875.317 computational mechanics - baunat.boku.ac.at · transcend the classical boundaries of solid...

252
University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss 875.317 Computational Mechanics STRAUSS

Upload: doankhanh

Post on 13-Jul-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    875.317 Computational Mechanics

    STRAUSS

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Time Schedule

    Mo 20. Feb. 2006 9:00 -14:00 Mo 27. Feb. 2006 8:30 -12:00 Do 02. Mrz. 2006 13:30 -17:00

    Evaluation VO5-7 Exercises + Oral Exam about the Main components of the Course

    UE 17. 19. AprilMATLAB Excercises - to be solved in ABAQUS

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    1Overview

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Computational Mechanics

    Nanomechanicsmolecular and atomic levelsParticle Physics and chemistryCrystallographic and granular levelDesign and fabrication of materials and micro devices

    Continuum mechanicsBodies at the macro levelMicrostructure is homogenized by phenomenological averagesSolid and fluid mechanicsapplied sciences approaches

    Computational Structural Mechanics Emphasizes Technological Applications

    Computational Fluid Mechanics Emphasizes Equilibrium and Motion of Fluids

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Computational Mechanics

    Multiphysics

    Transcend the classicalboundaries of solid and fluid mechanics

    Interaction of fluid and structures

    Systems

    Identifies mechanicalobjects

    Natural or artificialBuildingsBridgesCarsairplanes

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness MethodComputational Solid and Structural Mechanics

    A convenient subdivision of problems in ComputationalSolid and Structural Mechanics (CSM) is

    ComputationalSolid and StructuralMechanics (CSM)

    Static(quasi Static)

    Dynamic(inertial forces are timedependent)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness MethodComputational Solid and Structural Mechanics

    A further subdivision of problems in ComputationalSolid and Structural Mechanics (CSM) is

    ComputationalSolid and StructuralMechanics (CSM)

    Linearstatic problems in which the response islinear in the cause-and effect

    NonlinearProblems outside this domain

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness MethodCSM Linear Statics

    For the numerical simulation on the computer we must now chose aspatial discretization method

    CSM Linear Statics

    Finite Element MethodFinite Difference MethodBoundary Element MethodFinite Volume MethodSpectral MethodMesh-Free Method

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness Method

    DisplacementFEM Formulation Equilibrium

    MixedHybrid

    CSM Linear Statics by FEMHaving selected the FEM for discretization, we must next pick a formulation and a solution method

    StiffnessFEM Solution Flexibility

    Mixed

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Summarizing

    Computational Structural MechanicsLinear static problemsSpatially discretized by displacement-formulated FEMSolved by the stiffness method

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    What is a Finite Element?

    Archimedes' problem (circa 250 B.C.): rectification of thecircle as limit of inscribed regular polygons

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    IDEALIZATION & DISCRETIZATION

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    IDEALIZATION & DISCRETIZATION

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness Method

    Two Interpretations of FEM for Teaching

    Mathematical

    Numerical approximation of aBoundary Value Problem byRitz-Galerkin discretizationwith functions of local support

    Physical

    Breakdown of structural systeminto components (elements) andreconstruction by the assemblyprocess

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Physical FEM. The physical system (left) is thesource of the simulation process.

    The ideal mathematical model(should one go to thetrouble of constructingit) is inessential.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Model updating process in the Physical FEM.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Mathematical FEM. The mathematical model(top) is the source of the simulation process.

    Discrete model and solution follow fromit. The ideal physicalsystem (shouldone go to thetrouble of exhibiting it) isinessential.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Synergy Between Mathematicaland Physical FEM

    Combining physical and mathematicalmodeling through multilevelFEM.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    EXERCISES

    EXERCISE 1.1 Work out Archimedes problem

    EXERCISE 1.2 Selected components of somesubstructures.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    2The Direct

    Stiffness Method:Breakdown

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The direct Stiffness Method (DSM)

    Importance: DSM is used by all major commercial FEM codesA democratic method, works the same no matter what theelement

    Obvious decision: use the truss to teach the DSM

    Bar (truss member) element,2 nodes, 4 DOFs

    Tricubic brick element,64 nodes, 192 DOFs

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Model Based Simulation(a simplification of diagrams of Chapter 1)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Direct Stiffness Method (DSM) StepsStarting with: Idealization

    DisconnectionLocalizationMember (Element) Formation

    GlobalizationMergeApplication of BCsSolutionRecovery of Derived Quantities

    Breakdown

    Assembly &Solution

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    A Physical Plane Truss

    Too complicated to do by hand. We willUse a simpler one to illustrate DSM steps

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness MethodThe Example Truss: Physical Model

    (Loads not shown)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness MethodThe Example Truss: FEM ModelNodes, Elements and DOFs

    1 2

    3

    fx1 , ux1 fx2 , ux2

    fx3 , ux3fy3 , uy3

    fy1 , uy1 fy2 , uy2

    (3) (2)

    (1)

    L(3) = 10 * 2E (3) A (3) = 200*2 L(2) = 10

    E (2) A (2) = 50

    L(1) = 10 E (1) A (1) = 100

    x

    y

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Direct Stiffness MethodThe Example Truss: FEM Model BCsApplied Loads and Supports

    1 2

    3 fx3 = 2fy3 = 1

    x

    y

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Master (Global) Stiffness Equations

    =

    y3

    x3

    y2

    x2

    y1

    x1

    ff

    ff

    ff

    f

    =

    y3

    x3

    y2

    x2

    y1

    x1

    uu

    uu

    uu

    u

    =

    y3

    x3

    y2

    x2

    y1

    x1

    y3y3y3x3y3y2y3x2y3y1y3x1

    x3y3x3x3x3y2x3x2x3y1x3x1

    y2y3y2x3y2y2y2x2y2y1y2x1

    x2y3x2x3x2y2x2x2x2y1x2x1

    y1y3y1x3y1y2y1x2y1y1y1x1

    x1y3x1x3x1y2x1x2x1y1x1x1

    y3

    x3

    y2

    x2

    y1

    x1

    uu

    uu

    uu

    KKKKKK

    KKKKKK

    KKKKKK

    KKKKKK

    KKKKKK

    KKKKKK

    ff

    ff

    ff

    Linear structure:

    Nodalforces

    Master stiffnessmatrix

    Nodaldisplacements

    or f = K u

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Member (Element) Stiffness Equations

    uKf =

    =

    jy

    jx

    iy

    ix

    jyjyjxjyiyjyixjy

    jyjxjxjxiyjxjxjx

    jyiyjxiyiyiyixiy

    jyixjxixiyixixix

    jy

    jx

    iy

    ix

    u

    u

    u

    u

    KKKK

    KKKK

    KKKK

    KKKK

    f

    f

    f

    f

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    First Two Breakdown Steps:Disconnection and Localization

    These Steps are conceptual

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The 2-Node Truss (Bar) Element

    k = EA / L Equivalentspring stiffness

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Truss (Bar) Element Formulationby Mechanics of Materials (MoM)

    ixjxixjxs uud,ffFd,LAEdkF =====

    Element stiffnessequations in localcoordinates

    Element stiffnessmatrix in localcoordinates

    =

    jy

    jx

    iy

    ix

    jy

    jx

    iy

    ix

    u

    u

    u

    u

    00000101

    00000101

    LAE

    f

    f

    f

    f

    =

    00000101

    00000101

    LAEK

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    EXERCISE 2.1 Explain why arbitrarily ..

    EXERCISE 2.2 Show that the sum of the entries of

    EXERCISE 2.3 Using matrix algebra derive .

    EXERCISE 2.4 By direct matrix multiplication .

    EXERCISE 2.5 The transformation equations ..

    EXERCISES

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    3The Direct

    Stiffness Method:Assembly and Solution

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Direct Stiffness Method (DSM) Steps(recalled for convenience)

    DisconnectionLocalizationMember (Element) Formation

    GlobalizationMergeApplication of BCsSolutionRecovery of Derived Quantities

    Breakdown

    Assembly &Solution

    conceptualsteps

    processingsteps

    post-processingsteps

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Globalization Step:Displacement Transformation

    xi = uxi c + uyi s, yi = uxi s + uyi cxj = uxj c + uyj s, yj = uxj s + uyj c

    in which c = cos s = sin

    Node displacements transform as

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Globalization Step: DisplacementTransformation (contd)

    c s 0 0s c 0 00 0 c s0 0 s c

    uxiuyiuxjuyj

    xiyixjyj

    =

    Note:global on RHS,local on LHS

    In matrix form

    or e = Teue

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Globalization Step: Force Transformation

    c -s 0 0s c 0 00 0 c -s0 0 s c

    fxifyifxjfyj

    =

    Node forces transform as

    or fe = (Te )T f-e

    f-xi

    f-yi

    f-xj

    f-yj Note:

    global on LHS,local on RHS

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Globalization: Congruential Transformation of Element Stiffness Matrices

    fe = (Te )T f-ee = Teue

    K-e e = f

    -e

    Ke = (Te)T K-e Te

    c2 sc -c2 -scsc s2 -sc -s2-c2 -sc c2 sc

    -sc -s2 sc s2=Ke E

    e Ae

    Le

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Example Truss FEM ModelRecall from Chapter 2

    1 2

    3

    fx1 , ux1 fx2 , ux2

    fx3 , ux3fy3 , uy3

    fy1 , uy1 fy2 , uy2

    (3) (2)

    (1)

    L(3) = 10 * 2E (3) A (3) = 200*2 L(2) = 10

    E (2) A (2) = 50

    L(1) = 10 E (1) A (1) = 100

    x

    y

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Globalized Element Stiffness Equations1 0 1 00 0 0 01 0 1 00 0 0 0

    fx1 (1)fy1 (1)fx2 (1)fy2 (1)

    = 10

    ux1 (1)uy1 (1)ux2 (1)uy2 (1)

    0 0 0 00 1 0 -11 0 1 00 0 0 0

    fx2 (2)fy2 (2)fx3 (2)fy3 (2)

    = 5

    ux2 (2)uy2 (2)ux3 (2)uy3 (2)

    for Example Truss

    0.5 0.5 -0.5 -0.50.5 0.5 -0.5 -0.5-0.5 -0.5 0.5 0.5-0.5 -0.5 0.5 0.5

    fx1 (3)fy1 (3)fx3 (3)fy3 (3)

    = 20

    ux1 (3)uy1 (3)ux3 (3)uy3 (3)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Assembly Rules

    1. Compatibility: The joint displacements of all membersmeeting at a joint must be the same

    2. Equilibrium: The sum of forces exerted by all membersthat meet at a joint must balance the external force appliedto that joint.

    To apply these rules in assembly by hand, it is convenient to augment theelement stiffness equations as shown for the example truss in the nextslide.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Expanded Element Stiffness Equations10 0 10 0 0 0

    0 0 0 0 0 010 0 10 0 0 0

    0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

    fx1 (1)fy1 (1)fx2 (1)fy2 (1)fx3 (1)fy3 (1)

    =

    ux1 (1)uy1 (1)ux2 (1)uy2 (1)ux3 (1)uy3 (1)

    0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 5 0 -50 0 0 0 0 00 0 0 -5 0 5

    fx1 (2)fy1 (2)fx2 (2)fy2 (2)fx3 (2)fy3 (2)

    =

    ux1 (2)uy1 (2)ux2 (2)uy2 (2)ux3 (2)uy3 (2)

    10 10 0 0 -10 -1010 10 0 0 -10 -10

    0 0 0 0 0 00 0 0 0 0 0

    -10 -10 0 0 10 10-10 -10 0 0 10 10

    =

    fx1 (3)fy1 (3)fx2 (3)fy2 (3)fx3 (3)fy3 (3)

    ux1 (3)uy1 (3)ux2 (3)uy2 (3)ux3 (3)uy3 (3)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Expanded Element Stiffness Equations10 0 10 0 0 0

    0 0 0 0 0 010 0 10 0 0 0

    0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

    fx1 (1)fy1 (1)fx2 (1)fy2 (1)fx3 (1)fy3 (1)

    =

    ux1 uy1 ux2uy2 ux3uy3

    0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 5 0 -50 0 0 0 0 00 0 0 -5 0 5

    fx1 (2)fy1 (2)fx2 (2)fy2 (2)fx3 (2)fy3 (2)

    =

    ux1 uy1ux2uy2ux3uy3

    10 10 0 0 -10 -1010 10 0 0 -10 -10

    0 0 0 0 0 00 0 0 0 0 0

    -10 -10 0 0 10 10-10 -10 0 0 10 10

    =

    fx1 (3)fy1 (3)fx2 (3)fy2 (3)fx3 (3)fy3 (3)

    ux1 uy1ux2 uy2ux3uy3

    To apply compatibility, dropthe member index from thenodal displacements

    f (1) = K(1) u

    f (2) = K(2) u

    f (3) = K(3) u

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Next, Apply Equilibrium Rule

    Applying this to all joints (see Notes):

    Be carful with + directionsof internal forces!

    f = f (1) + f (2) + f ( 3 )

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Forming the Master Stiffness Equationsthrough Equilibrium Rule

    f = f (1)+f (2)+f ( 3 ) = (K (1)+K (2)+K ( 3 )) u = K u

    20 10 -10 0 -10 -1010 10 0 0 -10 -10-10 0 10 0 0 0

    0 0 0 5 0 -5-10 -10 0 0 10 10-10 -10 0 -5 10 15

    =

    fx1 fy1 fx2 fy2 fx3fy3

    ux1 uy1ux2 uy2ux3uy3

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Applying Support and LoadingBoundary Conditions to Example Truss

    1 2

    3 fx3 = 2fy3 = 1

    x

    y

    ux1 = uy1 = uy2 = 0Displacement BCs:

    Force BCs:fx2 = 0, fx3 = 2, fy3 = 1

    Recall:

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Where Do Boundary Conditions go?ux1 = uy1 = uy2 = 0

    fx2 = 0, fx3 = 2, fy3 = 1

    20 10 -10 0 -10 -1010 10 0 0 -10 -10-10 0 10 0 0 0

    0 0 0 5 0 -5-10 -10 0 0 10 10-10 -10 0 -5 10 15

    =

    fx1 fy1 fx2 fy2 fx3fy3

    ux1 uy1ux2 uy2ux3uy3

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Reduced Master Stiffness Equationsfor Hand Computation

    Strike out rows and columns pertaining to known displacements:

    Solve by Gauss elimination for unknown node displacements

    10 0 00 10 100 10 15

    =fx2 fx3fy3

    ux2 ux3uy3

    =021

    K u = f Reducedstiffnessequations

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Solve for Unknown Node Displacementsand Complete the Displacement Vector

    ux2 ux3uy3

    =0

    0.4-0.2

    =

    00000.4

    -0.2

    ux1 uy1ux2 uy2ux3uy3

    Expand with knowndisplacement BCs

    =u

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Recovery of Node Forces Including Reactions20 10 -10 0 -10 -1010 10 0 0 -10 -10-10 0 10 0 0 0

    0 0 0 5 0 -5-10 -10 0 0 10 10-10 -10 0 -5 10 15

    =

    -2-20121

    0000

    0.4-0.2

    1 2

    3 fx3 = 2fy3 = 1

    xy

    Recall:

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Recovery of Internal Forces(Axial Forces in Truss Members)

    For each member (element) e = (1), (2), (3)

    1. extract ue from u

    2. transform to local(element) displacements

    e = Teue

    de= exj exi

    3. compute elongation

    4. compute axial force pe

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Computer Oriented Assembly andSolution in Actual FEM Codes

    K stored in special sparse format

    (for example skyline format studied in Part III)

    Assembly done by freedom pointers (Sec 3.5.1)

    Equations for supports are not physically deleted (Sec 3.5.2)

    Next slide explains this for the example truss

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Computer Oriented Modificationof Master Stiffness Equations

    20 10 -10 0 -10 -1010 10 0 0 -10 -10-10 0 10 0 0 0

    0 0 0 5 0 -5-10 -10 0 0 10 10-10 -10 0 -5 10 15

    =

    fx1 fy1 0fy2 21

    00ux2 0ux3uy3

    ux1 = uy1 = uy2 = 0

    fx2 = 0, fx3 = 2, fy3 = 1

    (freedoms 1, 2, 4)

    zero out rows and columns 1, 2 and 4store 1's on diagonal

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Computer Oriented Modificationof Master Stiffness Equations (contd)

    1 0 0 0 0 00 1 0 0 0 00 0 10 0 0 00 0 0 1 0 00 0 0 0 10 100 0 0 0 10 15

    =

    000021

    Modified masterstiffness equations

    same u as inoriginal equationsK u = f

    00ux2 0ux3uy3

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    EXERCISES

    EXERCISE 3.6

    EXERCISE 3.7 With MATLAB

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    4The Direct

    Stiffness Method:Additional Topics

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Prescribed Nonzero Displacementsin Example Truss

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Prescribed Nonzero Displacements

    Recall the master stiffness equations

    The displacement B.Cs are now

    20 10 -10 0 -10 -1010 10 0 0 -10 -10-10 0 10 0 0 0

    0 0 0 5 0 -5-10 -10 0 0 10 10-10 -10 0 -5 10 15

    =

    fx1 fy1 fx2 fy2 fx3fy3

    ux1 uy1ux2 uy2ux3uy3

    ux1 = 0, uy1 = -0.5, uy2 = 0.4

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Prescribed NZ Displacements (contd)

    Remove rows 1,2,4 but (for now) keep columns

    20 10 -10 0 -10 -1010 10 0 0 -10 -10-10 0 10 0 0 0

    0 0 0 5 0 -5-10 -10 0 0 10 10-10 -10 0 -5 10 15

    =

    fx1 fy1 0fy2 21

    0-0.5ux2 0.4ux3uy3

    -10 0 10 0 0 0-10 -10 0 0 10 10-10 -10 0 -5 10 15

    0-0.5ux2 0.4ux3uy3

    =021

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Prescribed Nonzero Displacements

    Transfer effect of known displacements to RHS, and delete columns

    Solving gives

    10 0 0 0 10 100 10 15

    =021

    ux2 ux3uy3

    -(-10)*0+0*(-0.5)+0*0.4(-10)*0+(-10)*(-0.5)+0*0.4(-10)*0+(-10)*(-0.5)+(-5)*0.4

    =0-3-2

    ux2 ux3uy3

    =0

    -0.50.2

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Prescribed NZ Displacements (contd)

    Complete the displacement vector with known values

    ux2 ux3uy3

    =0

    -0.50.2

    ==u

    0-0.500.4

    -0.50.2

    ux1 uy1ux2 uy2ux3uy3

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Prescribed NZ Displacements (contd)

    Recovery of reaction forces and internal

    Member forces proceeds are before

    In summary, the only changes to the DSM

    is in the application of displacement

    boundary conditions before solve

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Initial Force Effects (also called Initial Strain& Initial Stress Effects by FEM authors)

    Thermomechanical effects

    Moisture effects

    Prestress effects

    Lack of fit

    Residual Stresses

    Internal actuators (smart structure)

    For specificity we will study in detail only the first one:

    thermomechanical effects

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Thermomechanical Effects on Bar Element

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Thermomechanical Effects on Bar Element (contd)

    Axial strain is sum of mechanical and thermal:

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Thermomechanical Effects on Bar Element (contd)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Incorporating Thermomechanical Effectsinto the Element Stiffness Equations

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Physical Interpretation ofThermal Force Vector

    Think of a fully restrained bar when heated

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Matrix Form of Element Stiffness Equationsin Local System

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Assembly Rules withThermomechanical Effects

    1. Compatibility : The joint displacements of all membersmeeting at a joint must be the same

    2. Equilibrium : The sum of effective forces exerted by all members that meet at a joint must balance the external force applied to that joint.

    No changes in application of 1. To account for 2,

    the thermal forces are globalized and added to the

    Mechanical forces during the merge process

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Master Stiffness Equations withThermomechanical Effects

    Solve for node displacements u. If you want to retrieve

    the mechanical node forces including reactions subtract

    the thermal force:

    For computation of internal forces and stresses seeworked out Examples

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Worked out Examples #1 in Notes

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Worked out Examples #1 in Notes (contd)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Generalization: Initial Force Effects in the DSM

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Summary: Treating Initial ForceEffects in the DSM

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 6

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Constructing MoM Members

    What are MoM Members?

    Skeletal structural members whose stiffness equations can beconstructed by Mechanics of Materials (MoM) methods

    Can be locally modeled as 1D elements

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    MoM Members Tend to Look Alike

    One dimension (longitudinal) much larger than the other two(transverse)

    y

    z

    x

    z

    longitudina

    l direction

    y

    x

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    But Receive Different Names according to Structural FunctionBars: transmit axial forces

    Beams: transmit bending

    Shafts: transmit torque

    Spars (aka Webs): transmit shear

    Beam - Columns: transmit bending and axial force

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Common Features of MoM Finite Element Models

    End quantities aredefined at the joints

    y

    z

    x

    (e)

    i jz

    y

    x

    Internal quantities aredefined in the member

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Governing Matrix Equations for simple MoMElement

    From node displacement to internal deformations (strains)v = Bu Kinematic

    From deformations to internal forcesp = S v Constitutive

    From internal forces to node forcesf = A p Equilibrium

    If f andu are PVW (virtual Work) conjugate, B = A

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Tonti Diagram of Governing Matrix Equations forsimplex MoM Element

    f = AT S B u =Ku

    p = S v

    v = Bu f = AT p

    u f

    v p

    Stiffness

    Constitutive

    Kinematic Equilibrium

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Elimination of the Internal Quantities

    v and p gives the Element Stiffness Equations through simple MatrixMultiplications

    f = AT S B u =Ku

    K = AT S Bif B = A

    K = BT S B

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Bar Element Revisited

    EA

    i j

    y

    x

    x

    y

    z

    F

    -F

    fxj uxjfxi uxi

    - L -

    (a)

    (b)

    Axial rigidity EA, length L

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Bar Element Revisited

    [ ]

    FFf

    f

    SddL

    EAF

    u

    ud

    T

    xj

    xi

    xj

    xi

    Af

    uB

    =

    =

    =

    ==

    =

    =

    11

    11

    ===

    1111

    LEASSK TT BBBA

    Can be expanded to the 4 x 4 of Chapter 2 by adding two zero rows andcolumns to accomodate uyi and uyj

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Spar (a.k.a. Shear Web) Element

    GA

    i j

    y

    x

    fyj uyjfyi uyi

    - L -

    (b)

    x

    y

    z-V

    Shear rigidity GA, length L

    V

    (a)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Spar Element

    [ ]

    =

    ==

    =

    =

    =

    =

    ==

    =

    =

    uKuBAf

    Af

    uB

    yj

    yisT

    yj

    yi

    T

    yj

    yi

    s

    yj

    yi

    u

    uL

    GASf

    f

    VVf

    f

    SAGV

    u

    uL

    1111

    11

    111

    =

    1111

    LGAsK

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Shaft Element

    GJ

    i j

    y

    xmxi xi

    - L -

    (b)

    mxj xj

    xz

    T Torsional rigidity GJ, length L

    T

    (a)m

    xi xi

    mxj

    xj

    y

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Matrix Equation for Non-Simplex MoM Element

    From node displacement to internal deformations (at each section)v = Bu Kinematic

    From deformations to internal forces (at each section)p = R v Constitutive

    From internal forces to node forcesdf = AT dp Equilibrium

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Tonti Diagram of Matrix Equations for Non-simplex MoM Element (with A=B)

    f =0L

    BT R B dxu

    p = R v

    v = Bu df = BT dp

    u f

    v p

    Stiffness

    Constitutive(at each section)

    Kinematic(at each section)

    Equilibrium

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 7

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Terminology

    degrees of freedom (abbrv: DOF)

    state (primary) variables: displacements in mechanics

    conjungate variables: forces in mechanics

    stiffness matrixK u = f

    master stiffness equations K u = fM+ fI

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Physical significance of vectors u and f in miscellaneous FEM applications

    Application State (DOF) vector Forcing vector fProblem u represents reptesents

    Structures and solid mechanics Displacement Mechanical forceHeat conduction Temperature Heat fluxAcoustic fluid Displacement potential Particle velocityPotential flows Pressure Particle velocityGeneral flows Velocity FluxesElectrostatics Electric potential Charge densityMagnetistatics Magnetical potential Magnetic intensity

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Where FEM fits (from Chapter 1)

    Physicalsystem

    DISCRETIZATION SOLUTIONIDEALIZATION

    Mathem.system

    Discretemodel

    DiscretesolutionFEM

    RealizationIdentification

    Continuifica-tion Solution error

    Discretization + Solution error

    Modelling +Discretization + Solution error

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Idealization Process (from Chapter 2)

    Physical system

    Mathematical system

    IDEALIZATION

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Mathematical Model Definition

    Traditional definition:

    Scaled fabrication version of a physical system(think of a car or train model)

    Simulation oriented definition:

    A model is a symbolic device built to simulate and predict aspects of behavior of a system

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Implicit Modeling

    Physicalsystem

    System discretemodel

    Completesolution

    Mathem.model

    Componentdiscretemodel

    Componentequation

    Component

    Level

    System

    Level

    FEM Library of Black Box FEM Code

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Recall the Breakdown DSM Steps

    DisconnectionLocalizationMember (Element) Formation generic elements

    Let Stop Here andStudy Generic Elements next

    Breakdown

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Because most of the Remaining DSM Steps

    GlobalizationMergeApplication of BCsSolutionRecovery of Node Forces

    are Element Independence

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Attributes of Mechanical Finite Elements

    DimensionalityNodes serve two purposes:

    gemetric definitionhome for DOFs (connectors)

    Degrees of freedom (DOFs) of freedomsConjugate node forces

    Material proportiesFabrication proporties

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element geometry is defined by node locations

    1D

    2D

    2D

    3D

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Classification of Mechanical Finite Elements

    Primitive StructuralContinuumSpecialMacroelementsSubstructures

    Superelements

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Primitive Structural Elements(often built from MoM models)

    Physical structuralComponent

    MathematicalModel Name

    Finite ElementDiscretization

    bar

    beam

    tube, pipe

    spar (web)

    shear panel

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Continuum Elements

    Physical Finite Elementidealization

    Physical Finite Elementidealization

    Plates 3D solids

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Special Elements

    Crack element Infinite element Honeycomb panel

    double node Infinity

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Macroelements

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Substructures

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Substructures

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Boundary Conditions (BCs)

    The most difficult topic for FEM programm users(the devil hides in the boundary)

    EssentialTwo types:

    Natural

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 8

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM Modeling: Mesh, Loads and BCs

    General Modeling Rules

    Finite Element Mesh Layouts

    Distributed LoadsNode by Node (NbN) lumpingElement by Element (EbE) lumping

    Displacement BCssuppressing rigid body motionstaking advantage of symmetry and antisymmetry

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    General FEM Modeling Rules

    Use the simplest elements that will do the job

    Never, never use complicated of special elements unless you areabsolutely sure of what you are doing

    Use the coarsest mesh that will capture the dominant behavior of thephysical model, particularly in design situations

    Three word summary: Keep it simple

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Another Justification for Simplicity

    In product design situations several FEM models of increasingrefinement will be set up as design evolves

    Ergo, do not overkill at the beginning

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Where finer meshes should be used

    Cutouts Cracks Vicinity of concentrated loads entrant corners

    Load transfer (bondedjoints, welds, anchors, etc.) Abrubt thickness changes Material interfaces

    weld

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Avoid 2D/3D Elements of bad aspect ratio

    Good Bad

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Elements must not cross interfaces

    No OK

    Pysical interface

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element geometry preferences

    Other things being equal, prefer

    in 2D: quadrilaterals over triangles

    in 3D: bricks over wedgeswedges over tetrahedra

    (Elements do not file discrimination suits)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Node by Node distributed load lumping

    21 43 65 87Boundary

    Finite element mesh

    Distributed loadintensity (loadacts downwardson boundary)

    Nodal force f5 at 5 is set to P, themagnitude of thecrosshachedarea under theload curve. Thisarea goeshalfway overadjacentelement sides

    f5=P

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element by Element distributed load lumping

    21 43 65 87Boundary

    Finite element mesh

    Distributed loadintensity (loadacts downwardson boundary)

    Force P has magnitude of thecrosshachedarea under theload curve and acts at itscentroid. f5

    (e)f4

    (e)

    centroid C of crosshatchedareaP

    a b

    L=a+b

    f4(e)=(b/L)P f5

    (e)=(a/L)P

    4 5P

    C

    Details of element force computations

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Boundary Conditions (BCs)

    The most difficult topic for FEM programm users(the devil hides in the boundary)

    EssentialTwo types:

    Natural

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Boundary Conditions

    Essential vs. Natural

    Recipe:

    If a BC involves one or more DOF in a direct way, it is essential and goes to the Left Hand Side (LHS) ofK u = f

    Otherwise it is natural and goes to the Right Hand Side (RHS) of K u = f

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Minimum support conditions to suppress rigidbody motions in 2D

    (b)(a) (c)y

    y

    x x

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Minimum support conditions to suppress rigidbody motions in 3D

    x

    z

    y

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Visualizing Symmetry and Antisymmetryconditions in 2D

    A A A A A Adisplacement

    vectors

    symmetryline

    antisymmetryline

    loads

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Example of application of symmetry BCs

    y

    x

    A B

    C D

    A B

    C D

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Example of application of antisymmetry BCs

    x

    A B

    C D

    A B

    C DVertical (y) motion of one nodesuch as C of D may beconstrained to suppress y-RBM

    y

    x

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Breaking up Point loads at symmetry BCs

    x

    A B

    C D

    y

    PP

    A B

    C D P/2P/2P/2

    P/2P/2

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Breaking up Point loads at antisymmetry BCs

    x

    A B

    C D

    y

    x

    A B

    C D

    A B

    C D

    ? ?

    PP

    2P

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Boundary Conditions

    Essential vs. Natural

    Recipe:

    1. If a BC involves one or more DOF in a direct way, it is essentialand goes to the Left Hand Side (LHS) of K u = f

    2. Otherwise it is natural and goes to the Right Hand Side (RHS) of K u = f

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 9

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    MultiFreedom Constrains I

    Single freedom constraint examplesux4 = 0 linear, homogeneousuy9 = 0.6 linear, non homogeneous

    Multifreedom constaint examplesux2 = 0.5 uy2 linear, homogeneousux2 - ux4 + ux6 = 0.25 linear, non homogeneous(x5+ux5-x3-ux3) + (y5+uy5-y3-uy3) = 0 non linear homogeneous

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Sources of Multifreedom

    Skew displacementCoupling nonmatched FEM meshesGlobal-local and multiscale analysisIncompressibilityModel reduction

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    MFC Application Methods

    Master Slave Elimination Chapter 9

    Penalty Function AugmentationChapter 10

    Lagrange Multiplier Adjustment

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Example 1D Structure to illustrate MFCs

    Multifreedom constraint:

    (2)(1) (3) (4) (5) (6)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5 u6,f6 u7,f7

    1 2 3 4 5 6 7x

    u2 = u6 or u2 - u6 = 0Linear homogeneous MFC

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Example 1D Structure to illustrate MFCs

    Unconstrained master stiffness equation: K u = f

    (2)(1) (3) (4) (5) (6)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5 u6,f6 u7,f7

    1 2 3 4 5 6 7x

    K11 K12 0 0 0 0 0 u1 f1K12 K22 K23 0 u2 f20 K23 K33 K34 0 u3 f30 0 K34 K44 K45 0 u4 f40 0 0 K45 K55 K56 0 u5 f50 0 0 0 K56 K66 K67 u6 f60 0 0 0 0 K67 K77 u7 f7

    K11 K12 0 0 0 0 0 u1 f1K12 K22 K23 0 u2 f20 K23 K33 K34 0 u3 f30 0 K34 K44 K45 0 u4 f40 0 0 K45 K55 K56 0 u5 f50 0 0 0 K56 K66 K67 u6 f60 0 0 0 0 K67 K77 u7 f7

    K11 K12 0 0 0 0 0 u1 f1K12 K22 K23 0 0 0 0 u2 f20 K23 K33 K34 0 0 0 u3 f30 0 K34 K44 K45 0 0 u4 f40 0 0 K45 K55 K56 0 u5 f50 0 0 0 K56 K66 K67 u6 f60 0 0 0 0 K67 K77 u7 f7

    =

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Master Slave Method for Exampel Structure

    Taking u2 as master:

    u1 1 0 0 0 0 0 u1u2 0 1 0 0 0 0 u2u3 0 0 1 0 0 0 u3u4 = 0 0 0 1 0 0 u4u5 0 0 0 0 1 0 u5u6 0 1 0 0 0 0 u6u7 0 0 0 0 0 1 u7

    u = T

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Forming the Modified Stiffness Equations

    Unconstrainted master stiffness equation: K u = f

    Master slave transformation: u = T

    Congruential transformation: K = TT K T

    f = TT f

    Modified stiffness equations: K = f

    ^

    ^ ^

    ^

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Modified Stiffness Equations for Example Struct.

    K u = f

    K11 K12 0 0 0 0 u1 f1K12 K22+K66 K23 0 K56 K67 u2 f2+f60 K23 K33 K34 0 0 u3 f30 0 K34 K44 K45 0 u4 f40 K56 0 K45 K55 K56 u5 f50 K67 0 0 0 K66 u7 f7

    =

    ^ ^ ^

    in full

    Solve for u, then recover u = T u^ ^

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Multiple MFCsSupposeu2 - u6 = 0 , u1 + 4u4 = 0, 2u3 + u4 + u5 = 0Pick 3, 4 and 6 as slaves:u6 = u2, u4 = -1/4u1, u3 = -1/2(u4 + u5) = 1/8u1 1/2u5Put in matrix form:

    u1 1 0 0 0u2 0 1 0 0u3 1/8 0 -1/2 0u4 = -1/4 0 0 0u5 0 0 1 0u6 0 1 0 0u7 0 0 0 1

    u1u2u5u7

    This isu = T then proceedas before

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Non homogeneous MFCs

    u2 u6 = 0.2

    u1 1 0 0 0 0 0 u1 0u2 0 1 0 0 0 0 u2 0u3 0 0 1 0 0 0 u3 0u4 = 0 0 0 1 0 0 u4 0u5 0 0 0 0 1 0 u5 0u6 0 1 0 0 0 0 u6 -0.2u7 0 0 0 0 0 1 u7 0

    Pick again u6 as slave, put into matrix form:

    +

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Non homogeneous MFCs

    u = T + g g = gap vector

    Premultiply both sides by TT K, replace K u = f and pass data to RHS.This gives:

    K u = f

    with K = TT K T and f = TT (g K g)a modified force vector

    ^ ^ ^

    ^ ^

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Non homogeneous MFCs

    For the example

    K11 K12 0 0 0 0K12 K22+K66 K23 0 K56 K670 K23 K33 K34 0 00 0 K34 K44 K45 00 K56 0 K45 K55 K560 K67 0 0 0 K66

    =

    u1u2u3u4u5u7

    f1f2+f6 - 0.2K66

    f3f4

    f5 - 0.2K56f7 - 0.2K67

    Solve for , then recover u = T +g

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Model Reduction Example

    2 master DOFs to be retained

    (2)(1) (3) (4) (5) (6)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5 u6,f6 u7,f7

    1 2 3 4 5 6 7x

    u1,f1 u7,f7

    1x

    u1,f1 u7,f7

    1 7x

    5 slave DOFs to be eliminated

    Reduced Model

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Model Reduction Example

    Lots of slaves, few masters. Only masters are left. Example of perviousslide:

    =

    u1u2u3u4u5u6u7

    1 05/6 1/64/6 2/63/6 3/62/6 4/61/6 5/60 1

    u1u75 slaves 2 masters

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Model Reduction Example

    Applying the congruential transformation we get the reduced stiffnessequation:

    u1

    u7

    K11 K17

    K17 K77

    ^ ^

    ^ ^

    f1

    f7

    ^

    ^=

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Assessment of Master Slave Method

    ADVANTAGESexact if precautions takeneasy to understandretains positive definitenessimportant application to model reduction

    DISADVANTAGESrequires user decisionsmessy implementation for general MFCshinders sparsity of master stiffness equationssensitive to constraint dependencerestricted to linear constraints

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 10

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    MultiFreedom Constrains II

    under the homogeneous MFC:

    (2)(1) (3) (4) (5) (6)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5 u6,f6 u7,f7

    1 2 3 4 5 6 7x

    u2 = u6 or u2 - u6 = 0

    Recall the example structure:

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Penalty Function Method

    w = the penalty weight assigned to the constraint

    u2

    u6

    1

    -1

    f2(7)

    f6(7)

    =

    (2)(1) (3) (4) (5) (6)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5 u6,f6 u7,f7

    1 2 3 4 5 6 7x

    -1

    1w

    penalty element of axial rigidity w

    (7)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Penalty Function Method

    Upon merging the penalty element the modified stiffness equation are:

    K11 K12 0 0 0 0 0K12 K22+w K23 0 0 -w 00 K23 K33 K34 0 0 00 0 K34 K44 K45 0 00 0 0 K45 K55 K56 00 -w 0 0 K56 K66+w K670 0 0 0 0 K67 K77

    =

    u1u2u3u4u5u6u7

    f1f2f3f4f5 f6f7

    This modified system is submitted to the equation solver.Note that u retains the same arrangement of DOFs

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    But which penalty weight to use?

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Penalty Function Method General MFCs

    u3u5u6

    31-4

    =9 3 -123 1 -4-12 -4 16

    [ 3 1 -4 ]TPremultiply both sides by Penalty element

    stiffness equations

    u3u5u6

    3 u3 + u5 4 u6 = 1

    [ 3 1 -4 ] = 1

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Penalty Function Method General MFCs

    Scale by w and merge:

    K11 K12 0 0 0 0 0K12 K22 K23 0 0 0 00 K23 K33+9w K34 3w -12w 00 0 K34 K44 K45 0 00 0 3w K45 K55+w K56-4w 00 0 -12w 0 K56-4w K66+16w K670 0 0 0 0 K67 K77

    =

    u1u2u3u4u5u6u7

    f1f2

    f3+3wf4

    f5+wf6-4w

    f7

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Assessment of Penalty Function Method

    ADVANTAGESgeneral applicationeasy to impelment using FE library and standard assemblerno change in vector of unknownsretains positive definitenessinsensitive to constraint dependence

    DISADVANTAGESselection of weights left to user big burdenaccuracy limited by ill - conditioning

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Langrange Multiplier Method

    (2)(1) (3) (4) (5) (6)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5 u6,f6 u7,f7

    1 2 3 4 5 6 7x

    force pair that enforces MFC

    K11 K12 0 0 0 0 0K12 K22 K23 0 0 0 00 K23 K33 K34 0 0 00 0 K34 K44 K45 0 00 0 0 K45 K55 K56 00 0 0 0 K56 K66 K670 0 0 0 0 K67 K77

    =

    u1u2u3u4u5u6u7

    f1f2-f3f4f5

    f6+f7

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Langrange Multiplier Method

    This is now a system of 7 equations and 8 unknowns.Need an extra equation: the MFC

    K11 K12 0 0 0 0 0K12 K22 K23 0 0 0 00 K23 K33 K34 0 0 00 0 K34 K44 K45 0 00 0 0 K45 K55 K56 00 0 0 0 K56 K66 K670 0 0 0 0 K67 K77

    =

    u1u2u3u4u5u6u7

    f1f2f3f4f5 f6f7

    Because is unknown, it is passed to the LHS and appended to thenode displacement vector:

    01000-10

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Langrange Multiplier Method

    This is the multipier augmentade system. The new coefficient matrix iscalled the bordered stiffness.

    Append MCF as additional equation:

    =

    000100010000000

    1000000000000000000010000000000

    7

    6

    5

    4

    3

    2

    1

    7

    6

    5

    4

    3

    2

    1

    7767

    676656

    565545

    454434

    343323

    232212

    1211

    fffffff

    uuuuuuu

    KKKKK

    KKKKKK

    KKKKKK

    KK

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Langrange Multiplier Method

    Recipe step #1:append the 3 constrains

    =

    130

    04103008000050

    010001000000

    0000000000000000000000000

    7

    6

    5

    4

    3

    2

    1

    7

    6

    5

    4

    3

    2

    1

    7767

    676656

    565545

    454434

    343323

    232212

    1211

    fffffff

    uuuuuuu

    KKKKK

    KKKKKK

    KKKKKK

    KK

    Three MFCs: u2 u6 = 0, 5 u2 8 u7 = 3, 3 u3 +u5 4 u6 = 1

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Langrange Multiplier MethodRecipe step #2:append the multipliers, symmetrize and fill

    =

    130

    000041030000080000500000100010080000000010000000000000000003000000051000000000000

    7

    6

    5

    4

    3

    2

    1

    3

    2

    1

    7

    6

    5

    4

    3

    2

    1

    7767

    676656

    565545

    454434

    343323

    232212

    1211

    fffffff

    uuuuuuu

    KKKKK

    KKKKKK

    KKKKKK

    KK

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Assessment of Langrange Multiplier Method

    ADVANTAGESgeneral applicationexactno user decisions (black box)

    DISADVANTAGESdifficult implementationsadditional unknownsloses positive definitenesssensitive to constraint dependence

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    MFC Application Methods, Assessment Summary

    excellentfair

    small to noneexcellent

    high

    noyes

    excellentgoodhigh

    mediocrenone

    yesno

    fairpoor to fair

    highvariable

    high

    yesyes

    GeneralityEase of implementationSensitivity to user decisionsAccurancySensitivity as regardsConstraint dependenceRetains positive definitenessModifies unknown vector

    Langrange Multiplier

    Penalty FunctionMaster SlaveElimination

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 11

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Superelements and Global-Local Analysis

    Two extremes:

    Macroelements bottom up

    Substructures top down

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Substructures

    Substructures was invented in the aerospace industry, in the early1960s.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Substructures

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Among other things, to take advantage of repetition

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Multilevel FEM substructuring was invented in theNorwegian Offshore Industry in the mid/late 60s

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Static condensation

    A universal way to eliminate internal DOFs

    b b b b b

    i

    i

    b

    b

    b

    b

    Substructure Macroelement

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Multistate Rockets naturally decompose intosubstructures

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Static Condensation by Matrix Algebra

    =

    i

    b

    i

    b

    iiib

    bibb

    ff

    uu

    KKKK

    )(1 bibiiii uKfKu =

    ~~

    bbbbb fuK =

    iiibibb

    ibiibibbbb

    fKKff

    KKKKK1

    ~

    1~

    =

    =

    Solve for interior displacement from 2nd matrix equation

    Partition

    replace into first matrix equation

    where

    Condensed stiffness equation

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Static Condensation by symmetric GaussElimination

    =

    0463

    8413472112523126

    4

    3

    2

    1

    uuuu

    ( )( ) ( )( ) ( )( )

    ( )( ) ( )( ) ( )( )

    ( )( ) ( )( ) ( )( )

    ( )

    ( )

    ( )

    =

    8404

    8106

    8303

    8447

    8412

    8431

    8142

    8115

    8132

    8341

    8312

    8336

    3

    2

    1

    uuu

    =

    463

    525

    25

    25

    839

    819

    25

    819

    839

    3

    2

    1

    uuu

    Task: eliminate u4

    Condensedequation

    8 is called thepivot

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Static Condensation by symmetric GaussElimination

    =

    463

    525

    25

    25

    839

    819

    25

    819

    839

    3

    2

    1

    uuu

    Task: eliminate u3

    ( )( ) ( )( )

    ( )( ) ( )( )

    ( )

    ( )

    =

    52/546

    52/543

    52/52/5

    839

    52/52/5

    819

    52/52/5

    819

    52/52/5

    839

    2

    1

    uu

    =

    85

    829

    829

    829

    829

    2

    1

    uu Condensed

    equation

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Static Condensation Module Results on Notes Example

    =

    8413472112523126

    K

    =

    0463

    f

    =

    525

    25

    25

    839

    819

    25

    819

    839

    K

    =

    463

    f

    =

    829

    829

    829

    829

    K

    =

    85

    f

    Upon condensation DOF 4:

    Before condensation:

    Upon condensation DOF 3:

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Global Local analysis (an instance of multiscaleanalysis)

    Example structure: panel with small holes

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Standard (one stage) FEM analysis

    coarse mesh finer mesh

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Global Local (two stage) FEM analysis

    Global analysis with a coarse mesh, ignoring holes, followed by localanalysis of the vicinity of the holes with finer meshes (next slide)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Local analysis

    BCs of displacement or (better) of force type using results extractedfrom the global analysis

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 12

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Variational formulation of Bar Element

    Bar Member Variational Derivation

    y

    zCross section

    xP

    Longitudinal axis

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Bar Member

    q(x)

    x

    Laxial rigidity EA

    P

    cross section

    u(x)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Bar revisited - NotationQuantity Meaningx Longitudinal bar axis *(.) d(.)/dxu(x) Axial displacementq(x) Distributed axial force, given per unit of bar lengthL Total length of bar memberE Elastic modulusA Cross section area, may vary with xEA Axial rigidity = du/dx = u Infinitesimal axial strain = E = E u Axial stressp = A = EA = EA u Internal axial forceP Prescribed end load

    *) x is used in this Chapterinstead ofx to simplifythe notation

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Tonti diagram of governing equations

    Prescribedend

    displacement

    Axial strains(x)

    Axial displacement

    u(x)

    Axial force p(x)

    Destributed

    Axial Load

    Prescribedend loads

    DisplacementBCs

    Kinematic Equilibrium

    Constitutive

    = u p + q = 0

    unknown given (problem data)

    Force BCs

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Potential Energy of the Bar Member

    Internal energy (= strain energy)

    External Work

    Total potential energy

    ( ) dxuEAudxuEAudxpULL L

    '

    0

    ''

    0 0

    '

    21

    21

    21

    ===

    =L

    qudxW0

    WU =

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Concept of kinematically admissible variation

    u(x) is kinematically admissible if u(x) and u(x) + u(x)(i) are continuous over bar length, i.e. u(x) C0 in x [0, L](ii) satisfy exactly displacement BC; in the figure, u(0) = 0

    u

    xLu(0) = 0

    u(x) +u(x)u(x)

    u(x) u(L)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Minimum Potential Energy (MPE) principle

    The MPE principle states that the actual displacement solution u*(x)that satisfies the governing equations is that which renders the TPE (Total Potential Energy) functional [u] stationary:

    with respect to admissible variations u = u* + u of the exactdisplacement solution u*(x)

    0== WU *uu =if

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM discretization of Bar Member

    (2)(1) (3) (4)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5

    1 2 3 4 5

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    FEM displacement trial function

    Axial displacement plotted normal to x for visualization convenience

    (2)(1) (3) (4) (5)u1,f1 u2,f2 u3,f3 u4,f4 u5,f5

    1 2 3 4 5

    u

    xu1 = 0

    u1 u2 u3 u2

    End node 1 assumed fixed u(x)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element shape functions

    l = Le

    (e)i j

    1 0

    0 1

    N1e

    N2e

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Total potential energy principle and decomposition over elements

    0== WU *uu =if

    0...

    ...)()2()1(

    )()2()1(

    =+++=

    +++=e

    e

    Ne

    N

    but

    and

    from fundamental lemma of variational calculus, eachelement variation must vanish, giving

    0== eee WU

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element shape functions

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Chapter 13

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    A Beam is a structural member designed to resistprimarily transverse loads

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Transverse load are transported to supports byflexural action

    Compressivestress

    Tensilestress

    Neutral surface

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Beam configuration and models

    Configuration

    Spatial (general beams)Plane (this Chapter)

    Models

    Bernoulli EulerTimoshenko (advanced topic: described in Chapter but not covered

    in course)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Plane Beam Terminology

    L

    y,v

    x,u z

    y,vq(x)

    Neutral surface

    Beam cross section

    Symmetryplane

    Neutral surface

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Common support conditions

    Simply supported

    Cantilever

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Basic relations for Bernoulli Euler model of plane beam

    Plus equilibrium equation M = q (not used specifically in FEM)

    =

    =

    =

    )()()(

    )(

    ),(),( '

    xvy

    xvyv

    xvxxvy

    yxvyxu

    EIM

    Eydx

    vdEyE

    ydx

    vdyxvy

    xu

    =

    ===

    ==

    =

    =

    2

    2

    2

    2

    2

    2

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Kinematics of Bernoulli Euler beam

    y,v

    x,u

    x

    y

    Cross section

    =dv/dx=v

    v(x,y)=v(x,0)

    P(x,y)

    P(x+u,y+v)

    L

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Tonti diagram for Bernoulli Euler model of plane beam (strong form)

    Prescribedend

    displacement

    Curature(x)

    Transversedisplacement

    v(x)

    Bending Moment M(x)

    Distributedtransverseload q(x)

    Prescribedend loads

    DisplacementBCs

    Kinematic Equilibrium

    Constitutive

    = v M = q

    Force BCsM = EI

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Total potential energy of beam member

    =

    =

    ===

    L

    LV

    L

    xxxx

    qvdxW

    dxEI

    dxxvEIdxMdVU

    0

    0

    2

    2

    02

    2

    21

    21

    21

    21

    WU =Internal External

    Internal energy due to bending

    External energy due to transverse load q

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Degrees of freedom of plane beam element

    2

    1

    1

    2

    v1 v2

    =

    2

    2

    1

    1

    v

    v

    ue

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Bernoulli Euler kinematics of plane beamelement

    y,v

    x,u

    x

    y

    P(x,y)

    P(x+u,y+v)

    L

    1

    1

    2

    v1 v2

    2

    EI

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Shape functions in terms of natural coordinate

    [ ]

    122

    2

    1

    1

    2211

    =

    =

    =

    Lx

    Nuv

    v

    NNNNv eeevee

    ve

    Introduce the natural(isoparametric) coordinate

    ( ) ( )

    ( ) ( )

    +=

    +=

    1181)(

    2141)(

    22

    22

    LN

    N

    e

    ev( ) ( )

    ( ) ( )

    +=

    +=

    1181)(

    2141)(

    21

    21

    LN

    N

    e

    ev

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Shape element function plots

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    +=

    +=

    +=

    +=

    1181)(

    2141)(

    1181)(

    2141)(

    22

    22

    21

    21

    LN

    N

    LN

    N

    e

    ev

    e

    ev

    )(1 evN

    )(1 eN

    )(2 evN

    )(2 eN

    =-1 =1

    v1=1

    v2=1

    1=1

    2=1

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Getting Curvatures from displacementinterpolation

    edefee

    vee

    v

    ee

    e

    Buv

    v

    dxNd

    dxNd

    dxNd

    dxNd

    udx

    Nddx

    udNudx

    Nddx

    xvd

    =

    =

    =+==

    2

    2

    1

    1

    22

    2

    22

    2

    21

    2

    21

    2

    2

    2

    2

    2

    2

    2

    2

    2 )(

    dfd

    Lddf

    dxd

    Lddf

    dxLd

    dxxfd

    ddf

    Ldxd

    ddf

    dxxdf

    )(4)(2)()/2()(

    )(2)()(

    2

    22

    2

    =

    +=

    ==

    += 1361361

    LLLB

    Applying the chain rule

    to differentiate the shape function we get

    1 x 4 curvature displacementmatrix

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element stiffness and consistent node force

    eTeeeTee fuuKu =21

    Varying the element TPE

    we get

    LdqNqdxNf

    LdBEIBBdxEIBK

    LTTe

    LTTe

    21

    21

    0

    1

    1

    0

    1

    1

    ==

    ==

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Analytical computation of prismatic beam elementstiffness

    ( ) ( )( ) ( ) ( )

    ( )( )

    =

    ++

    +

    =

    2

    22

    3

    1

    122

    2

    2222

    22

    3

    4612

    264612612

    13.13636

    19136131363613636

    2

    LL

    LLLLL

    LEI

    d

    LsymmL

    LLLL

    LEIK e

    (prismatic means constant EI)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Mathematica Script for symbolic computation of prismatic plane beam element stiffness

    ClearAll [EI,l,];

    B={{6*, (3*-1)*l, -6*, (3*+1)*l}}/l^2;

    Ke=(EI*l/2)*Integrate [Transpose [B].B,{,-1,1}];

    Ke=Simplify[Ke];

    Print[Ke for prismatic beam:];

    Print[Ke//MatrixForm];

    Ke for prismatic beam:

    Corroborates the results from hand integration

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    lEI

    4626

    612612

    2646

    612612

    22

    2323

    22

    2323

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Analytical computation of consistent node force vector for uniform load q

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    =

    +

    +

    +

    +

    ==

    L

    LqL

    d

    L

    LqLNdqLf e

    12121

    12121

    1

    1

    1

    1

    2

    2

    2

    2

    1181

    2141

    1181

    2141

    21

    21

    fixed end moments

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Mathematica Script for symbolic computation of consistent node force vector for uniform load q

    ClearAll [q,l,];

    Ne={{2*(1-)^2*(2+), (1-)^2*(1+)*l,

    2*(q-)^2*(2-),-(1+)^2*(1-)*l}}/8;

    fe=(q*l/2)*Integrate [Ne,{,-1,1}]; fe=Simplify [fe];

    Print[fe^T for uniform load q:];

    Print[fe//MatrixForm];

    fe^T for uniform load:

    Force vector printed as row vector to save space

    122122

    22 qqqq llll

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    14The Plane Stress

    Problem

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Plate in Plane Stress

    Inplane dimensions: in x,y plane

    Thi

    ckne

    ssdi

    men

    sion

    ortr

    ansv

    erse

    dim

    ensi

    on

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Mathematical Idealization asa Two Dimensional Problem

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Plane Stress Physical Assumptions

    Plate is flat and has a symmetry plane (the midplane)

    All loads and support conditions are midplane symmetric

    Thickness dimension is much smaller than inplane dimensions

    Inplane displacements, strains and stresses uniform throughthickness

    Transverse stresses and negligible, set to 0

    Unessential but used in this course:

    Plate fabricated of homogeneous material through thickness

    xzzz , yz

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Notation for stresses, strains, forces, displacements

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Inplane Forces are Obtained byStress Integration Through Thickness

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Plane Stress Boundary Conditions

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    The Plane Stress ProblemGiven:

    geometry

    material properties

    wall fabrication (thickness only for homogenous plates)

    applied body forces

    boundary conditions:

    prescribed boundary forces or tractions

    prescribed displacements

    Find

    inplane displacements

    inplane strains

    inplane stresses and / or internal forces

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Matrix Notation for Internal Fields

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Governing Plane Stress ElasticityEquations in Matrix Form

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Strong-Form Tonti Diagram ofPlane Stress Governing Equations

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    TPE-Based Weak Form Diagram ofPlane Stress Governing Equations

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Total Potential Energy of Platein Plane Stress

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Discretization into Plane StressFinite Elements

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Plane Stress Element Geometriesand Node Configurations

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Total Potential Energy of Plane Stress Element

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Constructing a Displacement Assumed Element

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element Construction (contd)

    Differentiate the displacement interpolation wrt x,y

    to get the strain-displacement relation

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Element Construction (contd)Element total potential energy

    Element stiffness matrix

    Consistent node force vector

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Requirements on Finite Element Shape Functions

    Interpolation ConditionNi takes an value 1 at node i, 0 at all other nodes

    Continuity (intra- and inter-element)and Completeness Conditions

    are covered later in the course (Chs. 18-19)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    MATLAB - BASICS

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Matrizen und Magische Quadrate

    Geben Drers Matrix A als eine Liste von Elementen. Sie mssen nur wenige Grundregeln beachten:

    Die Elemente werden durch Leerzeichen oder Kommas getrennt Ein Strichpunkt markiert das Ende einer Zeile Die gesamte Matrix wird von eckigen Klammern [ ] eingeschlossen

    Um die Matrix von Drer einzugeben, tippen Sie einfach:

    A=[16 3 2 13;5 10 11 8;9 6 7 12;4 15 14 1]

    MATLAB zeigt sofort die eingegebene Matrix an:

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Summe, Transposition und Spur

    Vielleicht haben Sie schon bemerkt, dass die speziellen Eigenschaften des Magischen Quadrats mit der Summierung der Elemente in verschiedenen Richtungen zusammenhngt. Bilden Sie die Summe jeder Zeile oder Spalte. Sie werden immer die selbe Zahl erhalten. berprfen Sie dies mit MATLAB. Der erste Befehl ist:

    erzeugt Spaltensumme

    sum(A)

    erzeugt Zeilensumme da Transponierte von A verwendet

    sum(A)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Summe der Diagonalen einer Matrix

    Die Summe der Elemente der Hauptdiagonalen, die Spur der Matrix A, wird einfach mit Hilfe der diag-Funktion ermittelt

    sum(diag(A))

    Die Gegendiagonale ist mathematisch nicht so wichtig, deshalb gibt es keine MATLAB-Funktion zu ihrer Summierung. Die Funktion fliplr, die eigentlich fr Graphik-Anwendungen gedacht war, hilft hier jedoch weiter. Sie spiegelt die Matrix an ihrer Mittelachse. Dadurch wird die Gegendia-gonale zur Hauptdiagonalen und ihre Spur ist

    sum(diag(fliplr(A)))

    Matrix im Holzschnitt von Drer ist wirklich ein magisches Quadrat ist

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Indizes

    Das Element in Zeile i und der Spalte j der Matrix A wird mit A(i, j) bezeichnet.

    Die Summe einer Spalte der Matrix A kann somit auch wie folgt modelliert werden:

    A(1,4) + A(2,4) +A (3,4) + A(4,4)

    Es ist auerdem mglich, Elemente einer Matrix mit einem einfachen Index anzusprechen, etwa A(k).

    In diesem Fall wird das Zahlenfeld A als ein langer Spaltenvektor betrachtet

    A(8) welcher Eintrag etspricht dies in der Matrix?

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    INDEX

    Falls Sie einen Wert auerhalb der Matrix aufrufen wollen, gibt MATLAB einen Fehler aus:

    t=A(4,5)

    Man kann jedoch einen Wert auerhalb der Feldgrenzen speichern. Die Gre der Matrix wird fr das neue Element passend erweitert:

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Der Doppelpunkt-Operator

    Der Ausdruck: 1:10ist ein Zeilenvektor, der die Zahlen eins bis zehn der Reihe nach enthlt:

    Um andere Abstnde zu erhalten, geben Sie eine beliebige, evtl. auch negative Schrittweite an. Z.B ergibt

    100:-7:50

    0:pi/4:pi

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Der Doppelpunkt-Operator

    Indexausdrcke, die den Doppelpunktoperator enthalten, beziehen sich auf Ausschnitte von Mat-rizen, sog. Teilmatrizen.

    A(1:3,2)

    ? sum(A(1:4,4))

    Der alleinstehende Doppelpunkt bezieht sich auf alle Matrixelemente in einer Zeile oder Spalte.

    Das Schlsselwort end bezieht sich auf die letzte Zeile oder Spalte.

    Magische Matrizesum(A(1:16))/4

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Die magicFunktion

    Magische Quadrate nahezu beliebiger Gre

    B=magic(4)

    Drers Matrix - Spalten vertauschenA=B(:,[1,3,2,4])

    Diese Anweisung hat bewirkt, dass in jeder Zeile von Matrix B die Elemente in der Reihenfolge 1, 3, 2, 4 angeordnet wurden.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    bungsaufgaben

    1. Erzeugen Sie ein magisches Quadrat der Gre 6x6 und weisen Sie alle Eigenschaften von magischen Quadraten nach.

    2. Erzeugen Sie mit der Funktion rand eine 5x5-Zufallsmatrix A. Welches sind die Werte der folgenden Ausdrcke?

    a) A(2,:) b) A(:,5) c) A(:,1) d) A([1,5]) e) A(1,1:2:5) f) A(4:-1:1,5:-1:1)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Operatoren

    In Ausdrcken gelten die gelufigen arithmetischen Operatoren und Priorittsregeln (Punkt- vor Strichrechnung usw.), die durch Klammern abgendert werden knnen. Arithmetische Operatoren sind

    + Addition - Subtraktion * Multiplikation / Division \ Linke Division ^ Potenzierung ' Transposition (mit Konjugation) () Klammern zur Festlegung der Auswertungsreihenfolge

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Funktionen

    Um sich eine Liste aller elementaren mathematischen Funktionen ausgeben zu lassen, gibt man

    help elfunein. Fr eine Liste der speziellen Funktionen gibt man help specfunein. Das Repertoire an elementaren Matrizen zeigt help elmatan.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Arbeiten mit Matrizen

    zeros Alle Elemente sind Nullen (Nullmatrix) ones Alle Elemente sind Einsen rand Gleichverteilte Zufallszahlen aus [0,1[ randn normalverteilte Zufallszahlen (Mittelwert 0 und Varianz 1)

    Z=zeros(4,2)

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Zusammensetzen von Matrizen

    Der Verkettungsoperator ist das eckige Klammerpaar [ ]. Fangen Sie mit dem magischen Quadrat A aus Kapitel 1 an und erstellen Sie

    B=[A A+32; A+48 A+16]

    Das Resultat ist eine 8x8 Matrix, die Sie erhalten, wenn Sie die 4 Untermatrizen aneinanderhn-gen.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Lschen von Zeilen und Spalten

    Sie knnen Zeilen und Spalten einer Matrix lschen, indem Sie diesen einfach ein leeres Paar eckiger Klammern zuweisen. Fangen Sie anmit:

    X=A;

    Lschen Sie anschlieend die 2. Spalte von X in dem Sie

    X(:,2)=[ ]

    schreiben.

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Der format - Befehl

    Der format-Befehl kontrolliert das numerische Format der durch MATLAB dargestellten Zahlen.

    format short 1.33330format short e 1.3333e+000 1.2345e-006format short g 1.33331.2345e-006format long 1.333333333333330.00000123450000format long e 1.33333333333333e+0001.23450000000000e-006format long g 1.333333333333331.2345e-006format bank 1.330.00format rat 4/31/810045format hex 3ff55555555555553eb4b6231abfd271format compactDieser Befehl unterdrckt alle Leerzeilen, die normalerweise zur bersichtlichkeit dienen sollen.

    Auf diese Weise ist es mglich, mehr Informationen im Fenster zu sehen. Mit dem Befehl format +

  • University of Natural resources and Applied Sciences, Institut of Structural Engineering Alfred Strauss

    Eine Matrix ist ein zweidimensionales Feld, das eine lineare Transfor