8 top-down, bottom-up electricity modeling

35
TopDown – BottomUp Electricity Modeling Part 2: Challenges of Modeling Renewables, Detailed Electricity Models, and Hybrid Modeling Nidhi Santen and Karen TapiaAhumada 7TH ANNUAL EPPA TRAINING WORKSHOP JORDAN GRAND RESORT HOTEL, NEWRY, ME SEPTEMBER 30 – OCTOBER 1, 2016 10/1/2016 1 7TH ANNUAL EPPA TRAINING WORKSHOP

Upload: others

Post on 09-May-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8 Top-down, bottom-up electricity modeling

Top-­‐Down  – Bottom-­‐Up  Electricity  Modeling  Part  2:  Challenges  of  Modeling  Renewables,  Detailed  Electricity  Models,  and Hybrid  Modeling  

Nidhi  Santen  and  Karen  Tapia-­‐Ahumada

7TH  ANNUAL   E PPA   TRA IN ING  WORKSHOP

JORDAN  GRAND  R ESORT  HOTE L ,   NEWRY,  ME

SEPTEMBER   3 0   – OCTOBER   1 ,   2 0 16

10/1/2016 17TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 2: 8 Top-down, bottom-up electricity modeling

Agenda§ Introduction

§ Why  Hybrid  Modeling?§ Challenges  in  modeling  variable-­‐output  renewable  energy  resources

§ An  overview  of  detailed  electricity  models§ MIT  EleMod  Model  (Tapia-­‐Ahumada  et  al.,  2014)  § NREL  Regional  Energy  Deployment  System  Model  (ReEDS)

§ MITEI-­‐JP  Hybrid  Modeling  Work§ USREP-­‐EleMod  Integrated  Modeling  Framework§ Next  Steps

210/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 3: 8 Top-down, bottom-up electricity modeling

Introduction:  The  Changing  Electricity  Sector§ Electricity  generation  is  the  largest  and  fastest-­‐growing  source  of  global  energy  related  CO2 emissions

• About  40%  of  CO2 energy-­‐related  emissions  come  from  this  sector  in  the  U.S.

• Greater  deployment  of  wind  and  solar  is  expected  if  a  low-­‐carbon  economy  is  anticipated  (de-­‐carbonization)

310/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Source:  AEO  2016

Page 4: 8 Top-down, bottom-up electricity modeling

Introduction:  Why  Hybrid  Models?§ Future  energy  and  climate  policies  impact  not  only  the  electricity  sector,  but  also  the  overall  economy• Carbon  Taxes  /  Energy  Taxes  /  Emissions  Cap  /  Technology  Regulation  (ex.  RPS)• These  policies  are  translated  into  a  set  of  workable  scenarios  to  foresee  effects  on:

Electricity  prices  /  Electricity  demand  /  Portfolio  mix  (generation,  installed  capacity)…Primary  energy  use  /  Energy-­‐related  emissions  /  Welfare  costs  /  Income  (regressive  vs.  progressive  policies),  Trade….

§ Top-­‐down  economy-­‐wide  models  provide  an  important,  unmatched,  perspective  from  which  to  study  the  effects  of  future  climate  and  energy  policies

§ Improved  simulation  tools  can  accurately  represent  how  the  electric  power  sector  is  changing  (e.g.,  resource  mix,  operations)

§ Characterize  new  disruptive  technologies  in  economy-­‐wide  models,  to  correctly  assess  renewables  deployment  potential  and  policy  costs

§ Assess  sensitivity  of  TD  models  to  key  parameters  that  impact  the  evolution  of  the  electricity  sector

410/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 5: 8 Top-down, bottom-up electricity modeling

Characteristics  of  RE:  Limited  Controllable  Variability  of  Wind

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 5

§ Wind  generation  is  variable  over  time,  due  to  the  fluctuations  of  wind  speed

§ Except  for  curtailment  or  blade  pitching  actions,  wind  generation  is  less  controllable  than  other  technologies

Sample  of  wind  power  output  for  a  single  wind  turbine,  and  for  a  group  of  wind  plants  in  GermanySource:  Holttinen  H.  ,  et  al.,  2009

Source:  Vitolo  et  al.  2013

Page 6: 8 Top-down, bottom-up electricity modeling

Characteristics  of  RE:  Partial  Unpredictability  of  Wind

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 6

§ Predicting  wind  output  is  difficult—much  more  so  than  predicting  the  output  of  conventional  generators  or  load

§ Experience  shows  that  deviations  in  predictions  of  wind  output  decrease  with  proximity  to  real  time

Evolution  of  the  wind  forecast  error,  as  a  percentage  of  wind  production,  as  a  function  to  the  distance  to  real  time.  Source:  EURELECTRIC,  2010.

Page 7: 8 Top-down, bottom-up electricity modeling

Characteristics  of  RE:  Limited  Controllable  Variability  of  Solar  PV

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 7

PV  plant  output  located  in  Nevada  on  a  sunny  day  (left)  and  on  a  partly-­cloudy  day  (right)  -­ Sampling  time  10  seconds.  Source:  NERC,  2009

§ Renewable  solar  energy  is  more  predictable,  but  still  highly  variable

Page 8: 8 Top-down, bottom-up electricity modeling

Characteristics  of  RE:  Local  Dependency

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 8

§ Renewable  resources  depend  heavily  on  geography;  the  best,  most  reliable  resources  are  often  not  spatially  correlated  with  where  electricity  is  most  needed  (load  centers)

Page 9: 8 Top-down, bottom-up electricity modeling

Challenges  in  Modeling  Variable  Output  RE:  Electric  Power  System  Impacts

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 9

§ Increased  Flexibility§ Fast-­‐response  electric  generating  units  (EGUs)§ Reserves  requirement§ Transmission  interconnections,  for  geographic  dispersion

§ Energy  storage§ Consumer  load-­‐shifting  behavior

Impact  of  wind  production  on  one-­day  hypothetical  dispatch  pattern  for  ERCOT  in  2030.  Source:  (MIT,  2010).

Results  for  the  increase  in  reserve  requirement  due  to  wind  power.  Source:  (Holttinen  H.  ,  et  al.,  2011).

Page 10: 8 Top-down, bottom-up electricity modeling

Challenges  in  Modeling  Variable  Output  RE:  Electric  Power  System  Impacts§ New  Market  and  Regulatory  Structures

§ Energy  service  markets§ Ancillary  service  markets,  such  as:§ Reserves§ Voltage  support

§ Planning/Investment  in  Transmission  and  Distribution  Infrastructure  and  Services

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 10

Page 11: 8 Top-down, bottom-up electricity modeling

Overview  of  Detailed  Electricity  Sector  Models

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 11

Page 12: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Models:Overview

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 12

Hierarchical  decision-­‐making  process  in  power  systems (Palmintier,  2013).

Page 13: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Models:Overview§ Capacity  expansion  planning  models  (years  to  decades)

§ Models  that  determine  cost-­‐effective  additions  of  electric  power  generating  capacity  and/or  transmission  capacity  subject  to  various  technical  and  policy  constraints

§ Constraints,  such  as:§ Electricity  Demand  =  Electricity  Supply  at  each  time  interval  represented  and  in  each  region  represented

§ Technology-­‐specific  operating  constraints  (e.g.,  a  coal  plant  takes  8  hours  to  start-­‐up;  a  gas  combustion  turbine  takes  8-­‐10  minutes)

§ Resource  availability  (e.g.,  wind,  solar,  hydro)§ Power  flow  limitations  (if  transmission  network  is  represented)§ Emissions  limits

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 13

Page 14: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Models:Defining  Features

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 14

§ High  number  of  technology  (and  sub-­‐technology)  typically  represented

§ Technologies  are  represented  by  their  engineering  and  operating  constraints  § The  most  detailed  BU  electricity  models  represent  individual real  power  plants  and/or  supporting  devices,  and  their  operating  characteristics

§ The  electricity  market  is  represented  by  its  physical  reality§ Electric  power  flows  through  the  transmission  network  are  represented,  and  determine  locational  prices

§ Very  good  resolution  in  spatial  and  temporal  dynamics,  although  there  is  a  tradeoff  between  the  two

§ LCOEs  (Levelized  Costs  of  Electricity)  and  the  relative  behavior  of  one  technology  to  another  are  outputs of  the  model,  not  inputs!

Page 15: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Model:MITEI  EleMod§ U.S.  regional  generation  expansion  power  system  model  (Tapia-­‐Ahumada  and  Perez-­‐Arriaga,  2014**;  Perez-­‐Arriaga  and  Meseguer,  1997)• Designed  to  investigate  system’s  operation  and  cost  recovery  with  large  amounts  of  wind• LP  model  that  minimizes  the  total  cost  of  producing  electricity• Deterministic  /  Recursive-­‐dynamic  structure

Optimal  solutions  computed  in  every  intra-­‐period  of  two  years• Three  time  ranges  in  the  decision  making  process:  

Capacity  expansion  planning    /  Operation  planning    /  Operation  dispatch• Some  details:

Regional  load  demands  (hourly)  /Regional  wind  profiles  estimates  (hourly)  /  Conventional  technologies  /  Technical  and  environmental  constraints

5/5/2014 ESRG  MEETING

15

US  12  Regions

Alaska   California   Florida  New  York   New  England South  EastNorth  East South  Central   North  CentralMountain Pacific Texas

EleMod  Model

Electricity  Sector

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡𝑠  𝑠. 𝑡.

ℎ+ = 0𝑔+ ≤ 0

Technologies:Fossil  /  Nuclear  /  Wind

Outputs:Portfolio  mix(generation  &installed  capacity)PricesEmissionsExpenditures(fuel  &  capital)

Optimal  Decisions

2006 2008 2010

Optimal  Decisions

2050Time  horizon

.  .  . .  .  .

Long-­‐term  scope  (>40  years)

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 16: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Model:EleMod  Data  and  Assumptions

1610/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 17: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Model:  EleMod  Data  and  Assumptions

1710/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 18: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Model:  EleMod  Data  and  Assumptions

1810/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 19: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Model:NREL  Regional  Energy  Deployment  System  (ReEDS)§ U.S.  generation  and  transmission  capacity  expansion  power  system  model  (Short  et  al.  2011)• LP  model  that  minimizes  the  total  cost  of  producing  electricity  subject  to  a  wide  range  of  operating  and  system-­‐level  constraints

• Sequential  myopic  optimization  structureOptimal  solutions  computed  for  every  two  year  periods

• Time  ranges  in  the  decision  making  process:  Capacity  expansion  planning    /  Operation  dispatch

• Some  details:High  level  of  spatial  detail  in  supply-­‐demand  balance  and  renewable  resources  /  Several  technology  categories  /  Technical  and  environmental  constraints /  Stylized  transmission  network  /  Lower  temporal  resolution  than  EleMod  (17  time  segments  per  year)

1910/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Base  Case  Capacity  Buildout  in  ReEDS.  Source:  NREL,  2016

Outputs:Portfolio  mix(generation  &  transmissioninstalled  capacity)PricesEmissionsExpenditures(fuel  &  capital)

Page 20: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Model:ReEDS  Spatial  Resolution

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 20

Source:  NREL,  2016

ReeDS  Transmission  Network

Page 21: 8 Top-down, bottom-up electricity modeling

BU  Electric  Power  Sector  Model:ReEDS  Temporal  Dynamics

10/1/2016 217TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Source:  Short  et  al.  2011 Source:  NREL  2016

Page 22: 8 Top-down, bottom-up electricity modeling

RE  Representation  in  TD  General  Equilibrium  Models§ Electricity  from  wind  – 4  key  modeling  choices• Nested  CES  structure• Elasticities  of  substitution• “Mark-­‐up”  parameter• Supply  of  the  renewable  resource  fixed  factor  over  time

§ Challenges  of  the  TD  approach• Use  of  LCOE  to  compare  renewables  with  dispatchable  generation

• Wind  without  and  with  back-­‐up  technologies• Results  of  the  TD  model  can  be  sensitive  to  the  specification  of  certain  parameters-­‐ Estimation  of  the  mark-­‐up-­‐ Parameterization  of  the  fixed  factor

§ Can  these  challenges  be  assessed?

§ Can  this  representation  be  improved?

2210/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 23: 8 Top-down, bottom-up electricity modeling

Hybrid  Modeling:  USREP-­‐EleMod  Work

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP 23

Page 24: 8 Top-down, bottom-up electricity modeling

Integrated  Framework:Overview§ Integrated  approach  to  model  intermittent  wind  energy  within  an  economy-­‐wide  GE  framework• 2  sub-­‐models  coupled  via  an  iterative  algorithm

§ MIT  USREP• Economy-­‐energy  general  equilibrium  model  of  the  U.S.  economy

§ BU  model  of  the  electric  power  sector• Capacity  expansion  and  economic  dispatch  model

24

Static/Recursive-­‐dynamicPartial  EquilibriumNational  Aggregate

Looking-­‐forwardGeneral  EquilibriumRegional  Disaggregation

LCOE  ModelTechnologyEnergy  Block  Segmentation

Expansion  and  OperationPower  Plant  UnitsHourly  Resolution

Framework

BU  model

Aggregate  Sectors1  representative  consumerClosed  economy

Industrial  DetailIndividual  household  detailDetailed  international  trade

TD  model

Note:  “Design  choices”  conceptual  idea  taken  from  EPRI

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 25: 8 Top-down, bottom-up electricity modeling

Integrated  Framework:Iterative  Algorithm§ Coupling  between  both  models  (Boehringer  and  Rutherford,  2009;  Rausch  and  Mowers,  2013)• Information  exchange  using  key  outputs  of  both  models• Iteration  until  reaching  convergence/equilibrium  conditions

25

TD  modelwith  exogenouselectricity  sector

BU  model  ofelectricity  sector

Iterative  approach

Electricity  DemandElectricity  PriceFuel  Index  PricesCapital  Index  PricesLabor  Index  Prices

Generation  SupplyCO2 emissionsFuel  ExpensesCapital  ExpensesO&M  Expenses

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

EleMod

USREP1=USREP*

USREP0

Page 26: 8 Top-down, bottom-up electricity modeling

Integrated  Framework:Iterative  Algorithm  -­‐ Implementation

Check  convergence  

(equilibrium  in  Q&P)    5/5/2014 ESRG  MEETING 26

100

150

200

250

300

350

08_iter1 08_iter2 08_iter3 08_iter4 08_iter5 08_iter6 08_iter7 08_iter8

Electric  dem

and  [TWh-­‐yr] FL NY

TX NENG

80

90

100

110

120

130

140

150

08_iter1 08_iter2 08_iter3 08_iter4 08_iter5 08_iter6 08_iter7 08_iter8

Electric  pric

e  [$/M

Wh]

FL NY

TX NENG

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

08_iter1 08_iter2 08_iter3 08_iter4 08_iter5 08_iter6 08_iter7 08_iter8

NG  price  inde

x  [p.u.]

FL NY

TX NENG

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 27: 8 Top-down, bottom-up electricity modeling

ResultsCase  Description

§ Focus  on  competiveness  of  wind  within  an  electric  power  system,  i.e.  wind-­‐grid  parity  at  wholesale  level“Moment  when  renewable  energy  becomes  cost  competitive  with  the  price  of  electricity  coming  from  the  grid”

§ Baseline  scenario:• Time  horizon:  2006  to  2050• Neither  renewables  energy  mandate  nor  carbon  emission  policy• Integrated  model  uses  a  decreasing  cost  path  trajectory  for  wind• TD  model  approximately  replicates  wind  outcomes  of  integrated  model• Models  work  with  12  U.S.  regions  -­‐ Results  shown  for  the  New  England  region

§ Can  both  types  of  models  capture  wind-­‐grid  parity?• Penetration  limit  (optimum  amount)  /  Effect  on  electricity  prices

2710/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 28: 8 Top-down, bottom-up electricity modeling

Integrated  ModelReference  Case  Results

2810/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 29: 8 Top-down, bottom-up electricity modeling

Integrated  ModelReference  Case  Results

29

 (10)

 (5)

 -­‐

 5

 10

 15

 20

 25

 30

 (10)

 (5)

 -­‐

 5

 10

 15

 20

 25

 30

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

106

111

116

121

126

131

136

141

146

151

156

161

166

Gen

eration  [GWh]

GenerationOne  week  in  January  in  year  2050

Nuclear Adv.  Supercritical  Coal  Steam Conventional  Coal  SteamGas  Steam Gas  Combined  Cycle Gas  Combustion  TurbineWind Wind  Curtailment

 (40)

 8

 56

 104

 152

 200

 (10)

 2

 14

 26

 38

 50

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

106

111

116

121

126

131

136

141

146

151

156

161

166

Price  [$/MWh]

Load

 and

 Reserves  [GWh]

Operating  and  Capacity  reserves  vs.  Marginal  priceOne  week  in  January  in  year  2050

Load Net  load Wind  CurtailmentMax.  Connected  Power Min.  Connected  Power Firm  CapacityCapacity  Requirement Marg.  Price

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 30: 8 Top-down, bottom-up electricity modeling

ResultsIntegrated  “Benchmark”  Model  vs.  TD  Model

30

Stand-­‐alone  TD  model

With  parameters  adjusted  to  obtain  ~40%  of  wind  generation  by  2050

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 31: 8 Top-down, bottom-up electricity modeling

ResultsSensitivity  TD  Model:  Mark-­‐up  &  Initial  Fixed  Factor  Endowment

31

High  sensitivity  to  mark-­‐up  parameter  increases High  sensitivity  to  fixed  factor,  and  impact  on  the  penetration  pattern  

10/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 32: 8 Top-down, bottom-up electricity modeling

Observations  from  Hybrid  Modeling  Work§ New  modeling  challenges  brought  about  by  intermittent  renewable  energy  sources  require  careful  review  of  and  

enhancement  of  existing  tools§ TD  models  need  to  capture  key  characteristics  of  variable  output  (wind  and  solar)  energy  with  the  necessary  

temporal  and  spatial  detail§ BU  models  can  be  enhanced  to  interact  with  and  consider  economy-­‐wide  impacts

§ Previous  work  introduced  a  benchmark  model  that  integrates  a  bottom-­‐up  electricity  sector  model  within  an  economy-­‐wide  general  equilibrium  framework§ It  incorporated  a  relatively  stylized  portrayal  of  the  electric  power  sector  (e.g.,  wind  only,  no  transmission  

network,  no  simulated  policy  cases)

§ Results  :• The  use  of  an  integrated  model  with  more  electricity  sector  details  enables  capturing  the  long-­‐term  adaptation  of  a  system  to  the  penetration  of  wind  more  realistically

• A  TD  approach  to  modeling  intermittent  renewable  energy,  if  properly  specified, is  capable  of  roughly  replicating  the  results  from  the  benchmark  model

• A  TD  approach  is  highly  sensitive  to  key  parameters  which  are  a  priori  typically  unknown  or  at  least  highly  uncertain

3210/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 33: 8 Top-down, bottom-up electricity modeling

Research  Next  Steps§ Improvement  of  Integrated  model:• Add  other  technologies  (e.g.,  solar,  storage)• Add  transmission  across  regions• Representation  of  policies  such  as  Clean  Power  Plan  and  State  Renewable  Portfolio  Standards• (Convergence  when  imposing  economy-­‐wide  CO2 emissions  limit**)

§ Application  of  Integrated  model:• Climate  and  energy  policy  analysis

§ Improvement  of  TD  equilibrium  models:• Address  whether  or  not  some  of  the  key  assumptions  regarding  the  structure  and  parameters  used  in  TD  models  can  be  estimated  and  further  refined  to  account  for  the  adaptation  of  the  electric  power  sector  to  high  penetration  of  variable  output  renewable  energy  sources

3310/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 34: 8 Top-down, bottom-up electricity modeling

ReferencesBöehringer,  C.,  Rutherford,  T.,  2009.  Integrated  assessment  of  energy  policies:  Decomposing  top-­‐down  and  bottom-­‐up.  Journal  of  Economic  Dynamics  and  Control  33  (9),  1648  – 1661.

EURELECTRIC.  (2010).  Integrating  intermittent  renewables  sources  into  the  EU  electricity  system  by  2020:  challenges  and  solutions. Union  of  the  Electricity  Industry.

Holttinen,  H.,  Meibom,  P.,  Orths,  A.,  van  Hulle,  F.,  Lange,  B.,  O  ’Malley,  M.,  .  .  .  Ela,  E.  (2009).  Design  and  operation  of  power  systems  with  large  amounts  of  wind  power.  Final  report,  IEA  WIND  Task  25,  Phase  one  2006-­‐2008.  

NERC.  (2009).  Accomodating  High  Levels  of  Variable  Generation. North  American  Electric  Reliability  Corporation  (NERC).

Perez-­‐Arriaga,  I.,  Meseguer,  C.,  1997.  Wholesale  marginal  prices  in  competitive  generation  markets.  IEEE  Transactions  on  Power  Systems  (2),  710.

Rausch,  S.,  Metcalf,  G.,  Reilly,  J.,  2011.  Distributional  impacts  of  carbon  pricing:  A  general  equilibrium  approach  with  micro-­‐data  for  households.  Energy  Economics  33,  S20  – S33.

Rausch,  S.,  Metcalf,  G.,  Reilly,  J.,  Paltsev,  S.,  2010.  Distributional  implications  of  alternative  U.S.  greenhouse  gas  control  measures.  B.E.  Journal  of  Economic  Analysis  &  Policy:  Advances  in  Economic  Analysis  &  Policy  10  (2),  1  – 44.

Rausch,  S.,  Mowers,  M.,  2013.  Distributional  and  efficiency  impacts  of  clean  and  renewable  energy  standards  for  electricity.  Resource  and  Energy  Economics.

Short,  W.,  P.  Sullivan,  T.  Mai,  M.  Mowers,  C.  Uriarte,  N.  Blair,  D.  Heimiller,  and  A.  Martinez.  2011. Regional  Energy  Deployment  System  (ReEDS)    .  Golden,  CO:  National  Renewable  Energy  Laboratory.  NREL/TP-­‐6A20-­‐46534.  

Tapia-­‐Ahumada,  K.  Octaviano,  C.  Rausch,  S.  Perez-­‐Arriaga,  J.  2014.  Modeling  Intermittent  Renewable  Energy:  Can  We  Trust  Top-­‐Down  Equilibrium  Approaches?  MIT  Center  for  Energy  and  Environmental  Policy  Research  Working  Paper  Series.

Tapia-­‐Ahumada,  K.,  Perez-­‐Arriaga,  J.,  2014.  EleMod:  A  model  for  capacity  expansion  planning,  operation  planning  and  dispatch  in  electric  power  systems  with  penetration  of  wind,  MITEI  Working  Paper,  MIT  Energy  Initiative,  Massachusetts  Institute  of  Technology

Vitolo,  T.,  G.  Keith,  B.  Biewald,  T.  Comings,  E.  Hausman,  P.  Knight.  2013.  Meeting  Load  with  a  Resource  Mix  Beyond  Business  as  Usual:  A  regional  examination  of  the  hourly  system  operations  and  reliability  implications  for  the  United  States  electric  power  system  with  coal  phased  out  and  high  penetrations  of  efficiency  and  renewable  generating  resources.  Synapse  Energy  Economics  for  Civil  Society  Institute

3410/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP

Page 35: 8 Top-down, bottom-up electricity modeling

End

TOP-­‐DOWN  – BOTTOM-­‐UP  ELECTRICITY  MODELING  PART  27TH  ANNUAL  EPPA  TRA IN ING  WORKSHOP

SEPTEMBER  30  – OCTOBER  1 ,   216

3510/1/2016 7TH  ANNUAL  EPPA  TRAINING  WORKSHOP