalertnessandabilitytosafelyoperateanaircraftorperformsafetyrelatedduties.

    Inflightoperations,fatiguecanbemeasuredeithersubjectivelybyhavingcrewmembersratehowtheyfeel,orobjectivelybymeasuringcrewmembersperformance(ChapterFourandAppendixB).

    Anotherwayofthinkingaboutthisisthatfatigueisastatethatresultsfromanimbalancebetween:

    thephysicalandmentalexertionofallwakingactivities(notonlydutydemands);and recoveryfromthatexertion,which(exceptforrecoveryfrommusclefatigue)requiressleep.

    Following this line of thinking, to reduce crewmember fatigue requires reducing the exertion of wakingactivitiesand/orimprovingsleep.TwoareasofsciencearecentraltothisandarethefocusofthisChapter.

    1. Sleepscienceparticularlytheeffectsofnotgettingenoughsleep(ononenightoracrossmultiplenights),andhowtorecoverfromthem;and

    2. Circadianrhythmsthestudyofinnaterhythmsdrivenbythedailycycleofthecircadianbiologicalclock(apacemakerinthebrain).Theseinclude: rhythmsinsubjectivefeelingsoffatigueandsleepiness;and rhythms intheabilitytoperformmentalandphysicalwork,whichaffecttheeffortrequiredtoreach

    anacceptablelevelofperformance(exertion);and rhythmsinsleeppropensity(theabilitytofallasleepandstayasleep),whichaffectrecovery.

    2.2EssentialSleepScienceThere isawidespreadbelief thatsleep timecanbe tradedoff to increase theamountof timeavailable forwakingactivitiesinabusylifestyle.Sleepsciencemakesitveryclearthatsleepisnotatradablecommodity.

    2.2.1WhatisHappeningintheBrainDuringSleepThereareavarietyofwaysoflookingatwhatishappeninginthesleepingbrain,fromreflectingondreamstousing advanced medical imaging techniques. Currently, the most common research method is known aspolysomnography (see Appendix B for details). This involves sticking removable electrodes to the scalp and

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    16/149

    16

    face and connecting them to a recording device, to measure three different types of electrical activity: 1)brainwaves(electroencephalogramorEEG);2)eyemovements(electroculogramorEOG);and3)muscletone(electromyogramorEMG). Usingpolysomnography,itispossibletoidentifytwoverydifferentkindsofsleep.

    NonRapidEyeMovementSleep

    Comparedtowakingbrainactivity,nonRapidEyeMovementsleep(nonREMsleep)involvesgradualslowingofthebrainwaves.Theamplitude(height)ofthebrainwavesalsobecomeslargerastheelectricalactivityof

    largenumbersofbraincells(neurons)becomessynchronizedsothattheyfireinunison.Heartrateandbreathingtendtobeslowandregular.

    PeoplewokenfromnonREMsleepdonotusuallyrecallmuchmentalactivity.However,itisstillpossibleforthebodytomoveinresponsetoinstructionsfromthebrain. Becauseofthesefeatures,nonREMsleepissometimesdescribedasarelativelyinactivebraininamovablebody.

    NonREMsleepisusuallydividedinto4stages,basedonthecharacteristicsofthebrainwaves.

    Stages1and2representlightersleep(itisnotverydifficulttowakesomeoneup).ItisusualtoentersleepthroughStage1andthenStage2nonREM.

    Stages 3 and 4 represent deeper sleep (it can be very hard to wake someone up). Stages 3 and 4 arecharacterizedbyhighamplitudeslowbrainwaves,andaretogetheroftendescribedasslowwavesleep(ordeepsleep).

    Slowwavesleephasanumberofimportantproperties.Pressureforslowwavesleepbuildsupacrosswakinganddischargesacrosssleep.Inotherwords:

    thelongeryouareawake,themoreslowwavesleepyouwillhaveinyournextsleepperiod;and acrossasleepperiod,theproportionoftimespentinslowwavesleepdecreases.

    Thisrisingandfallingofpressureforslowwavesleepissometimescalledthesleephomeostaticprocess,andit

    isacomponent

    in

    most

    of

    the

    bio

    mathematical

    models

    that

    are

    used

    to

    predict

    crewmember

    fatigue

    levels

    (seeChapterFour).

    Eveninslowwavesleep,thebrainisstillabout80%activatedandcapableofactivecognitiveprocessing.Thereisgrowingevidencethatslowwavesleep isessential for theconsolidationofsometypesofmemory,and isthereforenecessaryforlearning.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    17/149

    17

    RapidEyeMovementSleep

    DuringRapidEyeMovementsleep(REMsleep),brainactivitymeasuredbypolysomnography lookssimilartobrainactivityduringwaking.However inREMsleep,fromtimetotimetheeyesmovearoundundertheclosedeyelidsthesocalledrapideyemovementsandthisisoftenaccompaniedbymuscletwitchesandirregularheartrateandbreathing.

    PeoplewokenfromREMsleepcantypicallyrecallvividdreaming.Atthesametime,thebodycannotmoveinresponsetosignalsfromthebrainsodreamscannotbeactedout.(Thesignalseffectivelygetblockedinthe

    brainstemandcannotgetthroughtothespinalcord.)Peoplesometimesexperiencebriefparalysiswhentheywakeupoutofadream,whenreversalofthisREMblockisslightlydelayed.Becauseofthesefeatures,REMsleepissometimesdescribedasahighlyactivatedbraininaparalysedbody.

    Dreams have always been a source of fascination, but are difficult to study using quantitative scientificmethods.Theyhavebeeninterpretedaseverythingfromspiritualvisitationstofulfillmentofinstinctualdrives,tobeingameaninglessbyproductofactivityinvariouspartsofthebrainduringREMsleep.Thecurrentneurocognitiveviewofdreamingarguesthatitresultsfrombriefmomentsofconsciousnesswhenwebecomeawareofalltheprocessingthatourbrainsnormallydooffline,i.e.whentheyarenotbusydealingwithinformation

    OperationalNote:MitigationStrategiesforSleepInertia

    Operationally, slowwave sleep may be important because the brain can havedifficultytransitioningoutofitwhensomeoneiswokenupsuddenly.Thisisknown

    assleep

    inertia

    feelings

    of

    grogginess

    and

    disorientation,

    with

    impaired

    short

    term

    memory and decisionmaking. Sleep inertia can occur coming out of lighter sleep,but it tends tobe longerandmoredisorientingwhensomeone iswokenabruptlyoutofslowwavesleep.

    Thisissometimesusedasanargumentagainsttheuseofflightdecknappingorinflight sleep. It would not be desirable to have a crewmember who is woken upbecause of an emergency, but who is impaired by sleep inertia. This argument isbasedontheeffectsofsleepinertiaseeninlaboratorystudies.

    However,studiesofnappingon the flight deck andofsleep in onboardcrew restfacilitiesshowthatsleep inflightcontainsvery littleslowwavesleep. (It is lighter

    and more fragmented than sleep on the ground). This means that sleep inertia ismuch less likely to occur waking up from sleep in flight than would be predictedfromlaboratorysleepstudies.Theriskofsleepinertiacanalsobereducedbyhavingaprotocolforreturningtoactivedutythatallowstimeforsleepinertiatowearoff.

    Overall,thedemonstratedbenefitsofcontrollednappingandinflightsleepgreatlyoutweigh the potential risks associated with sleep inertia. To reduce the risk ofsleep inertia after flight deck napping, the recommendation is to limit the timeavailableforthenapto40minutes.Giventhetimetakentofallasleep,a40minuteopportunity is too short for most people to enter slowwave sleep. Refer toAppendix C for suggested Flight Operations Manual procedures for controllednapping.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    18/149

    18

    cominginfromtheenvironmentthroughthesenses,andarenotbeingdirectedbyourconsciouscontrol.Thisofflineprocessingincludesreactivatingmemoriesandemotionsfrompreviousexperiences,and integratingthem with experiences from the latest period of waking. Dreams in this view are a glimpse into your brainreshapingitselfsothatyoucanwakeupinthemorningstillyourself,butaslightlyrevisedversionasaresultofyourexperiencesyesterday,andreadytostartinteractingwiththeworldagain.

    People vary greatly in their ability to recall dreams, and we generally only recall them when we wake

    spontaneouslyout of REM sleep (and then only fleetingly unless we write them down or talk about them).Nevertheless,mostadultsnormallyspendaboutaquarteroftheirsleeptimeinREMsleep.

    NonREM/REMCycles

    Acrossanormalnightofsleep,nonREMsleepandREMsleepalternateinacyclethatlastsroughly90minutes(butisveryvariableinlength,dependingonanumberoffactors).Figure2.1isadiagramdescribingthenonREM/REMcycleacrossthenight inahealthyyoungadult.Realsleep isnotas tidyas this it includesmorearousals(transitionstolightersleep)andbriefawakenings. Sleepstagesareindicatedontheverticalaxisandtimeisrepresentedacrosshorizontalaxis3.

    Figure2.1:DiagramofthenonREM/REMcycleacrossthenightinayoungadult

    SleepisenteredthroughStage1nonREMandthenprogressesdeeperanddeeperintononREM.About8090minutesintosleep,thereisashiftoutofslowwavesleep(nonREMstages3and4).Thisisoftenmarkedby

    bodymovements,

    as

    the

    sleeper

    transitions

    briefly

    through

    Stage

    2non

    REM

    and

    into

    the

    first

    REM

    period

    of

    thenight. (REMperiodsare indicatedasshadedboxes inFigure2.1).Aftera fairlyshortperiodofREM, thesleeperprogressesbackdownagainthroughlighternonREMsleepandintoslowwavesleep,andsothecyclerepeats.

    3GanderPH(2003)Sleepinthe24HourSociety.Wellington,NewZealand:OpenMindPublishing.ISBN0909009597

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    19/149

    19

    The amount of slowwave sleep in each nonREM/REM cycle decreases across the night, and there may benone at all in the later cycles. In contrast, the amount of REM sleep in each nonREM/REM cycle increasesacrossthenight.ThesleeperdepictedinFigure2.1wakesupdirectlyoutofthefinalREMperiodofthenight,andsowouldprobablyrecalldreaming.

    Interestingly, slowwave sleep always predominates at the beginning of a sleep period, regardless of whensleep occurs in the day/night cycle or in the circadian body clock cycle. There seems to be a priority to

    dischargethehomeostaticsleep

    pressurefirst.Incontrast,thetimefromsleeponsettothefirstboutofREM

    (theREM latency)andthedurationofeachREMboutvariesmarkedlyacrossthecircadianbodyclockcycle.ThecircadiandriveforREMsleepisstrongestafewhoursbeforenormalwakeuptime.Thesetwoprocessesthe homeostatic sleep process and the circadian body clock are the main components in most of the biomathematicalmodelsthatareusedtopredictcrewmemberfatiguelevels(seeChapterFour).

    2.2.2TheIssueofSleepQualitySleepquality(itsrestorativevalue)dependsongoingthroughunbrokennonREM/REMcycles(whichsuggeststhat both types of sleep are necessary and one is not more important than the other). The more the nonREM/REMcycle is fragmented by wakingup, or by arousals that move the brain to a lighter stage of sleepwithoutactuallywakingup,thelessrestorativevaluesleephasintermsofhowyoufeelandfunctionthenextday.

    OperationalNote:MitigationStrategiesforSleepLoss

    RestorationofanormalnonREM/REMcycle isonemeasureof recovery from the

    effects of sleep loss. Lost sleep is not recovered hourforhour, although recoverysleepmaybeslightlylongerthanusual.

    On the first recoverynight, there ismoreslowwavesleep thanusual. Indeed,therecanbesomuchslowwavesleepthatthereisnotenoughtimetomakeupREMsleep.

    Onthesecondrecoverynight,thereisoftenmoreREMsleepthanusual. Bythethirdrecoverynight,thenonREM/REMcycleisusuallybacktonormal.

    Operationally,thismeansthatschedulesneedtoperiodicallyincludeanopportunityforatleasttwoconsecutivenightsofunrestrictedsleep,toenablecrewmemberstorecoverfromtheeffectsofsleeploss.

    This does not equate to 48 hours off. For example, 48 hours off duty starting at02:00wouldonlygivemostpeopletheopportunityforonefullnightofunrestrictedsleep.Ontheotherhand,40hoursoffstartingat21:00wouldgivemostpeopletheopportunityfortwofullnightsofunrestrictedsleep.

    Additional nights may be needed for recovery if a crewmembers circadian bodyclockisnotalreadyadaptedtothelocaltimezone(seeSection2.3).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    20/149

    20

    QualityofInFlightSleep

    Asmentionedabove,polysomnographystudiesshowthatcrewmemberssleepinonboardcrewrestfacilitiesislighterandmorefragmentedthansleepontheground4.Sleepduringflightdecknapsisalsolighterandmorefragmented thanwouldbepredicted from laboratorystudies5.Nevertheless, there isgoodevidence that inflightsleepimprovessubsequentalertnessandreactionspeedandisavaluablemitigationstrategyinanFRMS.

    Interestingly, studies of sleep in hypobaric chambers at pressures equivalent to cabin pressure at cruisingaltitudeindicatethatthefragmentedqualityofinflightsleepisnotduetoaltitude6.Severalstudieshaveaskedcrewmemberswhatdisturbs theirsleeponboard.The factorsmostcommonly identifiedare random noise,thoughts,notfeelingtired,turbulence,ambientaircraftnoise,inadequatebedding,lowhumidity,andgoingtothetoilet.

    SleepQualityandAging

    Acrossadulthood,theproportionofsleeptimespentinslowwavesleepdeclines,particularlyamongmen.Inaddition, sleep becomes more fragmented. For example, one study with 2,685 participants aged 3792 yrs

    4Signal,T.L.,Gale,J.,andGander,P.H.(2005)SleepMeasurementinFlightCrew:ComparingActigraphicandSubjectiveEstimatesof

    SleepwithPolysomnography.AviationSpaceandEnvironmentalMedicine76(11):105810635Rosekind,M.R.,Graeber,R.C.,Dinges,D.F.,etal.,(1994)CrewFactorsinFlightOperationsIX:Effectsofplannedcockpitrestoncrewperformanceandalertnessinlonghauloperations.NASATechnicalMemorandum108839,MoffettField:NASAAmesResearchCenter.6Mumm,J.M.,Signal,T.L.,Rock,P.B.,Jones,S.P.,OKeeffe,K.M.,Weaver,M.R.,Zhu,S.,Gander,P.H.,Belenky,G.(2009)Sleepat

    simulated2438m:effectsonoxygenation,sleepquality,andpostsleepperformance.Aviation,Space,andEnvironmentalMedicine80(8):691697.

    OperationalNote:MitigationStrategiestoMinimizeSleepInterruptions

    Because uninterrupted nonREM/REM cycles are the key to good quality sleep,

    operatorsshould

    develop

    procedures

    that

    minimize

    interruptions

    to

    crewmembers

    sleep.

    Rest periods should include defined blocks of time (sleep opportunities) duringwhich crewmembers are not contacted except in emergencies. These protectedsleep opportunities need to be known to flight crews and all other relevantpersonnel.Forexample,calls fromcrewschedulingshouldnotoccurduringa restperiodastheycanbeextremelydisruptive.

    Operatorsshouldalsodevelopprocedurestoprotectcrewmembersleepatlayoverand napping facilities. For example, if a rest period occurs during the day at alayover hotel, the operator could make arrangements with the hotel to restrict

    accessto

    the

    section

    of

    the

    hotel

    where

    crewmembers

    are

    trying

    to

    sleep

    (such

    as

    nochildren,crewmembersonly)andinstructtheirstafftohonorthenecessaryquietperiods(forexample,nomaintenanceworkorroutinecleaning).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    21/149

    21

    foundthattheaveragenumberofarousals(transitionstolightersleepandawakenings)rosefrom16perhourofsleepfor3054yearoldsto20perhourofsleepfor6170yearolds7.

    Theseagerelatedtrendsareseeninthesleepofflightcrewmembers,bothonthegroundandintheair2,8.AstudyofinflightsleepondeliveryflightsofB777aircraft(fromSeattletoSingaporeorKualaLumpur)foundthatagewasthefactorthatmostconsistentlypredictedthequalityanddurationofbunksleep.Olderpilotstooklongertofallasleep,obtainedlesssleepoverall,andhadmorefragmentedsleep.

    It is not yet clear whether these agerelated changes in sleep reduce its effectiveness for restoring wakingfunction.Laboratorystudiesthatexperimentallyfragmentsleeparetypicallyconductedwithyoungadults.Ontheflightdeck,experience(bothintermsofflyingskillsandknowinghowtomanagesleepontrips)couldhelpreducepotentialfatigueriskassociatedwithagerelatedchangesinsleep.

    SleepDisorders

    Thequalityofsleepcanalsobedisruptedbyawidevarietyofsleepdisorders,whichmake it impossible toobtain restorative sleep, even when people spend enough time trying to sleep. Sleep disorders pose aparticularriskforflightcrewmembersbecause,inaddition,theyoftenhaverestrictedtimeavailableforsleep.It isrecommended thatFRMStraining (ChapterSix)should includebasic informationonsleepdisordersandtheirtreatment,wheretoseekhelpifneeded,andanyrequirementsrelatingtofitnesstofly.

    2.2.3ConsequencesofNotGettingEnoughSleepEvenforpeoplewhohavegoodqualitysleep,theamountofsleeptheyobtainisveryimportantforrestoringtheirwakingfunction.Anincreasingnumberoflaboratorystudiesarelookingattheeffectsoftrimmingsleepatnightbyanhourortwo(knownassleeprestriction).ThereareseveralkeyfindingsfromthesestudiesthatareimportantforFRMS.

    1. Theeffectsofrestrictingsleepnightafternightaccumulate,sothatpeoplebecomeprogressivelylessalertand less functional day after day. This is sometimes described as accumulating a sleep debt. This is acommon occurrence for crewmembers (see below), for example when minimum rest periods are

    scheduledforseveraldaysinarow.

    2. The shorter the time allowed for sleep each night, the faster alertness and performance decline. Forexample,onelaboratorystudyfoundthatspending7hoursinbedfor7consecutivenightswasnotenoughto prevent a progressive slowing down in reaction time9. The decline was more rapid for a group ofparticipantswhospentonly5hoursinbedeachnight,andevenmorerapidforagroupwhospentonly3hoursinbedeachnight.Thisisdescribedasadosedependenteffectofsleeprestriction.

    3. The pressure for sleep increases progressively across successive days of sleep restriction. Eventually, itbecomesoverwhelmingandpeoplebeginfallingasleepuncontrollablyforbriefperiods,knownasmicrosleeps. During a microsleep, the brain disengages from the environment (it stops processing visualinformation and sounds). In the laboratory, this can result in missing a stimulus in a performance test.Drivingamotorvehicle,itcanresultinfailingtotakeacorner.Similareventshavebeenrecordedontheflightdeckduringdescentintomajorairports5.

    7Redline,S.,Kirchner,H.L.,Quan,S.F.,Gottlieb,D.J.,Kapur,V.,Newman,A.(2004).Theeffectsofage,sex,ethnicity,andsleep

    disorderedbreathingonsleeparchitecture.ArchivesofInternalMedicine164:406418.8Signal,T.L.,Gander,P.H.,vandenBerg,M.(2004)Sleepinflightduringlongrestopportunities.InternalMedicineJournal34(3):A38.

    9Belenky,G.,Wesensten,N.J.,Thorne,D.R.,etal.(2003).Patternsofperformancedegradationandrestorationduringsleeprestrictionand

    subsequentrecovery:asleepdoseresponsestudy.JournalofSleepResearch12:112.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    22/149

    22

    4. Fullrecoveryofwakingfunctionaftersleeprestrictioncantakelongerthantwonightsofrecoverysleep(i.e., longerthan ittakesthenonREM/REMcycletorecover). Indeed,chronicsleeprestrictionmayhaveeffectsonthebrainthatcanaffectalertnessandperformancedaystoweekslater10.

    5. Forthefirstfewdaysofseveresleeprestriction(forexample,3hoursinbed),peopleareawarethattheyare getting progressively sleepier. However, after several days they no longer notice any difference inthemselves,evenalthoughtheiralertnessandperformancecontinuestodecline.Inotherwords,assleep

    restrictioncontinues,peoplebecomeincreasinglyunreliableatassessingtheirownfunctionalstatus.Thisfindingraisesaquestionaboutthereliabilityofsubjectiveratingsoffatigueandsleepinessasmeasuresofacrewmembersleveloffatiguerelatedimpairment(seeAppendixB).

    6. At least in the laboratory,somepeoplearemoreresilienttotheeffectsofsleeprestriction thanothers.Currently,thereisalotofresearcheffortaimedattryingtounderstandwhythisis,butitisstilltooearlyforthistobeappliedinanFRMS(forexample,byrecommendingdifferentpersonalmitigationstrategiesforpeoplewhoaremoreorlessaffectedbysleeprestriction).

    Ingeneral,morecomplexmentaltaskssuchasdecisionmakingandcommunicationseemtobemoreseverelyaffectedbysleeplossthansimplertasks.Brainimagingstudiesalsosuggestthatthebrainregionsinvolvedin

    morecomplex

    mental

    tasks

    are

    the

    most

    affected

    by

    sleep

    deprivation

    and

    have

    the

    greatest

    need

    for

    sleep

    to

    recovertheirnormalfunction.

    Laboratory sleep restriction studies are currently the main source of information on the effects of sleeprestriction.However, they have some obvious limitations. The consequences of reduced alertnessandpoortask performance are quite different in the laboratory than for crewmembers on duty. Laboratory studiesusuallylookattheeffectsofrestrictingsleepatnightandparticipantssleepinadark,quietbedroom.Thismaymeanthatcurrentunderstandingisbasedonabestcasescenario.Moreresearchisneededontheeffectsofrestrictingsleepduringtheday,andonthecombinationofrestrictedsleepandpoorqualitysleep.Laboratorystudiesalsofocusontheperformanceofindividuals,notpeopleworkingtogetherasacrew.

    One simulation study with 67 experienced B747400 crews has demonstrated that sleep loss increased thetotalnumberoferrorsmadeby thecrew11.Thestudydesignwassetupso that thepilot incommand wasalways the pilot flying. Paradoxically, greater sleep loss among first officers improved the rate of errordetection.Ontheotherhand,greatersleeplossamongpilotsincommandledtoahigherlikelihoodoffailureto resolve errors that had been detected. Greater sleep loss was also associated with changes in decisionmaking,includingatendencytochooselowerriskoptions,whichwouldhelpmitigatethepotentialfatiguerisk.Simulatorstudies like this areexpensiveand logisticallycomplex toconductproperly,but theyprovidevitalinsightsonthelinksbetweencrewmembersleepandoperationalfatiguerisk.

    SleepRestrictioninFlightOperations

    Theideaofsleeprestrictionimpliesthatthereisanoptimumamountofsleepthatpeopleneedtoobtaineachnight.Theconceptofindividualsleepneedisanareaofactivedebateinsleepresearch.Onewaytomeasure

    sleeprestrictionthatavoidsthisproblemistolookathowmuchsleepcrewmembersobtainwhentheyareathomebetweentrips,comparedtohowmuchsleeptheyobtainduringtrips.

    10Rupp,T.L.,Wesensten,N.J,Bliese,P.D.etal.(2009).Bankingsleep:realizationofbenefitsduringsubsequentsleeprestrictionand

    recovery.Sleep32(3):31132111 Thomas, M.J.W., Petrilli, R.M., Lamond, N.A., et al. (2006). Australian Long Haul Fatigue Study. In: Enhancing SafetyWorldwide:

    Proceedingsofthe59thAnnualInternationalAirSafetySeminar.Alexandria,USA,FlightSafetyFoundation.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    23/149

    23

    Table2.1summarizesdataonsleeprestrictionacrossdifferent flightoperationsthatweremonitoredbytheNASAFatiguePrograminthe1980s12.Inthesestudies,crewmemberscompletedsleepanddutydiariesbefore,during,andafterascheduledcommercialtrip.Foreachcrewmember,hisaveragesleepdurationper24hoursathomebeforethetripwascomparedwithhisaveragesleepdurationper24hoursonthestudytrip.Duringnightcargoandlonghaultrips,crewmembersoftenhadsplitsleep(sleptmorethanoncein24hours).

    Scheduling has undoubtedly changed since these studies, so the data in Table 2.1 are likely to be

    unrepresentativeofthecurrentsituation inmanycases.However,they indicatethatsleeprestriction isverycommonacrossdifferenttypesofflightoperations.

    Table2.1:Sleeprestrictionduringcommercialflightoperations

    ShortHaul NightCargo LongHaul

    crewmembersaveragingatleast1hourofsleeprestrictionpertripday

    67% 54% 43%

    crewmembersaveragingatleast2

    hoursofsleeprestrictionpertripday

    30% 29% 21%

    lengthoftrip 34days 8days 49days

    timezonescrossedperday 01 01 08

    numberofcrewmembersstudied 44 34 28Note:thenightcargotripsincludeda12nightbreakinthesequenceofnightshifts.Splittinglonghaultripsinto24hoursdaysisratherarbitrary,becausetheaveragedutydaylasted10.2hoursandtheaveragelayoverlasted24.3hours.

    Agrowingamountofevidence,frombothlaboratorystudiesandfromepidemiologicalstudiesthattrackthe

    sleepand

    health

    of

    large

    numbers

    of

    people

    across

    time,

    indicates

    that

    chronic

    short

    sleep

    may

    have

    negative

    effectsonhealth inthe longterm.Thisresearchsuggeststhatshortsleepersareatgreaterriskofbecomingobeseanddevelopingtype2diabetesandcardiovasculardisease.Thereisstilldebateaboutwhetherhabitualshortsleepactuallycontributes to thesehealthproblems,or isjustassociatedwith them. Inaddition, flightcrewmembersasagroupareexceptionallyhealthycomparedtothegeneralpopulation.Whatisclearisthatgoodhealthdependsnotonlyongooddietandregularexercise,butalsoongettingenoughsleeponaregularbasis. Sleepisdefinitelynotatradablecommodity.

    12Gander,P.H.,Rosekind,M.R.,andGregory,K.B.(1998)FlightcrewfatigueVI:anintegratedoverview.Aviation,Space,andEnvironmental

    Medicine69:B49B60

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    24/149

    24

    2.3IntroductiontoCircadianRhythmsSleepingatnight isnotjustasocialconvention. It isprogrammed intothebrainbythecircadianbodyclock,which is an ancient adaptation to life on our 24hour rotating planet. Even very ancient types of livingorganisms have something equivalent, which means that circadian biological clocks have been around forseveralbillionyears.

    Afeatureofcircadianclocksisthattheyarelightsensitive.Thehumancircadianclockmonitorslightintensitythroughaspecialnetworkofcellsintheretinaoftheeye(thisspeciallightinputpathwaytothecircadianclockisnotinvolvedinvision).Theclockitselfresidesinafairlysmallclusterofcells(neurons)deeperinthebrain(inthe suprachiasmatic nuclei (SCN) of the hypothalamus). The cells that make up the clock are intrinsicallyrhythmic, generating electrical signals faster during the day than during the night. However, they have atendencytoproduceanoverallcyclethatisabitslowformostpeoplethebiologicaldaygeneratedbythe

    circadianbodyclockisslightlylongerthan24hours.Thesensitivityofthecircadianbodyclocktolightenablesit to stay instepwith the day/nightcycle. However, thatsamesensitivity to lightalso createsproblems forcrewmemberswhohavetosleepoutofstepwiththeday/nightcycle (forexampleondomesticnightcargooperations),orwhohavetoflyacrosstimezonesandexperiencesuddenshiftsintheday/nightcycle.

    2.3.1ExamplesofCircadianRhythmIt is not possible to directly measure the electrical activity of the circadian body clock in human beings.However, almost every aspect of human functioning (physical or mental) undergoes daily cycles that are

    OperationalNote:MitigationStrategiesforManagingSleepDebt

    Sleeprestrictioniscommonacrossdifferenttypesofflightoperations.Becausethe

    effects

    of

    sleep

    restriction

    are

    cumulative,

    schedules

    must

    be

    designed

    to

    allow

    periodic opportunities for recovery. Recovery opportunities need to occur morefrequently when daily sleep restriction is greater, because of the more rapidaccumulationoffatigue.

    The usual recommendation for a recovery opportunity is for a minimum of twoconsecutive nights of unrestricted sleep. Some recent laboratory studies of sleeprestrictionsuggestthat thismaynotbeenough tobringcrewmembersbackup totheiroptimal levelof functioning.There isevidence that thesleeprestrictedbraincanstabilizeatalowerleveloffunctioningforlongperiodsoftime(daystoweeks).

    Especiallyinirregularoperations,proceduresthatallowacrewmembertocontinue

    sleeping

    until

    needed

    can

    reduce

    the

    rate

    of

    accumulation

    of

    sleep

    debt.

    For

    example, ifanaircraftwithananticipated repair timeof0730willnotactuallybeready until 11:30, then a reliable procedure that allows the crew member tocontinuesleepingwouldbebeneficial.Oneairlinehasasystemwheretheoperatorcontacts the layoverhotel toupdate the report time byslipping amessage underthecrewmembersdoor.Thehotelprovidesawakeupcallonehourbeforepickuptime.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    25/149

    25

    influencedbythecircadianbodyclock. Measuringovertrhythmsinphysiologyandbehaviourislikewatchingthehandsofan(analogue)wristwatch.Thehandsmovearoundthewatchfacebecausetheyaredrivenbythetimekeeping mechanism inside the watch, but they are not part of the timekeeping mechanism itself.Similarly,most circadian rhythms that canbemeasured,such as rhythms in core body temperatureor selfrated fatigue, are driven by the circadian body clock, but they are not part of the biological timekeepingmechanism.

    Figure2.2showsanexampleofcircadianrhythmsincorebodytemperatureandselfratedfatigueofa46yearoldshorthaulcrewmembermonitoredbefore,during,andaftera3daypatternofflyingontheeastcoastoftheUSA(stayinginthesametimezone)13. Thecrewmemberhadhiscoretemperaturemonitoredcontinuouslyandkeptasleepanddutydiary,inwhichhenotedhissleeptimesandratedthequalityofhissleep,aswellasratinghisfatigueevery2hourswhilehewasawake(onascalefrom0=mostalertto100=mostdrowsy).

    Corebodytemperaturetypicallyfluctuatesbyabout1 Cacrossthe24hourday.Notethatthecrewmember'scoretemperaturestartstoriseeachmorningbeforehewakesup. Ineffect,hisbody isbeginningtoprepareaheadoftimeforthegreaterenergydemandsofbeingmorephysicallyactive.(Ifbodytemperatureonlybegantoriseafterhestartedtobemorephysicallyactive,itwouldbealothardertogetupinthemorning).

    Lookingat

    his

    self

    rated

    fatigue,

    this

    crewmember

    did

    not

    feel

    at

    his

    best

    first

    thing

    in

    the

    morning.

    He

    tended

    tofeelleastfatiguedabout24hoursafterhewokeup,afterwhichhisfatigueclimbedsteadilyacrosstheday.Thedashedlineacrossthesleepperiodindicatesthathewasnotaskedtowakeupevery2hourstoratehisfatigueacrossthistime.

    Figure2.2:Circadianrhythmsofashorthaulpilot

    13Gander,P.H.,Graeber,R.C.,Foushee,H.C.,Lauber,J.K.,Connell,L.J.(1994).CrewFactorsinFlightOperationsII:Psychophysiological

    ResponsestoShortHaulAirTransportOperations.NASATechnicalMemorandum#108856.MoffettField:NASAAmesResearchCenter.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    26/149

    26

    Corebodytemperatureisoftenuseasamarkerrhythmtotrackthecycleofthecircadianbodyclockbecauseitisrelativelystableandeasytomonitor.However,nomeasurablerhythm isaperfectmarkerofthecircadianbodyclockcycle.Forexample,changesinthelevelofphysicalactivityalsocausechangesincoretemperature,whichexplainsthesmallpeaksanddipsintemperatureinFigure2.2.

    Thedailyminimumincorebodytemperaturecorrespondstothetimeinthecircadianbodyclockcyclewhenpeoplegenerallyfeelmostsleepyandare leastabletoperformmentalandphysicaltasks.This issometimes

    describedastheWindowof

    Circadian

    Low

    (WOCL).

    2.3.2TheCircadianBodyClockandSleepAsmentionedinSection2.2,thecircadianbodyclockinfluencessleepinanumberofways.(Ithasconnectionstocentersinthebrainthatpromotewakefulnessandtoopposingcentersthatpromotesleep,aswellastothesystemthatcontrolsREMsleep.) Figure2.3isadiagramthatsummarizestheeffectsofthecircadianclockonsleep.Itisbasedondatacollectedfrom18nightcargopilotsontheirdaysoff,i.e.,whentheyweresleepingatnight14.LikethecrewmemberinFigure2.2,theyalsohadtheircoretemperaturemonitoredcontinuously,andkeptsleepanddutydiaries.

    Thecore

    temperature

    rhythm

    issummarized

    as

    asimple

    (continuous)

    curve.

    The

    daily

    time

    of

    the

    minimum

    in

    temperature(shownbytheblackdot)istheaverageforallcrewmembersandisusedasareferencepointfordescribingtheotherrhythms.Notethatchangesintemperaturearenotthecauseoftheotherrhythms.Thecorebodytemperaturerhythmisbeingreadlikethehandsofananaloguewristwatch,asawayoffollowingtheunderlyingcycleofthecircadianbodyclock.

    Figure2.3:Summaryoftheinfluencesofthecircadianbodyclockonsleepatnight

    14Gander,P.H.,Rosekind,M.R.,andGregory,K.B.(1998)FlightcrewfatigueVI:anintegratedoverview.Aviation,

    Space,andEnvironmentalMedicine69:B49B60

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    27/149

    27

    Figure2.3summarizesthefollowingfeaturesofsleepatnight(whencrewmembersarefullyadaptedtothelocaltimezone).

    Sleepnormallybeginsabout5hoursbeforetheminimumincorebodytemperature. Wakeupnormallyoccursabout3hoursaftertheminimumincorebodytemperature. REMsleep isentered fastest,andREMperiodsare longestandmost intense,justafter theminimum in

    core body temperature. This is sometimes described as the peak of the circadian rhythm in REMpropensity(thedashedcurveinFigure2.3).

    Avarietyoflaboratoryprotocolshavedemonstratedpeopleareextremelyunlikelytofallasleep68hoursbeforetheminimumincorebodytemperature.Thishasbecomeknownastheeveningwakemaintenancezone.

    Laboratorystudiesalsoshow thatasbody temperaturebegins to rise,there isan increasingpressuretowakeup.Thispeaksabout6hoursafterthecircadiantemperatureminimum.Thisissometimesreferredtoas an internal alarm clock, because it is very hard to fall asleep or stay asleep during this part of thecircadianbodyclockcycle.

    Theinteractionbetweenthehomeostaticpressureforsleepandthecircadianvariationinsleepinessdrivenby

    thebodyclock resultsintwotimes

    of

    peak

    sleepiness

    in

    24

    hours;

    apeakintheearlyhoursofthemorningthesocalledWindowofCircadianLow(WOCL),whichoccursaround35amformostpeople;and

    a peak in the early afternoon sometimes called the afternoon nap window (around 35 pm for mostpeople). Restricted sleep at night, or disturbed sleep makes it harder to stay awake during the nextafternoonnapwindow.

    The precise timing of the two peaks in sleepiness is different in people who are morning types (whosecircadian rhythms and preferred sleep times are earlier than average) and evening types (whose circadianrhythms and preferred sleep times are later than average). Across the teenage years, most people become

    more eveningtype. Across adulthood, most people become more morningtype. This progressive changetowardsbecomingmoremorningtypehasbeendocumentedinflightcrewmembersacrosstheagerange2060years.

    Thecombinedeffectsofthehomoeostaticpressureforsleepandthecircadianbiologicalclockcanbethoughtofasdefiningwindowswhensleepispromoted(theearlymorningandafternoontimesofpeaksleepiness)andwindowswhensleepisopposed(thetimeoftheinternalalarmclockinthelatemorning,andtheeveningwakemaintenancezone).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    28/149

    28

    2.3.3SensitivityoftheCircadianBodyClocktoLightAtthebeginningofthisChapter,therewasabriefdescriptionofhowthecircadianbodyclockisabletotracklightintensityintheenvironment.Thisenablesittostayinstepwiththeday/nightcycle,evenalthoughithasatendencytogenerateabiologicaldaythatisslightlylongerthan24hours.

    Theeffect

    of

    light

    on

    the

    circadian

    body

    clock

    changes

    according

    to

    when

    in

    the

    clock

    cycle

    the

    light

    exposure

    occurs.Foracrewmemberadaptedtolocaltimeandsleepingatnight:

    light exposure in the morning (after the temperature minimum) causes the circadian clock to speed uptemporarily,resultinginaphaseadvance(equivalenttocrossingtimezonesinaneastwarddirection);

    lightexposureinthemiddleofthedayhasverylittleeffect;and lightexposureintheevening(beforethetemperatureminimum)causesthecircadianclocktoslowdown

    temporarily,resultinginaphasedelay(equivalenttocrossingtimezonesinawestwarddirection).

    OperationalNote:TheCircadianBodyClock,Sleep,andFRMS

    The daily minimum in core body temperature corresponds to the time in thecircadian body clock cycle when people feel most sleepy and are least able to

    perform

    mental

    and

    physical

    tasks.

    This

    is

    sometimes

    called

    the

    Window

    of

    CircadianLow(WOCL)anditisatimeofhighriskforfatiguerelatederror.InFRMSincidentinvestigations,itisimportanttoestimatethetimethaterrorsoccurrelativetotheexpectedtimeoftheWOCL.

    TheWOCLcanoccurinflightduringdomesticnightoperationsandduringlonghauland ULR operations when the duty/rest cycle is out of step with crewmemberscircadianbodyclockcycles.

    Theeveningwakemaintenancezoneoccursinthefewhoursbeforeusualbedtime.Thismakesitverydifficulttofallasleepearlythenightbeforeanearlydutyreporttime.Thishasbeenidentifiedacauseofrestrictedsleepandincreasedfatiguerisk

    inshorthauloperationsthatrequireearlystarts.

    The increasing drive for wake that accompanies the increase in core bodytemperatureinthemorningmakesitdifficulttofallasleeporstayasleeplaterinthemorningandintheearlyafternoon.Thishasbeenidentifiedasacauseofrestrictedsleep and increased fatigue risk in night cargo operations, which requirecrewmemberstodelaytheirmainsleepperioduntilthemorning.

    The internal alarm clock and the evening wake maintenance zone can alsointerfere with the inflight sleep and layover sleep of long haul and ULRcrewmemberswhentheduty/restcycleisoutofstepwithcrewmemberscircadian

    bodyclockcycles.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    29/149

    29

    Bright lightcausesbiggershifts in thecircadianbodyclockcycle thandim light,and theclock isparticularlysensitivetobluelight.Intheory,thismeansthatjusttherightamountoflightexposureatthesametimeeverymorningwouldspeedupa24.5hourcircadianclockcyclejustenough tosynchronize it toexactly24hours. Inpractise,staying instepwiththeday/nightcycleismorecomplexthanthis. Inmodern industrialisedsocieties,peoplehaveveryhaphazardexposurestolight,particularlybrightoutdoorlight.Inaddition,thecircadianbodyclockissensitivetoothertimecuesfromtheenvironment,notablysocialcues,andcanalsobemovedbackwardsorforwardsin

    itscyclebyboutsofphysicalactivity.

    Theabilityofthecircadianclocktolockontothe24hourday/nightcycleisakeyfeatureofitsusefulnessformostspecies,enablingthemtobediurnalornocturnalasneededtoenhancetheirsurvival.However, ithasbecome a disadvantage in the 24/7 society because it causes the human circadian body clock to resistadaptationtoanypatternotherthansleepatnight.

    2.3.4ShiftWorkFrom the perspective of human physiology, shift work can be defined as any duty pattern that requires acrewmembertobeawakeduringthetimeinthecircadianbodyclockcyclethattheywouldnormallybeasleep.

    The furthersleep isdisplaced from theoptimumpartof thecircadianbodyclockcycle, themoredifficult itbecomesforcrewmemberstogetadequatesleep(i.e.,themorelikelytheyaretoexperiencesleeprestriction).Forexample,crewmembersflyingdomesticnightcargooperationsaretypicallyondutythroughmostoftheoptimum time forsleep in thecircadianbodyclockcycle. Thishappensbecause thecircadianbodyclock islocked on to the day/night cycle, and does not flip its orientation to promote sleep during the day whencrewmembersareflyingatnight.

    Figure 2.4 summarises what happened to the circadian biological clock and sleep when the night cargocrewmembersinFigure2.3wereflyingatnightandtryingtosleepinthemorning.(Recallthattheyhadtheircoretemperaturemonitoredcontinuouslyacross8daytrippatterns,andkeptsleepanddutydairies.)

    Thecoretemperaturerhythmissummarizedasasimple(continuous)curve.LookingbackatFigure2.3,whenthesecrewmemberswereoffdutyandsleepingatnight,theaveragetimeofthetemperatureminimumwas05:20. In Figure 2.4, when they were working through the night, the average time of the temperatureminimumshiftedto08:08(adelayof2hours48minutes).Thisconfirmsthatthecircadianbodyclockdidnotadaptfullytonightduty(whichwouldhaverequiredashiftofabout12hours).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    30/149

    30

    Figure2.4:Thecircadianbodyclockandsleepafternightduty

    Theincompleteadaptationofthecircadianclockforcedcrewmemberstosleepinadifferentpartofthecircadianbodyclockcycleafternightduty.

    Athomebeforethetrip(Figure2.3),theywenttosleepabout5hoursbeforethetemperatureminimumandwokeupabout3hoursafterthetemperatureminimum.

    Afternightduty(Figure2.4),theywenttosleepclosetothecircadiantemperatureminimumandwokeupabout6hourslater.Theaveragetimeofwakingupaftermorningsleepperiodswas14:13.Thepredictedtimeoftheinternalalarmclock(6hoursafterthetemperatureminimum)was14:08.Crewmemberswerenotaskedwhatwokethemup,buttheyratedthemselvesasnotfeelingwellrestedaftertheserestrictedmorningsleepepisodes.

    Another consequence of the incomplete adaptation of the circadian body clock to night duty was thatcrewmemberswereoftenoperatingthelastflightofthenightintheWindowofCircadianLow(WOCL)whentheywouldbeexpectedtobesleepyandhavingtomakeadditionalefforttomaintaintheirperformance.Nofatiguerelated incidents were observed on these flights (all crews were accompanied by a flight deckobserver).However,allflightswereroutine,i.e.,therewerenooperationaleventsthattestedthecapacityofthesecrewmemberstorespondtononroutinesituations.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    31/149

    31

    2.3.5JetLagFlyingacrosstimezonesexposesthecircadianbodyclocktosuddenshiftsintheday/nightcycle.Becauseofitssensitivitytolightand(toalesserextent)socialtimecues,thecircadianbodyclockwilleventuallyadapttoanewtimezone.Studieswithparticipantsflownaspassengershave identifiedanumberof factorsthataffecttherateofadaptationtoanewtimezone.Thesefactorsincludethefollowing.

    Thenumberoftimezonescrossed adaptationgenerallytakeslongerwhenmoretimezonesarecrossed. Thedirectionoftravel adaptationisusuallyfasterafterwestwardtravelthanaftereastwardtravelacross

    thesamenumberoftimezones.

    Thisprobably

    reflects

    the

    fact

    that

    most

    people

    have

    acircadian

    body

    clock

    that

    has

    an

    innate

    cycle slightly longer than 24 hours, which makes it easier to lengthen the cycle to adapt to awestwardshift(aphasedelay).

    Aftereastwardflightsacross6ormoretimezones,thecircadianbodyclockmayadaptbyshiftingintheoppositedirection,forexampleshifting18timezoneswestratherthan6timezoneseast.When this happens some rhythms shift eastward and others westward (known asresynchronizationbypartition)andadaptationcanbeparticularlyslow.

    Rhythmsindifferentfunctionscanadaptatdifferentrates,dependingonhowstronglytheyareinfluencedbythecircadianbodyclock.

    OperationalNote:MitigationStrategiesforNightDuty

    Night duty forces crewmembers to sleep later than normal in their circadian body clockcycle. This means that they have a limited amount of time to sleep before the circadianbody clock wakes them up. Consequently, they need to get to sleep as soon as possible

    aftercomingoffduty.

    Getting off duty earlier increases the time available for sleep in the morning, before thecircadianbodyclockmakesitdifficultforcrewmemberstostayasleep.

    Napping before going on duty is beneficial to help maintain alertness and performancethroughtotheendofthenight

    Nappingduringthedutyperiod(forexample,onthegroundwhileaircraftarebeingloadedandunloaded)isbeneficialtohelpmaintainalertnessandperformancethroughtotheendof the night. The napping opportunity should be limited to 4045 minutes, with an

    additional1015minutesallowedtoensurethatsleepinertia(ifany)hasdissipated.

    Insomeoperations, itmaybepossible toschedulea longersleepopportunityduring thenight, for example during loading and unloading of freight, or during continuous dutyovernightperiods.Providingasleepingroomawayfromtheaircraftandprotectedtimetosleepwouldincreasetheamountofsleepthatcrewmembersareabletoobtain.Onceagain1015minutesallowed,toensurethatsleepinertia(ifany)hasdissipated.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    32/149

    32

    Thismeansthatduringadaptationtothenewtimezone,rhythmsindifferentbodyfunctionscanbedisturbedfromtheirusualrelationshipstooneanother.

    Adaptationisfasterwhenthecircadianbodyclockismoreexposedtothetimecuesthatitneedstolockonto inthenewtimezone.Thisrelatestotheextenttowhichpeopleadoptthepatternofsleep,eatingetc,inthenewtimezoneandtheamountoftimetheyspendoutdoorsinthefirstfewdays.

    Beginningatripwithasleepdebtseemstoincreasethedurationandseverityofjetlagsymptoms.

    Duringtheperiodofadaptationtothenewtimezone,commonsymptomsincludewantingtoeatandsleepattimesthatareoutofstepwiththelocalroutine,problemswithdigestion,degradedperformanceon mentalandphysicaltasks,andmoodchanges.

    Thesituationforlonghaulandultralongrangeflightcrewisdifferenttothatforthepassengerwhoplanstospend longenoughat thedestination toadapt fullyto localtime.Typically, layovers ineachdestination lastonly 12 days, after which crewmembers are asked to operate a return flight or additional flights in thedestination region, followedby thereturn flight(s) to theircityoforigin.Thismeans thatthecircadianbodyclockdoesnothaveenoughtimetoadapttoanyofthedestinationtimezones.Inaddition,thecombinationofa longduty day followedby12day layoversgivesaduty/rest cycle thatdoesnot followa regular24hourpattern,sothecircadianbodyclockcannotlockontotheduty/restcycle.

    Relatively few studies have tracked the circadian body clock across commercial longhaul trip patterns andnonehave tracked itacrossULRoperations.Figure 2.5depictsdata fromoneNASAstudyconducted in themid1980sonB747200/300operations (3personcrewsconsistingofapilot incommand , firstofficer,andflightengineer)15.Similartrippatternsarestillbeingflownbysomeoperatorsbutwithanadditionalpilot,nota flightengineer.Participantshad theircorebody temperaturemonitoredcontinuously andkeptsleepanddutydiariesbefore,during,andafterthistrip,whichincluded4transPacificflightsplusoneroundtripwithinAsia (NRTSINNRT). The dots on the graph indicate the time of the temperature minimum (averaged for 6crewmembersperday).

    15Gander,P.H.,Gregory,K.B.,Miller,D.L.,Rosekind,M.R.,Connell,L.J.,andGraeber,R.C.(1998)FlightcrewfatigueV:long

    haulairtransportoperations.Aviation,Space,andEnvironmentalMedicine69:B37B48

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    33/149

    33

    Figure2.5:StudytrackingthecircadianbodyclockacrossmultipletransPacificflights

    Bytheendofthistrippattern,thetemperatureminimumhaddelayedbyabout4.5hours,givinganaveragedriftrateofabout30minutesper24hours (oranaveragecycle lengthofthecircadianbodyclockofabout24.5hours).Thedriftpresumablywastheresultofthefactthatthecircadianbodyclockdidnothaveany24hourtimecuestolockonto,withthenon24hrduty/restcycleandeverylayoverinadifferenttimezone.

    One consequence was that the temperature minimum (corresponding to the Window of Circadian Low orWOCL) sometimes occurred in flight, for example on the last flight from NRT to SFO. At these times,crewmembers would be expected to be sleepy and having to make additional effort to maintain theirperformance.Thiswouldbean idealtimetotakean inflightnap (crewmembersdidnothave inflightsleepopportunitiesonthistrip).

    Another consequence was that when crewmembers returned home, their circadian body clocks were onaverage4.5hoursdelayedwithrespecttolocaltimeandtookseveraldaystoreadapt.

    LayoverSleep

    Patterns

    on

    Long

    Haul

    and

    ULR

    Trips

    The fact that long haul and ULR crewmembers seldom stay long enough in any destination time zone tobecomeadaptedtolocaltimehaseffectsontheirlayoversleep.Often,crewmemberssplittheirsleep,havingone sleep period on local night and another corresponding to local night in their home time zone, whichoverlapsthepreferredpartofthecircadianbodyclockcycleforsleep(atleastforthefirst2448hoursinanewtimezone).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    34/149

    34

    Anotherfactoraffecting layoversleep,particularly forunaugmentedcrewswhodonothavetheopportunityfor inflight sleep, is that long haul duty days are often associated with extended periods of waking. Forexample, in a series of long haul trips studied by the NASA Fatigue Program the average period of wakingassociatedwithadutydaywas20.6hours(theaveragelengthofadutyperiodwas9.8hours)13. Acrosstheselongperiodsofwaking,thehomeostaticpressureforsleepbuildssothatcrewmemberstendtosleep,atleastforashorttime,soonafterarrivalatthedestinationlayoverhotel.Forexample,thisisacommonpatternaftereastward night flights across multiple time zones. A short sleep is taken soon after arrival, during the local

    afternoon,andthenthemainsleepperiodisthentakenduringlocalnight.

    FRMStrainingforlonghaulandULRcrewmembersneedstoincludediscussionoftheeffectsoftransmeridianflightsonthecircadianbodyclockandsleep.Onewaytoreducethecomplexityofthismaterialistodevelopspecificguidanceforsleepandtheuseofpersonalfatiguemitigationstrategiesondifferentroutes.

    OperationalNote:EffectsofDifferentTypesofLongHaulTripPatterns

    ontheCircadianBodyClock

    Relativelyfewstudieshavetrackedthecircadianbodyclockacrosslonghaultrippatterns,andmanyareover20yearsold.Theavailablestudiessuggestthatdifferenttypesoftrippatternsaffectthecircadianbodyclockindifferentways.

    Sequencesofbacktobacktransmeridian flights (separatedby24hour layovers)thatdonot return to the domicile time zone for long periods of time (such as the patternillustratedinFigure2.5)tendtocausethecircadianbodyclocktodriftonitsinnatecycle,whichistypicallyslightlylongerthan24hours.Thisisprobablybecausethesetripscontainnoregular24hourpatterntowhichthecircadianbodyclockcansynchronize.Whentheyarrivebackintheirhometimezone,crewmembersneedadditionaldaystoreadapttolocaltime.

    Sequences of outandback transmeridan flights (separated by 24 hour layovers) thatreturn to the home time zone on alternate layovers seem to enable the circadian body

    clocktoremainsynchronizedtothehometimezone.Forexample,atrippatternstudiedbytheNASAFatigueProgram involvedthreebacktobackreturn flightsbetweentheUSWest Coast and London (6 flights in total) with 24hour layovers between each flight.Returning to their home time zone on every second layover appeared to keepcrewmembers circadian body clocks (monitored by the core temperature rhythm)synchronizedtoWestCoasttime.Asaresult,crewmembersobtainedrelativelygoodsleepontheWestCoastlayoversanddidnotneedadditionaldaystoreadapttoWestCoasttimeattheendofthetrip.

    Thereissomeevidencethatwhencrewmembersstaylongerinthedestinationregion,forexampledoingseveraldaysoflocalflyingwithminimaltimezonechangesbeforeflyingthe

    longhaul

    trip

    home,

    their

    circadian

    body

    clocks

    begin

    to

    adapt

    to

    the

    destination

    time

    zone.Thismay improve layoversleep.Ontheotherhand,whentheyarriveback intheirhometimezone,theyneedadditionaldaystoreadapttolocaltime.

    Thescarcityofdataonwhathappenstothecircadianbodyclockacrossdifferentlonghaultrippatterns is one reason most current biomathematical models do not have a validatedapproach for simulating what happens to the circadian clock across sequences of transmeridianflights(seeChapterFour).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    35/149

    35

    2.4SummaryofEssentialScienceforFRMSDiscoveriesinsleepscienceandcircadianrhythmsprovideastrongscientificbasisforFRMS.Thesciencedoesnotaddresseverydetailedoperationalquestionanditneverwill.Inotherwords,therewillalwaysbeaneedtocombineoperationalexperienceandscientificknowledgetocomeupwithworkablecontrolsandmitigationstomanagefatigueriskinanFRMS.

    ThescientificbasisforFRMScanbecontinuouslyimprovedifdatathatareroutinelycollectedaspartofFRMprocesses(ChapterFour)andFRMSAssuranceprocesses(ChapterFive)canbesharedinappropriatewaysinthepublicdomain.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    36/149

    36

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    37/149

    37

    OperationalNote:KeyFactsAboutSleep

    Sleep isvitalforrecoveryfromfatigue.Twoaspectsofsleepare importanttheamountofsleepandthequalityofsleep.

    AmountofSleep Sleeprestrictioniscommoninflightoperations.

    Not

    getting

    enough

    sleep

    leads

    to:

    feeling

    sleepier,

    difficulty

    staying

    alert,

    getting

    irritable,

    slower

    reactions,poorercoordination,slowerthinking,gettingfixatedonpartofaproblemand losingthebigpicture(lossofsituationawareness), lesscreativeproblemsolving,andreducedmemoryconsolidation(impairedlearning).

    Theeffectsofrestrictedsleepaccumulate: the rateofaccumulationof fatigue is related to the rateof sleep loss (lesssleepperday=more

    rapidaccumulationoffatigue); sleep pressure eventually becomes uncontrollable, which results in unintentional sleep

    (microsleepsorunintendednaps). Losthoursofsleepdonotneedtoberecoveredhourforhour. Atleasttwoconsecutivenightsofunrestrictedsleeparerequiredtorecoverfromthecumulativeeffects

    ofmultiplenightsofrestrictedsleep.Unrestrictedsleepmeansbeingfreetofallasleepwhentiredandwakeupspontaneously,withsleepoccurringattheappropriatetimeinthecycleofthecircadianbody

    clock.Insomecases,thisrecoveryperiodcanbebuilt intoschedules(forexamplewithshortdaytimedutyperiods).

    Controlled napping can temporarily relieve the symptoms of sleep loss. It is a valuable personalmitigationstrategy,forexamplepriortoanightdutyperiodoronlonghaulflights. ANASAstudyof flightdecknappingshowed improvedalertnessattheendofunaugmented long

    haulflights(89hrs)whenflightcrewmembersweregivena40minnapopportunityintheirflightdeckseat.

    QualityofSleep Goodqualitysleep involvesregularcyclesthroughtwodifferenttypesofsleepRapidEyeMovement

    sleep(REMsleep)andnonREMsleep.AfullnonREM/REMsleepcycletakesroughly90minutes. Sleepthatisfragmentedbymultipleawakenings,orarousalsinto lighterstagesofsleep,breaksupthe

    nonREM/REMcycleandislessrestorativethancontinuoussleep. Sleepinonboardcrewrestfacilitiesislighterandmorefragmentedthansleepinhotelsorathome.

    Thisdoesnotappeartobeaneffectofaltitude. Both flight decknaps and inflight sleep in crew rest facilities containvery littledeep nonREM sleep

    (known as slowwave sleep), so sleep inertia is less likely after inflight sleep than is predicted bylaboratorystudies.

    Twomainphysiologicalprocessesinteracttoregulatesleep The homeostatic sleep process is evident in the pressure for slowwave sleep that builds up across

    wakinganddischargesacrosssleep.

    The circadian body clock regulates the timing of REM sleep and dictates the preference for sleep atnight.

    The

    interaction

    between

    the

    homeostatic

    pressure

    for

    sleep

    and

    the

    circadian

    body

    clock

    results

    in

    two

    timesofpeaksleepinessin24hours: a peak in the early afternoon (the afternoon nap window) that occurs around 35 pm for most

    people;and apeakintheearlyhoursofthemorning(thewindowofcircadianloworWOCL)thatoccursaround

    35amformostpeople.Note:thesetwoprocessesarethemaincomponentsinmostofthebiomathematicalmodelsthatareusedtopredictcrewmemberfatiguelevels(seeChapterFour).

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    38/149

    38

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    39/149

    39

    OperationalNote:KeyFactsAboutTheCircadianBodyClock

    Thecircadianbodyclockisapacemakerinthebrainthatissensitivetolightthroughaspecializedinputpathwayfromtheeyes(separatefromvision).

    Thecircadianbiologicalclockgeneratesaninnatebiologicaldaythatisslightlylongerthan24hoursformostpeople.Itssensitivitytolightenablesittostayinstepwiththe24hourday/nightcycle.

    Almost

    every

    aspect

    of

    human

    functioning

    (physical

    or

    mental)

    undergoes

    daily

    cycles

    that

    are

    influencedbythecircadianbodyclock. Thedailyminimumincorebodytemperaturecorrespondstothetimeinthecircadianbodyclockcycle

    whenpeoplefeelmostsleepyandareleastabletoperformmentalandphysicaltasks.ThisissometimescalledtheWindowofCircadianLow(WOCL)anditisatimeofhighriskforfatiguerelatederror.

    ShiftWork

    Shiftworkcanbedefinedasanydutypatternthatrequiresacrewmembertobeawakeduringthetimeinthecircadianbodyclockcyclethattheywouldnormallybeasleep.

    Theabilityofthecircadianclocktolockontothe24hourday/nightcyclemakesitresistadaptationtoanypatternotherthansleepatnight.

    Thefactthatthecircadianbodyclockdoesnotadaptfullytoalteredsleep/wakepatternshastwomainconsequences; dutydays thatoverlapcrewmembersusual sleep times (particularlyallnightoperations) tend to

    causesleeprestriction;and crewmemberswhoareworkingthroughthewindowofcircadianlow(WOCL)canbeexpectedtobe

    sleepyandhavetomakeadditionalefforttomaintaintheirperformance. Thefurthersleepisdisplacedfromtheoptimumpartofthecircadianbodyclockcycle,themoredifficult

    itbecomesforcrewmemberstogetadequatesleep. Inscheduling,thefrequencyofrecoverybreaks(atleast2consecutivenightsofunrestrictedsleep)

    needstoreflecttherateofaccumulationofsleepdebt.

    JetLag Flying across time zones exposes the circadian body clock to sudden shifts in the day/night cycle.

    Becauseof itssensitivityto lightand(toa lesserextent)socialtimecues,thecircadianbodyclockwill

    eventuallyadapttoanewtimezone. Therateofadaptationdependsonthenumberoftimezonescrossed,thedirectionoftravel(fasterafter

    westwardflights)andtheextenttowhichthecircadianbodyclockisexposedtothe24hourcuesinthenewtimezone(outdoorlight,sleepingandeatingonlocaltime,etc).

    Layoversof2448hoursarenotlongenoughtoallowthecircadianbodyclocktoadapttolocaltime. Differenttypesoflonghaultrippatternsaffectthecircadianbodyclockindifferentways.

    Sequencesofbacktobacktransmeridian flightsthatdonotreturnto thedomiciletimezone forlongperiodsoftimetendtocausethecircadianbodyclocktodriftonitsinnatecycle.Onreturntothehometimezone,additionaldaysareneededtoreadapttolocaltime.

    Sequences of outandback transmeridan flights that return to the home time zone on alternatelayoversseemtoenablethecircadianbodyclocktoremainsynchronizedtothehometimezone.

    Ontripsthatincludelongerperiodsinthedestinationregion,forexampleseveraldaysoflocalflying

    before

    the

    return

    flight

    home,

    the

    circadian

    body

    clock

    begins

    to

    adapt

    to

    the

    destination

    time

    zone.

    Thismay improve layoversleep.On theotherhand,on return tothehome timezone,additionaldaysareneededtoreadapttolocaltime.

    On long haul layovers, sleep is affected by competition between physiological processes (thehomeostaticsleepdriveandthecircadianbiologicalclock)andapreferenceforsleepingduringthelocalnight.

    Routespecific recommendations for personal fatigue mitigation strategies may be useful in FRMStrainingforlonghaulandULRcrewmembers.

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    40/149

    40

  • 8/2/2019 8. FRMS Implementation Guide ~ DRAFT

    41/149

    41

    OperationalNote:HowMuchSleepin24hoursisEnough?

    This common question is usually aimed at trying to get a magic number for the minimumamount of sleep that a crewmember needs, or the minimum rest period that needs to be

    scheduled. From a sleep science perspecti