8 structures

73
Mineral Structures Mineral Structures Silicates are classified on the Silicates are classified on the basis of Si-O polymerism basis of Si-O polymerism The culprit: the [SiO The culprit: the [SiO 4 ] ] 4- 4- tetrahedron tetrahedron

Upload: armando-cesar-landa-ferrel

Post on 29-Sep-2015

5 views

Category:

Documents


4 download

DESCRIPTION

estructuras

TRANSCRIPT

  • Mineral StructuresSilicates are classified on the basis of Si-O polymerism The culprit: the [SiO4]4- tetrahedron

  • Mineral StructuresSilicates are classified on the basis of Si-O polymerism [SiO4]4- Independent tetrahedra Nesosilicates

    Examples: olivine garnet

    [Si2O7]6- Double tetrahedra Sorosilicates

    Examples: lawsonite

    n[SiO3]2- n = 3, 4, 6 Cyclosilicates

    Examples: benitoite BaTi[Si3O9] axinite Ca3Al2BO3[Si4O12]OH beryl Be3Al2[Si6O18]

  • Mineral StructuresSilicates are classified on the basis of Si-O polymerism [SiO3]2- single chains Inosilicates [Si4O11]4- Double tetrahedrapryoxenes pyroxenoids amphiboles

  • Mineral StructuresSilicates are classified on the basis of Si-O polymerism [Si2O5]2- Sheets of tetrahedra Phyllosilicatesmicas talc clay minerals serpentine

  • Mineral StructuresSilicates are classified on the basis of Si-O polymerism [SiO2] 3-D frameworks of tetrahedra: fully polymerized Tectosilicatesquartz and the silica minerals feldspars feldspathoids zeoliteslow-quartz

  • Mineral StructuresNesosilicates: independent SiO4 tetrahedra

  • Nesosilicates: independent SiO4 tetrahedra Olivine (100) view blue = M1 yellow = M2bcprojection

  • Olivine (100) view blue = M1 yellow = M2bcperspectiveNesosilicates: independent SiO4 tetrahedra

  • Olivine (001) view blue = M1 yellow = M2M1 in rows and share edges

    M2 form layers in a-c that share corners

    Some M2 and M1 share edgesbaNesosilicates: independent SiO4 tetrahedra

  • Nesosilicates: independent SiO4 tetrahedra Olivine (100) view blue = M1 yellow = M2bcM1 and M2 as polyhedra

  • Nesosilicates: independent SiO4 tetrahedra

    Olivine Occurrences:Principally in mafic and ultramafic igneous and meta-igneous rocks Fayalite in meta-ironstones and in some alkalic granitoidsForsterite in some siliceous dolomitic marblesMonticellite CaMgSiO4 Ca M2 (larger ion, larger site)High grade metamorphic siliceous carbonates

  • Nesosilicates: independent SiO4 tetrahedra Garnet (001) view blue = Si purple = A turquoise = BGarnet: A2+3 B3+2 [SiO4]3

    Pyralspites - B = AlPyrope: Mg3 Al2 [SiO4]3 Almandine: Fe3 Al2 [SiO4]3 Spessartine: Mn3 Al2 [SiO4]3 Ugrandites - A = CaUvarovite: Ca3 Cr2 [SiO4]3 Grossularite: Ca3 Al2 [SiO4]3 Andradite: Ca3 Fe2 [SiO4]3

    Occurrence:Mostly metamorphicSome high-Al igneousAlso in some mantle peridotites

  • Nesosilicates: independent SiO4 tetrahedra Garnet (001) view blue = Si purple = A turquoise = BGarnet: A2+3 B3+2 [SiO4]3

    Pyralspites - B = AlPyrope: Mg3 Al2 [SiO4]3 Almandine: Fe3 Al2 [SiO4]3 Spessartine: Mn3 Al2 [SiO4]3 Ugrandites - A = CaUvarovite: Ca3 Cr2 [SiO4]3 Grossularite: Ca3 Al2 [SiO4]3 Andradite: Ca3 Fe2 [SiO4]3

    Occurrence:Mostly metamorphicPyralspites in meta-shalesUgrandites in meta-carbonatesSome high-Al igneousAlso in some mantle peridotitesa1a2a3

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)Diopside: CaMg [Si2O6] ba sinWhere are the Si-O-Si-O chains??

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)ba sin

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)ba sin

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)ba sin

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)ba sin

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)ba sin

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)Perspective view

  • Inosilicates: single chains- pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)SiO4 as polygons(and larger area)IV slabIV slabIV slabIV slabVI slabVI slabVI slabba sin

  • Inosilicates: single chains- pyroxenes M1 octahedron

  • Inosilicates: single chains- pyroxenes M1 octahedron

  • Inosilicates: single chains- pyroxenes M1 octahedron(+) type by convention(+)

  • Inosilicates: single chains- pyroxenes M1 octahedron

    This is a (-) type(-)

  • Inosilicates: single chains- pyroxenes TM1TCreates an I-beam like unit in the structure.

  • Inosilicates: single chains- pyroxenes TM1TCreates an I-beam like unit in the structure

  • The pyroxene structure is then composed of alternating I-beamsClinopyroxenes have all I-beams oriented the same: all are (+) in this orientation Inosilicates: single chains- pyroxenes Note that M1 sites are smaller than M2 sites, since they are at the apices of the tetrahedral chains

  • The pyroxene structure is then composed of alternation I-beamsClinopyroxenes have all I-beams oriented the same: all are (+) in this orientation Inosilicates: single chains- pyroxenes

  • Tetrehedra and M1 octahedra share tetrahedral apical oxygen atoms Inosilicates: single chains- pyroxenes

  • The tetrahedral chain above the M1s is thus offset from that below

    The M2 slabs have a similar effect

    The result is a monoclinic unit cell, hence clinopyroxenesInosilicates: single chains- pyroxenes ca(+) M1(+) M2(+) M2

  • Orthopyroxenes have alternating (+) and (-) I-beams

    the offsets thus compensate and result in an orthorhombic unit cell

    This also explains the double a cell dimension and why orthopyroxenes have {210} cleavages instead of {110) as in clinopyroxenes (although both are at 90o)Inosilicates: single chains- pyroxenes ca(+) M1(-) M1(-) M2(+) M2

  • Pyroxene ChemistryThe general pyroxene formula: W1-P (X,Y)1+P Z2O6

    WhereW = Ca NaX = Mg Fe2+ Mn Ni LiY = Al Fe3+ Cr TiZ = Si Al

    Anhydrous so high-temperature or dry conditions favor pyroxenes over amphiboles

  • Pyroxene ChemistryThe pyroxene quadrilateral and opx-cpx solvusCoexisting opx + cpx in many rocks (pigeonite only in volcanics)DiopsideHedenbergiteWollastoniteEnstatiteFerrosiliteorthopyroxenesclinopyroxenespigeonite(Mg,Fe)2Si2O6Ca(Mg,Fe)Si2O6pigeoniteclinopyroxenesorthopyroxenesSolvus1200oC1000oC800oC

  • Pyroxene ChemistryNon-quad pyroxenesJadeiteNaAlSi2O6Ca(Mg,Fe)Si2O6AegirineNaFe3+Si2O6Diopside-HedenbergiteCa-Tschermacks moleculeCaAl2SiO6Ca / (Ca + Na)0.20.8Omphaciteaegirine- augiteAugiteSpodumene: LiAlSi2O6

  • PyroxenoidsIdeal pyroxene chains with 5.2 A repeat (2 tetrahedra) become distorted as other cations occupy VI sitesWollastonite (Ca M1) 3-tet repeatRhodoniteMnSiO3 5-tet repeatPyroxmangite (Mn, Fe)SiO3 7-tet repeatPyroxene2-tet repeat

  • Inosilicates: double chains- amphiboles Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg)yellow = M4 (Ca)Tremolite:Ca2Mg5 [Si8O22] (OH)2ba sin

  • Inosilicates: double chains- amphiboles Hornblende:(Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2ba sinHornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)little turquoise ball = H

  • Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe)Hornblende:(Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2Same I-beam architecture, but the I-beams are fatter (double chains)

  • Inosilicates: double chains- amphiboles ba sinSame I-beam architecture, but the I-beams are fatter (double chains)All are (+) on clinoamphiboles and alternate in orthoamphibolesHornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)little turquoise ball = HHornblende:(Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2

  • Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)little turquoise ball = HHornblende:(Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2

    M1-M3 are small sites

    M4 is larger (Ca)

    A-site is really big

    Variety of sites great chemical range

  • Inosilicates: double chains- amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)little turquoise ball = HHornblende:(Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2

    (OH) is in center of tetrahedral ring where O is a part of M1 and M3 octahedra(OH)

  • See handout for more informationGeneral formula:

    W0-1 X2 Y5 [Z8O22] (OH, F, Cl)2

    W = Na KX = Ca Na Mg Fe2+ (Mn Li)Y = Mg Fe2+ Mn Al Fe3+ TiZ = Si Al

    Again, the great variety of sites and sizes a great chemical range, and hence a broad stability rangeThe hydrous nature implies an upper temperature stability limitAmphibole Chemistry

  • Ca-Mg-Fe Amphibole quadrilateral (good analogy with pyroxenes)Amphibole ChemistryAl and Na tend to stabilize the orthorhombic form in low-Ca amphiboles, so anthophyllite gedrite orthorhombic series extends to Fe-rich gedrite in more Na-Al-rich compositionsTremoliteCa2Mg5Si8O22(OH)2FerroactinoliteCa2Fe5Si8O22(OH)2AnthophylliteMg7Si8O22(OH)2Fe7Si8O22(OH)2ActinoliteCummingtonite-gruneriteOrthoamphibolesClinoamphiboles

  • Hornblende has Al in the tetrahedral site

    Geologists traditionally use the term hornblende as a catch-all term for practically any dark amphibole. Now the common use of the microprobe has petrologists casting hornblende into end-member compositions and naming amphiboles after a well-represented end-member.

    Sodic amphiboles

    Glaucophane: Na2 Mg3 Al2 [Si8O22] (OH)2Riebeckite: Na2 Fe2+3 Fe3+2 [Si8O22] (OH)2

    Sodic amphiboles are commonly blue, and often called blue amphibolesAmphibole Chemistry

  • Tremolite (Ca-Mg) occurs in meta-carbonatesActinolite occurs in low-grade metamorphosed basic igneous rocksOrthoamphiboles and cummingtonite-grunerite (all Ca-free, Mg-Fe-rich amphiboles) are metamorphic and occur in meta-ultrabasic rocks and some meta-sediments. The Fe-rich grunerite occurs in meta-ironstonesThe complex solid solution called hornblende occurs in a broad variety of both igenous and metamorphic rocksSodic amphiboles are predominantly metamorphic where they are characteristic of high P/T subduction-zone metamorphism (commonly called blueschist in reference to the predominant blue sodic amphiboles Riebeckite occurs commonly in sodic granitoid rocks

    Amphibole Occurrences

  • InosilicatesPyroxenes and amphiboles are very similar:Both have chains of SiO4 tetrahedra The chains are connected into stylized I-beams by M octahedraHigh-Ca monoclinic forms have all the T-O-T offsets in the same directionLow-Ca orthorhombic forms have alternating (+) and (-) offsets+++++++++------+++aa++++++++++++------ClinopyroxeneOrthopyroxeneOrthoamphiboleClinoamphibole

  • InosilicatesCleavage angles can be interpreted in terms of weak bonds in M2 sites (around I-beams instead of through them)Narrow single-chain I-beams 90o cleavages in pyroxenes while wider double-chain I-beams 60-120o cleavages in amphiboles pyroxeneamphiboleab

  • SiO4 tetrahedra polymerized into 2-D sheets: [Si2O5]Apical Os are unpolymerized and are bonded to other constituentsPhyllosilicates

  • Tetrahedral layers are bonded to octahedral layers (OH) pairs are located in center of T rings where no apical OPhyllosilicates

  • Octahedral layers can be understood by analogy with hydroxides

    PhyllosilicatesBrucite: Mg(OH)2

    Layers of octahedral Mg in coordination with (OH)

    Large spacing along c due to weak van der waals bondsc

  • PhyllosilicatesGibbsite: Al(OH)3Layers of octahedral Al in coordination with (OH)Al3+ means that only 2/3 of the VI sites may be occupied for charge-balance reasonsBrucite-type layers may be called trioctahedral and gibbsite-type dioctahedrala1a2

  • PhyllosilicatesKaolinite: Al2 [Si2O5] (OH)4T-layers and diocathedral (Al3+) layers (OH) at center of T-rings and fill base of VI layer Yellow = (OH)T O - T O - T Ovdwvdwweak van der Waals bonds between T-O groups

  • PhyllosilicatesSerpentine: Mg3 [Si2O5] (OH)4T-layers and triocathedral (Mg2+) layers (OH) at center of T-rings and fill base of VI layer Yellow = (OH)T O - T O - T Ovdwvdwweak van der Waals bonds between T-O groups

  • SerpentineAntigorite maintains a sheet-like form by alternating segments of opposite curvatureChrysotile does not do this and tends to roll into tubes

  • SerpentineThe rolled tubes in chrysotile resolves the apparent paradox of asbestosform sheet silicatesS = serpentine T = talcNagby and Faust (1956) Am. Mineralogist 41, 817-836.Veblen and Busek, 1979, Science 206, 1398-1400.

  • PhyllosilicatesPyrophyllite: Al2 [Si4O10] (OH)2T-layer - diocathedral (Al3+) layer - T-layer T O T - T O T - T O Tvdwvdwweak van der Waals bonds between T - O - T groups Yellow = (OH)

  • PhyllosilicatesTalc: Mg3 [Si4O10] (OH)2T-layer - triocathedral (Mg2+) layer - T-layer T O T - T O T - T O Tvdwvdwweak van der Waals bonds between T - O - T groups Yellow = (OH)

  • PhyllosilicatesMuscovite: K Al2 [Si3AlO10] (OH)2 (coupled K - AlIV)T-layer - diocathedral (Al3+) layer - T-layer - KT O T K T O T K T O TK between T - O - T groups is stronger than vdw

  • PhyllosilicatesPhlogopite: K Mg3 [Si3AlO10] (OH)2T-layer - triocathedral (Mg2+) layer - T-layer - KT O T K T O T K T O TK between T - O - T groups is stronger than vdw

  • A Summary of Phyllosilicate StructuresPhyllosilicatesFig 13.84 Klein and Hurlbut Manual of Mineralogy, John Wiley & Sons

  • Chlorite: (Mg, Fe)3 [(Si, Al)4O10] (OH)2 (Mg, Fe)3 (OH)6= T - O - T - (brucite) - T - O - T - (brucite) - T - O - T -

    Very hydrated (OH)8, so low-temperature stability (low-T metamorphism and alteration of mafics as cool)Phyllosilicates

  • Why are there single-chain-, double-chain-, and sheet-polymer types, and not triple chains, quadruple chains, etc??

    Biopyriboles

  • It turns out that there are some intermediate types, predicted by J.B. Thompson and discovered in 1977 Veblen, Buseck, and Burnham

    Cover of Science: anthophyllite (yellow) reacted to form chesterite (blue & green) and jimthompsonite (red)

    Streaked areas are highly disorderedBiopyribolesCover of Science, October 28, 1977 AAAS

  • HRTEM image of anthophyllite (left) with typical double-chain widthJimthompsonite (center) has triple-chainsChesterite is an ordered alternation of double- and triple-chainsanthophyllitejimthompsonitechesteriteFig. 6, Veblen et al (1977) Science 198 AAAS

  • Disordered structures show 4-chain widths and even a 7-chain widthObscures the distinction between pyroxenes, amphiboles, and micas (hence the term biopyriboles: biotite-pyroxene-amphibole)BiopyribolesFig. 7, Veblen et al (1977) Science 198 AAAS

  • TectosilicatesAfter Swamy and Saxena (1994) J. Geophys. Res., 99, 11,787-11,794.

  • TectosilicatesLow Quartz001 Projection Crystal Class 32

  • TectosilicatesHigh Quartz at 581oC001 Projection Crystal Class 622

  • TectosilicatesCristobalite001 Projection Cubic Structure

  • TectosilicatesStishoviteHigh pressure SiVI

  • TectosilicatesLow Quartz StishoviteSiIV SiVI

  • TectosilicatesFeldsparsAlbite: NaAlSi3O8Substitute two Al3+ for Si4+ allows Ca2+ to be addedSubstitute Al3+ for Si4+ allows Na+ or K+ to be added